
Journal of
Linear and Topological Algebra
Vol. 01, No. 02, Summer 2013, 55- 65

Weak amenability of (2N)−th dual of a Banach algebra

Mina Ettefagha,∗, and Sima Houdfar a

aDepartment of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
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1. Introduction and Preliminaries

Let X be a normed space and X
′
be the topological dual space of X; the value

of f ∈ X
′
at x ∈ X is denoted by ⟨f, x⟩. We set (X

′
)
′
= X

′′
and so on, and

we regard X as a subspace of X
′′
by natural mapping ι : X → X

′′
(x 7−→ x̂)

where ⟨x̂, f⟩ = ⟨f, x⟩(f ∈ X
′
). We denot the n−th dual of X by X(n). The weak

topology on X is denoted by w = σ(X,X
′
) and weak∗-topology on X

′
is dented

by w∗ = σ(X
′
, X).

New let X,Y and Z be normed spaces and let f : X × Y → Z be a continuous
bilinear map. Arens in [1] offers two extensions f∗∗∗ and f t∗∗∗t of f from X

′′ × Y
′′

to Z
′′
as following:

(1)

{
f∗ : Z

′ ×X −→ Y
′⟨

f∗(z
′
, x), y

⟩
=

⟨
z

′
, f(x, y)

⟩
(x ∈ X, y ∈ Y, z

′ ∈ Z
′
).

(2)

{
f∗∗ : Y

′′ × Z
′ −→ X

′⟨
f∗∗(y

′′
, z

′
), x

⟩
=

⟨
y

′′
, f∗(z

′
, x)

⟩
(x ∈ X, z

′ ∈ Z
′
, y

′′ ∈ Y
′′
).

(3)

{
f∗∗∗ : X

′′ × Y
′′ −→ Z

′′⟨
f∗∗∗(x

′′
, y

′′
), z

′⟩
=

⟨
x

′′
, f∗∗(y

′′
, z

′
)
⟩

(z
′ ∈ Z

′
, x

′′ ∈ X
′′
, y

′′ ∈ Y
′′
).
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The mapping f∗∗∗ is the unique extension of f such that x
′′ 7−→ f∗∗∗(x

′′
, y

′′
) from

X
′′
into Z

′′
is w∗ − w∗−continuous for every y

′′ ∈ Y
′′
.

Let now f t : Y × X → Z be the transpose of f defined by f t(y, x) = f(x, y) for
x ∈ X and y ∈ Y . We can extend f t as above to f t∗∗∗ and then we have the
mapping f t∗∗∗t : X

′′ × Y
′′ −→ Z

′′
. If f∗∗∗ = f t∗∗∗t then f is called Arens regular.

The mapping y
′′ 7−→ f t∗∗∗t(x

′′
, y

′′
) from Y

′′
into Z

′′
is w∗ − w∗−continuous for

every x
′′ ∈ X

′′
. Arens regularity of f is equivalent to the following

lim
i
lim
j

⟨
z

′
, f(xi, yi)

⟩
= lim

j
lim
i

⟨
z

′
, f(xi, yi)

⟩
,

whenever both limits exist for all bounded nets (xi) and (yj) in X and Y , respec-
tively and for evrey z

′ ∈ Z
′
.

Throughout this paper A is a Banach algebra. This algebra is called Arens regular
if its multiplication as a bilinear map π : A×A → A(π(a, b) = ab) is Arens regular.
We shall frequently use Goldstine’s theorem: for each a

′′ ∈ A
′′
, there is a net (ai)

in A such that a
′′
= w∗ − lim

i
âi. Now let a

′′
= w∗ − lim

i
âi and b

′′
= w∗ − lim

j
b̂j be

elements of A
′′
. The first and second Arens products on A

′′
are denoted by symbols

□ and ♢ respectively and defined by

a
′′□b

′′
= π∗∗∗(a

′′
, b

′′
) , a

′′♢b′′
= πt∗∗∗t(a

′′
, b

′′
).

It is easy to show that

a
′′□b

′′
= w∗ − lim

i
w∗ − lim

j
âibj , a

′′♢b′′
= w∗ − lim

j
w∗ − lim

i
âibj .

On the other hand we can define above Arens products in stages as following. Let
a, b ∈ A, f ∈ A

′
and F,G ∈ A

′′
.

(1) Define f.a in A
′
by ⟨f.a, b⟩ = ⟨f, ab⟩,

and a.f in A
′
by ⟨a.f, b⟩ = ⟨f, ba⟩.

(2) Define F.f in A
′
by ⟨F.f, a⟩ = ⟨F, f.a⟩,

and f.F in A
′
by ⟨f.F, a⟩ = ⟨F, a.f⟩.

(3) Define F□G in A
′′
by ⟨F□G, f⟩ = ⟨F,G.f⟩,

and F♢G in A
′′
by ⟨F♢G, f⟩ = ⟨G, f.F ⟩.

Then (A
′′
,□) and (A

′′
,♢) are Banach algebras, see [1, 5] for further details.

Now let E be a Banach A−bimodule, then E
′
is a Banach A−bimodule under

actions

⟨a.f, x⟩ = ⟨f, xa⟩, ⟨f.a, x⟩ = ⟨f, ax⟩ (a ∈ A, x ∈ E, f ∈ E
′
), (1)

and E
′′
is a Banach A

′′−bimodule under actions

F.Λ = w∗ − lim
i
w∗ − lim

j
âixj , Λ.F = w∗ − lim

j
w∗ − lim

i
x̂jai (2)
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where F = w∗ − lim
i
âi and Λ = w∗ − lim

j
x̂j such that (ai) ⊂ A and (xj) ⊂ E are

bounded nets.
For a Banach A-bimodule E, the continuous linear map D : A → E is called
derivation if D(ab) = a.D(b) + D(a).b, (a, b ∈ A). For x ∈ E the derivation
δx : A → E by δx(a) = a.x − x.a is called inner derivation. The Banach alge-
bra A is called amenable if every derivation D : A → E′ is inner, for each Banach
A-bimodule E, [7]. If every derivation D : A → A

′
is inner, A is called weakly

amenable, see also [2, 4] for details.

Theorem 1.1 Let A be a Banach algebra and E be a Banach A-bimodule and
D : A → E is a continuous derivation, then D′′ : A′′ → E′′ is a continuous
derivation[5, Theorem 2.7.17].

Remark 1 A′′-bimodule structures on E′′ in above theorem are as in formula (2).

In [8] it was shown that if A is complete Arens regular and every derivation
D : A → A′ be weakly compact, then weak amenability of A(2n) for some (n ⩾ 1)
implies weak amenability of A. In this paper we always use the first Arens product
□ on Banach algebra A(2n)(n ⩾ 1). In section 2 we shall frequently use formulas
(1) and (2) and we investigate following actions

▷ two A
′′
-module actions on A(3) = (A

′
)
′′
and A(3) = (A

′′
)
′
,

▷ two A(4)-module actions on A(5) = ((A
′
)
′′
)
′′
and A(5) = ((A

′′
)
′′
)
′
,

▷ two A(6)−module actions on A(7) = (((A
′
)
′′
)
′′
)
′′
and on A(7) = (((A

′′
)
′′
)
′′
)
′
,

and we will extend our results to two different A(2n)−module actions on A(2n+1)

by induction. In each case we find conditions to make these two different actions
equal. In a similar work in [6] two different A

′′−module actions on A(3) = (A
′
)
′′
and

A(3) = (A
′′
)
′
have been studied. Finally in section 3 we investigate the innerness

of second, fourth... and (2n)−th dual of a derivation D : A → A
′
. By using some

conditions we will show that weak amenability of A(2n) for some (n ⩾ 1) implies
weak amenability of A.

2. A(2n)−module actions on A(2n+1)

We shall frequentey use formulas (1) and (2) to construct two different
A(2n)−module actions on A(2n+1) = (((A

′
)
′′
) · · · )′′ and A(2n+1) = (((A

′′
) · · · )′′)′ .

Remark 1 There are many other A(2n)−module actions on A(2n+1) that we don’t
need to mention.

First for n= 1 we consider two A′′-module actions on A(3) = (A
′
)
′′

and

A(3) = (A
′′
)
′
. Let a(3) = w∗ − lim

α
â′
α ∈ A(3) and a

′′
= w∗ − lim

β
âβ, b

′′
= w∗ − lim

i
b̂i

in which (a
′

α) and (aβ), (bi) are bounded nets in A
′
and A respectively. For left
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A′′-module action on A(3) = (A
′
)
′′
as second dual of A

′
we can write

⟨a′′
.a(3), b

′′⟩ = lim
β

lim
α
⟨b′′

, aβ.a
′

α⟩ (by formula (2))

= lim
β

lim
α

lim
i
⟨a′

α, bi.aβ⟩,
(3)

and for left A′′-module action on A(3) = (A
′′
)
′
as dual of A

′′
we can write

⟨a′′
.a(3), b

′′⟩ = ⟨a(3), b′′□a
′′⟩ (by formula (1))

= lim
α
⟨b′′□a

′′
, a

′

α⟩
= lim

α
lim
i
lim
β
⟨a′

α, bi.aβ⟩.
(4)

This shows that two left A′′-module actions on A(3) = (A
′′
)
′
and A(3) = (A

′
)
′′
are

not equal. Similarly for right A′′-module action on A(3) = (A
′
)
′′
we have

⟨a(3).a′′
, b

′′⟩ = lim
α

lim
β
⟨b′′

, a
′

α.aβ⟩ (by formula (2))

= lim
α

lim
β

lim
i
⟨a′

α, aβ.bi⟩,
(5)

and for right A′′-module action coincide on A(3) = (A
′′
)
′

⟨a(3).a′′
, b

′′⟩ = ⟨a(3), a′′□b
′′⟩ (by formula (1))

= lim
α
⟨a′′□b

′′
, a

′

α⟩
= lim

α
lim
β

lim
i
⟨a′

α, aβ.bi⟩.
(6)

This shows that two right A′′-module actions on A(3) = (A
′′
)
′
and A(3) = (A

′
)
′′

are equal.

Proposition 2.1 Let A be a Banach algebra with following conditions

(i) A is Arens regular,
(ii) the map A×A

′ → A
′ (
(a, a

′
) 7−→ a.a

′)
is Arens regular.

Then two A′′-module actions on A(3) = (A
′
)
′′
and A(3) = (A

′′
)
′
coincide.

Proof It is enaugh to prove that left module actions in (3) and (4) coincide. We
begin with equation (3)
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⟨a′′
.a(3), b

′′⟩ = lim
β

lim
α
⟨b′′

, aβ.a
′

α⟩

= lim
α

lim
β
⟨b′′

, aβ.a
′

α⟩ (by (ii))

= lim
α

lim
β

lim
i
⟨aβ.a

′

α, bi⟩

= lim
α

lim
β

lim
i
⟨a′

α, bi.aβ⟩ (by formula (1))

= lim
α

lim
i
lim
β
⟨a′

α, bi.aβ⟩ (by (i))

this proves the equality of (3) and (4). ■

Now for n = 2 we consider two A(4)−module actions on A(5) = ((A
′
)
′′
)
′′
and

A(5) = ((A
′′
)
′′
)
′
. Let a(5) = w∗ − lim

α
â
(3)
α ∈ A(5) and a(4) = w∗ − lim

β
â

′′

β, b
(4) =

w∗ − lim
i
b̂
′′

i in A(4) where (a
(3)
α ) and (a

′′

α), (b
′′

i ) are bounded nets in A(3) and A
′′
,

respectively. For left A(4)−module action on A(5) = ((A
′
)
′′
)
′′
we have

⟨a(4).a(5), b(4)⟩ = lim
β

lim
α
⟨b(4), a′′

β.a
(3)
α ⟩ (by formula (2))

= lim
β

lim
α

lim
i
⟨a′′

β.a
(3)
α , b

′′

i ⟩
(7)

and for left A(4)−module action on A(5) = ((A
′′
)
′′
)
′
we have

⟨a(4).a(5), b(4)⟩ = ⟨a(5), b(4)□a(4)⟩ (by formula (1))

= lim
α
⟨b(4)□a(4), a(3)α ⟩

= lim
α

lim
i
lim
β
⟨a(3)α , b

′′

i □a
′′

β⟩.
(8)

For right A(4)−module action on A(5) = ((A
′
)
′′
)
′′
we have

⟨a(5).a(4), b(4)⟩ = lim
α

lim
β
⟨b(4), a(3)α .a

′′

β⟩ (by formula (2))

= lim
α

lim
β

lim
i
⟨a(3)α .a

′′

β, b
′′

i ⟩,
(9)

and for right A(4)-module action on A(5) = ((A
′′
)
′′
)
′

⟨a(5).a(4), b(4)⟩ = ⟨a(5), a(4)□b(4)⟩ (by formula (1))

= lim
α
⟨a(4)□b(4), a(3)α ⟩

= lim
α

lim
β

lim
i
⟨a(3)α , a

′′

β□b
′′

i ⟩.
(10)

We need the equality of two A
′′
-module actions on A(3) = (A

′′
)
′
and A(3) = (A

′
)
′′

to prove the equality of above A(4)-module actions on A(5), so we need the following
lemma whose proof is streightforward.
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Lemma 2.2 Let A be a Banach algebra with following conditions

(i) A
′′
is Arens regular,

(ii) the map A
′′ ×A

′′′ → A
′′′ (

(a
′′
, a(3)) 7−→ a

′′
.a(3)

)
is Arens regular.

Then the conditions of Proposition 2.1 hold.

Proposition 2.3 Let A be a Banach algebra with conditions

(i) A
′′
is Arens regular,

(ii) the map A
′′ ×A

′′′ → A
′′′ (

(a
′′
, a(3)) 7−→ a

′′
.a(3)

)
is Arens regular.

Then two A(4)-module actions on A(5) = ((A
′
)
′′
)
′′
and A(5) = ((A

′′
)
′′
)
′
coincide.

Proof By Lemma 2.2 the conditions of Proposition 2.1 hold, so two A′′-module
actions on A(3) = (A

′
)
′′
and A(3) = (A

′′
)
′
are equal. We begin with equality (7)

⟨a(4).a(5), b(4)⟩ = lim
β

lim
α
⟨b(4), a′′

β.a
(3)
α ⟩

= lim
α

lim
β
⟨b(4), a′′

β.a
(3)
α ⟩ (by (ii) of Lemma 2.2)

= lim
α

lim
β

lim
i
⟨a′′

β.a
(3)
α , b

′′

i ⟩

= lim
α

lim
β

lim
i
⟨a(3)α , b

′′

i □a
′′

β⟩ (by Proposition 2.1)

= lim
α

lim
i
lim
β
⟨a(3)α , b

′′

i □a
′′

β⟩, (by (i) of Lemma 2.2)

this proves the equality of (7) and (8). For equality of right-module actions, we
continue equality 9

⟨a(5).a(4), b(4)⟩ = lim
α

lim
β

lim
i
⟨a(3)α .a

′′

β, b
′′

i ⟩

= lim
α

lim
β

lim
i
⟨a(3)α , a

′′

β□b
′′

i ⟩ (by Proposition 2.1)

and this proves the equality of (9) and (10). ■

Now suppose that n = 3, we consider two A(6)−module actions on A(7) =

(((A
′
)
′′
)
′′
)
′′

and A(7) = (((A
′′
)
′′
)
′′
)
′
. Let a(7) = w∗ − lim

α
â
(5)
α ∈ A(7) and

a(6) = w∗ − lim
β

â
(4)
β , b(6) = w∗ − lim

i
b̂
(4)
i ∈ A(6) where (a

(5)
α ) and (a

(4)
β ), (b

(4)
i )

are bounded nets in A(5) and A(4), respectively. For left A(6)−module action on
A(7) = (((A

′
)
′′
)
′′
)
′′
we can write

⟨a(6).a(7), b(6)⟩ = lim
β

lim
α

lim
i
⟨a(4)β .a(5)α , b

(4)
i ⟩, (11)
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and for left A(6)−module action on A(7) = (((A
′′
)
′′
)
′′
)
′
we can write

⟨a(6).a(7), b(6)⟩ = lim
α

lim
i
lim
β
⟨a(5)α , b

(4)
i □a

(4)
β ⟩. (12)

For right A(6)−module action on A(7) = (((A
′
)
′′
)
′′
)
′′
we can write

⟨a(7).a(6), b(6)⟩ = lim
α

lim
β

lim
i
⟨a(5)α .a

(4)
β , b

(4)
i ⟩, (13)

and for right A(6)−module action on A(7) = (((A
′′
)
′′
)
′′
)
′
we can write

⟨a(7).a(6), b(6)⟩ = lim
α

lim
β

lim
i
⟨a(5)α , a

(4)
β □b

(4)
i ⟩. (14)

We need the equality of two A
′′
-module actions on A(5) = ((A

′′
)
′′
)
′
and A(5) =

((A
′
)
′′
)
′′
to prove the equality of above A(6)-module actions on A(7), so we need

the following Lemma that is similar to Lemma 2.2.

Lemma 2.4 Let A be a Banach algebra with following conditions

(i) A(4) is Arens regular,
(ii) the map A(4) ×A(5) → A(5)

(
(a(4), a(5)) 7−→ a(4).a(5)

)
is Arens regular.

Then the conditions of Proposition 2.3 hold.

Proposition 2.5 Let A be a Banach algebra with conditions

(i) A(4) is Arens regular,
(ii) the map A(4) ×A(5) → A(5)

(
(a(4), a(5)) 7−→ a(4).a(5)

)
is Arens regular.

Then two A(6)−module actions on A(7) = (((A
′′
)
′′
)
′′
)
′
and A(7) = (((A

′
)
′′
)
′′
)
′′
co-

incide.

Proof By Lemma 2.4 the conditions of Proposition 2.3 hold, so two A(4)-module
actions on A(5) = ((A

′
)
′′
)
′′
and A(5) = ((A

′′
)
′′
)
′
are equal. We begin with equality

(11)

⟨a(6).a(7), b(6)⟩ = lim
β

lim
α
⟨b(6), a(4)β .a(5)α ⟩

= lim
α

lim
β
⟨b(6), a(4)β .a(5)α ⟩ (by (ii) of Lemma 2.4)

= lim
α

lim
β

lim
i
⟨a(4)β .a(5)α , b

(4)
i ⟩

= lim
α

lim
β

lim
i
⟨a(5)α , b

(4)
i □a

(4)
β ⟩ (by Proposition 2.3)

= lim
α

lim
i
lim
β
⟨a(5)α , b

(4)
i □a

(4)
β ⟩, (by (i) of Lemma 2.4)

this prove the equality of (11) and (12). For equality of right-module actions, we
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continue equality (13)

⟨a(7).a(6), b(6)⟩ = lim
α

lim
β

lim
i
⟨a(5)α .a

(4)
β , b

(4)
i ⟩

= lim
α

lim
β

lim
i
⟨a(5)α , a

(4)
β □b

(4)
i ⟩ (by Proposition 2.3)

and this proves the equality of (13) and (14). ■

Now by induction process we have the following extended result.

Proposition 2.6 Let A be a Banach algebra with following conditions for some
n ⩾ 1

(i) A2n−2 is Arens regular,
(ii) the map A(2n−2) ×A(2n−1) → A(2n−1) ((a, f) 7−→ a.f) is Arens regular.

Then two A(2n)−module actions on A(2n+1) = ((((A
′′
)
′′
) · · · )′′)′ and A(2n+1) =

((((A
′
)
′′
) · · · )′′)′′ coincide.

3. Main results

In this section we consider the transposes D
′′
, D(4), · · · , D(2n) of a continuous der-

vation D : A → A
′
. We know by Theorem 1.1 that the following maps will be

continuous derivations

D
′′

: A
′′ −→ A(3) = (A

′
)
′′

D(4) : A(4) = (A
′′
)
′′ −→ A(5) = ((A

′
)
′′
)
′′

D(6) : A(6) = ((A
′′
)
′′
)
′′ −→ A(7) = (((A

′
)
′′
)
′′
)
′′

...

D(2n) : A(2n) = (((A
′′
)
′′
) · · · )′′ −→ A(2n+1) = ((((A

′
)
′′
)
′′
) · · · )′′ .

Proposition 3.1 Let A be a Banach algebra with hypothesis of Proposition 2.1.
If the second transpose D

′′
of continuous derivation D : A → A

′
is inner, then D

is inner.

Proof Let D : A −→ A
′
be a dervation, then by Theorem 1.1 and Proposition 2.1,

D
′′
: A

′′ −→ A(3) = (A
′
)
′′
= (A

′′
)
′
is also a derivation. Since D

′′
is inner, there

exists a
′′ ∈ A

′′
such that D

′′
(a

′′
) = a

′′
.a(3)−a(3).a

′′
, (a(3) ∈ A(3)). Let a

′
= ι∗(a(3)),

where ι : A −→ A
′′
is the natural map. Then for each a, b ∈ A we can write
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⟨D(a), b⟩ = ⟨D′′
(â), b̂⟩

= ⟨â.a(3) − a(3).â, b̂⟩
= ⟨a(3), b̂□â− â□b̂⟩ ( by Proposition 2.1 )

= ⟨a(3), ̂b.a− a.b⟩
= ⟨a(3), ι(b.a− a.b)⟩
= ⟨ι∗(a(3)), b.a− a.b⟩
= ⟨a′

, b.a− a.b⟩
= ⟨a.a′ − a

′
.a, b⟩,

hence D(a) = a.a
′ − a

′
.a and so D is inner. ■

Proposition 3.2 Let A be a Banach algebra with hypothesis of Proposition 2.3.
If the fourth transpose D(4) of continuous derivation D : A → A

′
is inner, then D

is inner.

Proof Let D : A −→ A
′
be a dervation, then by Theorem 1.1 and Proposition 2.3,

D(4) : ((A
′′
)
′′
) −→ (((A

′
)
′′
)
′′
) = (((A

′′
)
′′
)
′
) is also a derivation. Since D(4) is inner,

there exists a(4) ∈ A(4) such that D(4)(a(4)) = a(4).a(5)−a(5).a(4), (a(5) ∈ A(5)). Let
a

′
= ι∗ ◦ ι∗∗∗(a(5)), where ι : A −→ A

′′
is the natural map. Then for each a, b ∈ A

we can write

⟨D(a), b⟩ = ⟨D′′
(â), b̂⟩

= ⟨D̂′′(â),
̂̂
b⟩

= ⟨D(4)(̂̂a), ̂̂b⟩
= ⟨̂̂a.a(5) − a(5).̂̂a, ̂̂b⟩
= ⟨a(5), ̂̂b□̂̂a− ̂̂a□̂̂b⟩ ( by Proposition 2.3 )

= ⟨a(5), ̂
b̂□â− â□b̂⟩

= ⟨a(5), ι∗∗(̂b□â− â□b̂)⟩
= ⟨ι∗∗∗(a(5)), ̂b.a− a.b⟩
= ⟨ι∗∗∗(a(5)), ι(b.a− a.b)⟩
= ⟨ι∗ ◦ ι∗∗∗(a(5)), b.a− a.b⟩
= ⟨a′

, b.a− a.b⟩
= ⟨a.a′ − a

′
.a, b⟩,

hence D(a) = a.a
′ − a

′
.a and so D is inner. ■

Proposition 3.3 Let A be a Banach algebra with hypothesis of Proposition 2.5.
If the sixth transpose D(6) of continuous derivation D : A → A

′
is inner, then D

is inner.

Proof Let D : A −→ A
′
be a dervation, then by Theorem 1.1 and Proposition 2.3,

D(6) : A(6) = ((A
′′
)
′′
)
′′ −→ (((A

′
)
′′
)
′′
)
′′
= (((A

′′
)
′′
))

′′
)
′
= A(7) is also a derivation.

Since D(6) is inner, there exists a(6) ∈ A(6) such that D(6)(a(6)) = a(6).a(7) −
a(7).a(6), (a(7) ∈ A(7)). Let a

′
= ι∗ ◦ ι∗∗∗ ◦ ι∗∗∗∗∗(a(7)), where ι : A −→ A

′′
is the
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natural map. Then for each a, b ∈ A we can write

⟨D(a), b⟩ = ⟨D′′
(â), b̂⟩

= ⟨D̂′′(â),
̂̂
b⟩

= ⟨D̂(4)(̂̂a), ̂̂̂b⟩
= ⟨D(6)(

̂̂̂
a),

̂̂̂
b⟩

= ⟨̂̂̂a.a(7) − a(7).
̂̂̂
a,
̂̂̂
b⟩

= ⟨a(7),
̂̂̂
b□̂̂̂

a− ̂̂̂
a□

̂̂̂
b⟩ ( by Proposition 2.5 )

= ⟨a(7),
̂̂̂

b□̂̂a− ̂̂a□̂̂b⟩
= ⟨a(7), ι∗∗∗∗ (̂̂b□̂̂a− ̂̂a□̂̂b)⟩
= ⟨ι∗∗∗∗∗(a(7)), ι∗∗(̂b□â− â□b̂)⟩
= ⟨ι∗∗∗ ◦ ι∗∗∗∗∗(a(7)), ̂b.a− a.b⟩
= ⟨ι∗∗∗ ◦ ι∗∗∗∗∗(a(7)), ι(b.a− a.b)⟩
= ⟨ι∗ ◦ ι∗∗∗ ◦ ι∗∗∗∗∗(a(7)), b.a− a.b⟩
= ⟨a′

, b.a− a.b⟩
= ⟨a.a′ − a

′
.a, b⟩,

hence D(a) = a.a
′ − a

′
.a and so D is inner. ■

Using the similar reasoning as in the proof of previous lemmas we have the following
proposition.

Proposition 3.4 Let A be a Banach algebra with hypothesis of Proposition 2.6.
If the (2n)−th transpose D(2n) of continuous derivation D : A → A

′
is inner, then

D is inner.

Proposition 3.5 Let A be a Banach algebra with hypothesis of Proposition 2.1.
If A

′′
is weakly amenable, then A is weakly amenable.

Proof Suppose that D : A → A
′

be a continuous derivation. Then
D

′′
: A

′′ −→ A(3) = (A
′
)
′′
is a continuous derivation by Theorem 1.1. But two

A
′′−module actions on A(3) = (A

′
)
′′
and A(3) = (A

′′
)
′
are equal by Proposition

2.1, hence D
′′
: A

′′ −→ A(3) = (A
′′
)
′
is also a continuous derivation in which

A(3) = (A
′′
)
′
is considered as dual of A

′′
. Since A

′′
is weakly amenable, then D

′′
is

inner. Therefore D is inner by Proposition 3.1. This completes the proof. ■

Using the same reasoning as in the proofs of previous propositions we have next
results, so we omit the details in proofs.

Proposition 3.6 Let A be a Banach algebra with hypothesis of Proposition 2.3.
If A(4) is weakly amenable, then A is weakly amenable.

Proof This is a consequence of Proposition 3.2. ■
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Proposition 3.7 Let A be a Banach algebra with hypothesis of Proposition 2.5.
If A(6) is weakly amenable, then A is weakly amenable.

Proof This is a consequence of Proposition 3.3. ■

Finally by Propositions 2.6 and 3.4 we have the following extended result.

Proposition 3.8 Let A be a Banach algebra with hypothesis of Proposition 2.6.
If A(2n) is weakly amenable, then A is weakly amenable.
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