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Computation of the q-th roots of circulant matrices
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Abstract. In this paper, we investigate the reduced form of circulant matrices and we show
that the problem of computing the q-th roots of a nonsingular circulant matrix A can be
reduced to that of computing the q-th roots of two half size matrices B − C and B + C.
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1. Introduction

Circulant matrices is a kind of important patterned matrices which arise in many areas
of physics, electromagnetics, signal processing, molecular vibration and applied mathe-
matics [1, 2]. For recent years the properties and applications of circulant matrices have
been extensively investigated [3].
X is a q-th root of A ∈ Cn×n, if Xq = A. The q-th root of a matrix, for q > 2, arises

less frequently than the square root, but nevertheless is of interest both in theory and
in practice. One application is in the computation of the matrix logarithm through the
relation log A = q logA1/q [5], where q is chosen so that A1/q can be well approximated
by a polynomial or rational function. It can be arising most frequently in the context
of symmetric positive definite matrices. The key roles that the q-th root plays in, for
example, the matrix sign function. The rich variety of methods for computing the q-th
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root of a matrix, and principal q-th root of A are the Newtons method given in [5, 6],
Inverse Newton iteration [4] and Schur method given in [7]. The matrix q-th root is an
interesting object of study because algorithms and results for the case q = 2 do not
always generalize easily, or in the manner that they might be expected to.

This paper is organized as follows. In Section 2, we review some basic definitions and
notations. In Section 3, we investigate the properties of circulant matrices, then discuss
the form of q-th root of circulant matrices.

2. preliminaries

Throughout this paper we denote the set of all n× n complex matrices by Cn×n and the
set of all n× n real matrices by Rn×n.

We first review the structure and reducibility of circulant matrices. All the formulas
become slightly more complicated when n is odd; similar to the most of literatures we
restrict our attention to the case of even n = 2m.

Fix a positive integer n ⩾ 2, and let a = (a0, · · · , an−1) be a row vector in Rn. Define
the operator T : Rn −→ Rn by T (a0, · · · , an−1) = (an−1, a0, · · · , an−2), the circulant
matrix associated to a is the n × n matrix whose rows are given by iterations of the
operator acting on a, that is to say, the matrix whose k-th row is given by T k−1a,
k = 1, 2, · · · , n. Such a matrix will be denoted by

Cir(a) =


a0 a1 · · · an−1

an−1 a0 · · · an−2
...

. . .
. . .

a1 · · · an−1 a0

 .

Another equivalent definition of a circulant matrix is as follows:
A ∈ Rn×n is a circulant matrix, if and only if A = GTAG, where G =

Cir([0, 1, 0, 0, · · · , 0]).

Definition 2.1 Let < A >= (aij)n×n. If

< A >= (aij) =

{
| aij |, i = j, i, j = 1, 2, · · ·n,

− | aij |, i ̸= j, i, j = 1, 2, · · ·n,

then < A > is called a comparison matrix of A.

For simplicity, using the partition, the n× n circulant matrix A can be described as

A =

[
B A
C B

]
, (1)

where B and C are m×m matrices.
Define

P =

√
2

2

[
Im Im
−Im Im

]
, (2)

where Im is m-th unit matrix.
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By applying (1) and (2) we obtain the following:

Lemma 2.2 Let A ∈ Rn×n is a circulant matrix, then

P TAP = diag(M,N), (3)

whereM = B−C and N = B+C. We call the matrix of the right side of (3) the reduced
form of the circulant matrix A.

Lemma 2.3 Let A be a circulant matrix, then

(1) < A > is a circulant matrix.
(2) If A is nonsingular, then A−1 is a circulant matrix.
(3) AT is a circulant matrix.
(4) Let B ∈ Rn×n be a circulant matrix, then A ± B and AB are also circulant

matrices.

Proof. By the assumption that A is a circulant matrix, comparison matrix < A > is as
follows:

< A >=

[
< B > − | C |
− | C | < B >

]
. (4)

By applying (1)-(3) we obtain

P T < A > P =

√
2

2

[
Im −Im
Im Im

] [
< B > − | C |
− | C | < B >

] √
2

2

[
Im Im
−Im Im

]
(5)

P T < A > P =

[
< B > + | C | 0

0 < B > − | C |

]
, (6)

where M =< B > + | C | and N =< B > − | C |. And similar to the part (1), the other
parts can be proved by applying (1)-(3)

P TAP = diag(M,N), (7)

A = P−Tdiag(M,N)P−1, (8)

where matrix A is nonsingular and P T = P−1

A−1 = P (diag(M,N))−1P T , (9)

A−1 = P−T (diag(M,N))−1P−1. (10)

So A−1 is a circulant matrix.
The other parts obtain as follow:

AT = P−T (diag(M,N))TP−1. (11)
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A±B = P−T (diag(M ± Ḿ,N ± Ń))P−1. (12)

■

Definition 2.4 (Matrix function via Hermite interpolation[5]). Let f be defined on
the spectrum of A ∈ Cn×n and let ψ be the minimal polynomial of A. Then f(A) :=
p(A), where p is the polynomial of degree less than

∑s
i=1 ni = degψ that satisfies the

interpolation conditions

p(j)(λi) = f (j)(λi), j = 0 : ni − 1, i = 1 : s (13)

There is a unique such p and it is known as the Hermite interpolating polynomial.

Lemma 2.5 Let the nonsingular matrix A ∈ Cn×n have the Jordan canonical form

Z−1AZ = diag(J1, · · · , Jm), (14)

and let s ⩽ m be the number of distinct eigenvalues of A. Then A has precisely qs

principal q-th roots that are primary functions of A given by

Xj = Zdiag(Lj1
1 , · · · , L

jm
m )Z−1, j = 1 : qs (15)

Corresponding to all possible choices of j1, j2, · · · , jm subject to the constraint that
ji = jk whenever λi = λk.

Here for the mk ×mk Jordan block Jk = Jk(λk) , k = 1, 2, · · · ,m, we have

Ljk
k = J

1/q
k =


f(λk) f

′(λk) · · · f (mk−1)(λk)
(mk−1)!

0 f(λk) f
′(λk)

...
...

. . .
. . . f ′(λk)

0 · · · 0 f(λk)

 ,

where f(x) = x1/q is the principal q-th roots of complex number x.
If s < m, A has non primary q-th roots. They form parameterized families

Xj(U) = ZUdiag(Lj1
1 , · · · , L

jm
m )U−1Z−1, j = qs + 1 : qm, (16)

where jk ∈ {1, 2, · · · , q}, U is an arbitrary nonsingular matrix that commutes with J ,
and for each j there exist i and k, depending on j such that λi = λk while ji ̸= jk [5].

Proof. Let q ⩾ 2 be an integer. Suppose that A ∈ Cn×n has no negative real eigenvalues
and all zero eigenvalues of A are semi simple. Let the Jordan canonical form of A be
Z−1AZ = diag(J1, · · · , Jm), then the principal q-th root of A is

A1/q = Zdiag(J
1/q
1 , J

1/q
2 , · · · , J1/q

m )Z−1. (17)

So for which ji = jk whenever, λi = λk,

Udiag(J
1/q
1 , J

1/q
2 , · · · , J1/q

m )U−1 = diag(J
1/q
1 , J

1/q
2 , · · · , J1/q

m ), (18)
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that is, U commutes with the block diagonal matrix in the middle. This commutativity
follows form the explicit form for U . ■

3. The q-th roots of circulant matrices

In this section we will discuss the q-th roots of circulant matrices.

Theorem 3.1 Let A ∈ Rn×n be a nonsingular circulant matrix and X as the principal
q-th root of A and write Xq = A, where X is a primary function of A. Then all q-th
roots such as X are circulant matrices.

Proof. By assumption, Xq = A and X = f(A), here f(x) = x1/q, and A is a nonsingular
matrix, the q-th root function is defined on spectrum of A and which f(x) = x1/q is the
principal q-th roots of complex number x. It follows that the eigenvalues of A1/q lie in the
segment {x : −π

q < arg(x) < π
q }. Using the fact that the sum and product of n circulant

matrices are also circulant, and from Definition 2.4, we can construct a polynomial p such
that p(A) = f(A), the polynomial X = p(A) is a circulant matrix since A is a circulant
matrix. ■

Remark 1 Assume that X̃ is q-th root of A which is function of A. Then, by Lemma
2.2 and Theorem 3.1, we have that

P T X̃P = X = diag(X1, X2), (19)

and

P TAP = X = diag(M,N), (20)

which means that X1 = f(M) and X2 = f(N). Thus the problem of computing q-th root
of a circulant matrix A, which are function of A, can be reduced to that of computing q-th
root of two half size matrix M and N , which are functions of M and N , respectively.

Theorem 3.2 Let A ∈ Rn×n be a nonsingular circulant matrix. If A has a circulant q-th
root, then each M = B − C and N = B + C in Lemma 2.2, has q-th root, respectively.

Proof. We know that A has reduced form (3). From hypothesis, denote a circulant q-th
root of A by X̃. By Lemma 2.2, there holds

P T X̃P = diag(X1, X2), (21)

where P is defined by the Definition 2.1. In fact X̃q = A implies that Xq
1 = B − C ,

Xq
2 = B +C hold simultaneously, that is, X1 and X2 are q-th root of B −C andB +C,

respectively. ■

Theorem 3.3 Let A ∈ Rn×n be a nonsingular circulant matrix with reduced form given
by (3). Assume that M has s distinct eigenvalues and N has t distinct eigenvalues. Let
M = ZMJMZ

−1
M with

JM = diag(J1, J2 · · · , Jl), (22)
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and N = ZNJNZ
−1
N with

JN = diag(J̃1, J̃2 · · · , J̃r), (23)

be the Jordan decompositions of M and N , respectively.
Let | (δ(M)∩ δ(N) |= α, where δ(M) denotes the spectrum of matrix M . If M and N

have a common eigenvalues, then A has qs+t−α circulant q-th roots which are functions
of A and take the form

X̂ = PZL̂Z−1P T , (24)

with

Z = diag(ZM , ZN ), (25)

and

L̂ = diag(L̂M , L̂N ), (26)

where L̂M denoted a q-th root of JM , which is a function of JM and L̂N denoted a q-th
root of JN , which is a function of JN . Furthermore, if s+ t < l+ r, then A has q-th roots
which are not function of A; they form ql+r − qs+t−α parameterized families and taking
the following form:

X̃(U) = PZUL̂U−1Z−1P T , (27)

where Z, L̂ are defined in (25) and (26) and U is an arbitrary nonsingular matrix which
commutes with J = diag(JM , JN ).

Proof. IfM and N have a common eigenvalues, then A has s+t−α distinct eigenvalues
and l + r Jordan blocks. Then by Lemma 2.5 we can get that A has qs+t−α, q-th roots
which are functions of A and take the form (24). By Theorem 3.1, those q-th roots are
circulant. Using Lemma 2.5 again, we get the form (27).

■

4. Conclusions

In this paper, we get that any nonsingular circulant matrix has a circulant q-th roots.
And by Theorem 3.2 and Definition 2.4 we developed the problem of computing the
q-th roots of a circulant matrices A ∈ Rn×n can be reduced to that of computing the
q-th roots of two half size matrices M and N . And we developed the q-th roots of a
nonsingular circulant matrix fall into two classes. The first class comprises finitely many
primary q-th roots. The second class, which may be empty, comprises a finite number
of parametrized families of matrices, and the q-th roots in this class may be circulant
matrices or not.
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