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Expansion methods for solving integral equations with multiple
time lags using Bernstein polynomial of the second kind
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Abstract. In this paper, the Bernstein polynomials are used to approximate the solutions
of linear integral equations with multiple time lags (IEMTL) through expansion methods
(collocation method, partition method, Galerkin method). The method is discussed in detail
and illustrated by solving some numerical examples. Comparison between the exact and
approximated results obtained from these methods is carried out.
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1. Introduction

One of the most important and applicable subjects of applied mathematics, and
developing modern mathematics is the integral equations. The names of many modern
mathematicians like Voltrra, Fredholm, and cauchy are associated with this topic [1].
The name integral equation was introduced by Boise-reymond in 1888 [2]. The most
recent kind of equation that is worth studying is the delay integral equation. These
equations have many applications including: a model to explain the observed periodic
outbreak of certain infection disease [3]. Another application is the discontinuous change
in conductivity [4]. Bernstein polynomials have been recently used to solve some linear
and non-linear differential equations, both partial and ordinary, by Bhatta and Bhatti
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[5] and Bhatti and Bracken [6]. Also, these have been used to solve some classes of
integral equations of both first and second kinds, by Mandal and Bhattacharya [7]. In
this paper, we have developed a very simple method to solve Volterra integral equations
of both first and second kinds and have regular as well as weakly singular kernels, using
Bernstein polynomials. To facilitate, a brief review of some background on the linear
integral equations with multiple time lags and their types is given in the following section.

2. linear integral equations with multiple time lags

The significance of these equations lies in their ability to describe processes with retarded
(delay) time which may appear in the function u(t) involved in the integrand or may
appear on the left side of the equation or in one of the limits of the integrations [8]. The
linear integral equations with multiple time lags (IEMTL) have two lags τ1 and τ2 such
that τ1, τ2 ∈ R, τ1 and τ2 > 0 and they can be classified into the following cases:
The τ1 appears in the unknown function u(t) inside the integral sign such that:

h(t)u(t− τ1) = g(t) +

∫ b(t)

a
k(t, x)u(x− τ2)dx.

The τ1 appears in the unknown function u(t) outside the integral sign and τ2 appears in
one of the limits of integration such that:

h(t)u(t) = g(t) +

∫ τ2

a
k(t, x)u(x− τ1)dx,

or

h(t)u(t) = g(t) +

∫ b(t)

τ2

k(t, x)u(x− τ2)dx.

The τ1 appears in the unknown function u(t) inside the integral sign and τ2 appears in
one of the limits of integration:

h(t)u(t) = g(t) +

∫ τ2

a
k(t, x)u(x− τ1)dx,

or

h(t)u(t) = g(t) +

∫ b(t)

τ2

k(t, x)u(x− τ2)dx.

Where h(t) and g(t) are unknown functions of t, and k(t, x) is called the kernel of the
IEMTL. Remarks [8]

• If h(t) = 0, then the above equations are called IEMTL of the first kind.

• If h(t) = 1, then the above equations are called IEMTL of the second kind.

• If g(t) = 0, then the above equations are called homogeneous IEMTL; otherwise, if
g(t) ̸= 0, then the above equations are called nonhomogeneous IEMTL.
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• If b(t) = t, then the above equation is called Volterra integral equation with multiple
time lags while if b(t) = b, b is a constant, then the above equation is called Fredholm
integral with multiple time lags.

3. Expansion Methods

Expansion methods or weighted residual methods are presented [8] by considering the
following functional equation:

L[u(t)] = g(t), t ∈ D,u ∈ U, g ∈ G, (1)

Where L denotes an operator which maps a set of functions , say U , into a set of
functions, say G, such that u ∈ U, g ∈ G and D is a prescribed domain. The epitome of
the expansion method is to approximate the unknown solution u(t) of eq. (1) by a set of
known functions as:

u(t) ∼= uN (t) =

N∑
i=0

ciϕi(t), (2)

where N > 0 and c0, c1, · · · , cN are N + 1 unknown coefficients. The function ϕi(t) is
chosen in this work to be Bernstein polynomial which is prescribed in section (4). An
approximated solution uN (t) given by eq. (2) will not in general, satisfy eq. (1) exactly;
therefore, a term, say EN (t), called the residual EN (t) depends on t as well as on the
way that the parameters ci’s are chosen. It is obvious that when EN (t) = 0, the exact
solution is obtained which is difficult to be achieved; therefore, we shall try to minimize
EN (t) in some sense. In the expansion method, the unknown parameters ci’s are chosen
to minimize the residual EN (t) by setting weighted integral equal to zero, i.e.∫

D
wjEN (t)dt = 0; j = 0, · · · , N, (3)

where wj is a prescribed weighting function, t ∈ D and D is a prescribed domain. The
technique based on eq. (3) is called weighted residual method. Different choices of wj

yield different approximate solutions. The expansion methods that will be discussed in
this work are collocation, partition and Gherkin methods.

4. Bernstein polynomial

Polynomials are incredibly useful mathematical tools as they are simply defined, can be
calculated quickly on computer systems and represent a tremendous variety of functions
[5–7]. They can be differentiated and integrated easily, and can be pieced together to form
spline curves that can approximate any function to any accuracy desired. Most students
are introduced to polynomials at a very early stage in their studies of mathematics, and
would probably recall them in the form below:

p(t) = ant
n + an−1t

n−1 + · · ·+ a1t+ a0,
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which represents a polynomial as a linear combination of certain elementary polynomials
{1, t, t2, · · · , tn}. In general, any polynomial function that has degree less than or equal
to n, can be written in this way, and the reasons are simply

• The set of polynomials of degree less than or equal to n forms a vector space: polyno-
mials can be added together and can be multiplied by a scalar, therefore all the vector
space properties hold.

• The set of functions {1, t, t2, · · · , tn} form a basis for this vector space that is, any
polynomial of degree less than or equal to n can be uniquely written as a linear
combinations of these functions.

This basis, commonly called the power basis, is only one of the infinite number of bases
for the space of polynomials. In this work, the choice of basis functions ϕi(t) is Bernstein
polynomial.
The Bernstein polynomial can be defined as:

Bi,n(t) =

(
n

i

)
ti(1− t)n−i, i = 0, 1, · · · , n,

that (
n

i

)
=

n!

i!(n− i)!
.

There are n+ 1 nth-degree Bernstein polynomials. For mathematical convenience, we
usually set Bi,n = 0, if i < 0 or i > n. These polynomials are quite easy to write down:
the coefficients

(
n
i

)
can be obtained from Pascal’s triangle; the exponents on the t term

increase by one as i increases; and the exponents on the 1− t term decrease by one as i
increases. In the simple cases, we obtain

• The Bernstein polynomials of degree 1 are

B0,1(t) = 1− t,

B1,1(t) = t,

and can be plotted for 0 ⩽ t ⩽ 1 as
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• The Bernstein polynomials of degree 2 are B0,2(t) = (1− t)2

B1,2(t) = 2t(1− t)

B2,2(t) = t2

and can be plotted for 0 ⩽ t ⩽ 1 as
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polynomials of degree 2.

4.1 Hermite Polynomials

The Hermite polynomials Hn(x) are an important set of orthogonal functions over the
interval (−∞,+∞) and the general form of these polynomials is:

Hn+1(x) = −2xHn(x)− 2nHn−1(x) n ⩾ 1

where H0(x) = 1 and H1(x) = −2x.

5. The solution of Linear IEMTL Using expansion Methods through
of Bernstein polynomial

Expansion methods are one of the most efficient methods used to solve integral equations
without time lags. In this section, expansion methods with the aid of Bernstein polyno-
mial obtaine the approximated solutions for IEMTL as follows.
Consider the linear IEMTL of the second kind:

u(t− τ1) = g(t) +

∫ b(t)

a
k(t, x)u(x− τ2)dx, t ∈ [a, b(t)] (4)

Where τ1, τ2 ∈ R and τ1, τ2 > 0 Expansion methods are based on approximating the
unknown function u(t) by eq. (2)

u(t) ∼= uN (t) =

N∑
i=0

ciBi,N (t)



40 M. Paripour et al. / J. Linear. Topological. Algebra. 03(01) (2014) 35-45.

where Bi,n(t) are Bernstein polynomial. By statuting eq. (2) into eq. (4), one gets the
following formula:

N∑
i=0

ciBi,N (t− τ1) = g(t) +

∫ b(t)

a
k(t, x)

n∑
i=0

ciBi,N (x− τ2)dx (5)

Then

N∑
i=0

ci(Bi,N (t− τ1)−
∫ b(t)

a
k(t, x)Bi,N (x− τ2)dx) = g(t) (6)

Hence, the residual equation EN (t) in eq. (3) for eq. (4) is defined by:

EN (t) =

N∑
i=0

ci(Bi,N (t− τ1)−
∫ b(t)

a
k(t, x)Bi,N (x− τ2)dx)− g(t) (7)

6. The solution of Linear IEMTL Using Collocation Method

In collocation method [10], the weighting functions are chosen to be:

wj =

{
1, t = tj ,
0, o.w,

(8)

Where the fixed points tj ∈ D, j = 0, 1, · · · , N , are called collocation points. Inserting
eq. (8) in eq. (3) gives:

∫
D
wjEN (t)dt = EN (tj)

∫
D
wjdt = 0 ⇒ EN (tj) = 0. (9)

This turns eq. (7) into:

EN (tj) =

N∑
i=0

ci[Bi,N (tj − τ1)−
∫ b(tj)

a
k(tj , x)Bi,N (x− τ2)dx]− g(tj) = 0.

Hence,

N∑
i=0

ci[Bi,N (tj − τ1)−
∫ b(tj)

a
k(tj , x)Bi,N (x− τ2)dx] = g(tj). (10)

So, by expanding and simplifying eq. (10), we have N + 1 simultaneous equations with
N+1 unknown coefficients ci. Hence, eq. (10) can be written in matrix form as DC = G,
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where

D =


d00 d01 · · · d0N
d10 d11 · · · d1N
...

...
...

...
dN0 dN1 · · · dNN

 , C =


c0
c1
...
cN

 , G =


g(t0)
g(t1)
...
g(tN )

 (11)

di,j = Bi,N (tj − τ1)−
∫ b(tj)

a
k(tj , x)Bi,N (x− τ2)dx, i, j = 0, · · · , N

Then, Gauss elimination method is applied to find the coefficients ci’s, i = 0, 1, · · · , N
which satisfy eq. (2).

6.1 The Solution of Linear IEMTL Using Partition Method

In partition method [10], the domain D is divided into N non-over lapping sub domains
Dj , j = 0, 1, · · · , N , and the weighting functions wj in eq. (3) are defined:

wj =

{
1, t ∈ Dj ,
0, t ̸∈ Dj .

(12)

Then, eq.(4) is satisfied on the average in each of N sub domains Dj . Substituting eq.
(7) and eq. (12) into eq. (3) yields:∫

Dj
[
∑N

i=0 ci(Bi,N (t− τ1)−
∫ b(tj)
a k(t, x)Bi,N (x− τ2)dx]dt = 0,

Dj ∈ D, j = 0, · · · , N
(13)

Hence, ∑N
i=0

∫
Dj

ci[Bi,N (t− τ1)−
∫ b(t)
a k(t, x)Bi,N (x− τ2)dxdt =

∫
Dj

g(t)dt,

(Dj ∈ D, j = 0, · · · , N)
(14)

So, by expanding and simplifying eq. (14), we have N + 1 simultaneous equations with
N +1 unknown coefficients c0, c1, · · · , cN . Hence, eq. (14) can be written in matrix form
as DC = G, where

D =


d00 d01 · · · d0N
d10 d11 · · · d1N
...

...
...

...
dN0 dN1 · · · dNN

 , C =


c0
c1
...
cN

 , G =


∫
D0

g(t)∫
D1

g(t)
...∫
DN

g(t)

 (15)

di,j =

∫
Dj

(Bi,N (t− τ1)−
∫ b(t)

a
k(t, x)Bi,N (x− τ2)dxdt

i, j = 0, · · · , N
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Then, Gauss elimination method is applied to find the coefficients ci’s, i = 0, 1, · · · , N
which satisfy eq. (2) (the approximate solution uN (t) of eq. (4)).

6.2 The Solution of linear IEMTL Using Galerkin’s Method

In Galerkin’s method [10], the weight functions wj in eq. (3) are defined as:

wj =
∂uN (t)

∂cj
j = 0, · · · , N,

Then,

wj =
∂
∑N

i=0 ciBi,N (t)

∂cj
= Bi,N (t) j = 0, · · · , N, (16)

Substituting eq. (7) and eq. (16) into eq. (3) yields:

∫
Dj

Bj,N [
∑N

i=0 ck(Bi,N (t− τ1)−
∫ b(t)
a k(t, x)Bi,N (x− τ2)dx)]− g(t)dt = 0,

Dj ∈ D, j = 0, · · · , N,
(17)

Then

∑N
i=0 ci[

∫
Dj

Bj,N (ϕi(t− τ1)−
∫ b(t)
a k(t, x)Bi,N (x− τ2)dx)] =

∫
Dj

Bj,Ng(t)dt,

Dj ∈ D, j = 0, · · · , N,
(18)

So, by expanding and simplifying eq. (18), we have N + 1 simultaneous equations with
N +1 unknown coefficients c0, c1, · · · , cN . Hence, eq. (18) can be written in matrix form
as DC = G, where

D =


d00 d01 · · · d0N
d10 d11 · · · d1N
...

...
...

...
dN0 dN1 · · · dNN

 , C =


c0
c1
...
cN

 , G =


∫
Dj

B0,Ng(t)dt∫
Dj

B1,Ng(t)dt
...∫
Dj

BN,Ng(t)dt

 (19)

di,j =

∫
D
[Bi,N (t− τ1)−

∫ b(t)

a
k(t, x)Bi,N (x− τ2)dx]dt

i, j = 0, · · · , N

Then, Gauss elimination method is applied to find the coefficients ci’s (i = 0, 1, · · · , N)
which satisfy eq. (2) (the approximate solution uN (t) of eq. (4)).
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7. Numerical examples

In this section, we present two examples and their numerical results.
Example 1. Consider the following Volterra integral equation with multiple time lags:

u(t− 0.5) = (0.5 + t− t4

3
) +

∫ t

0
txu(x− 1)dx, t ∈ [0, 1]. (20)

The exact solution of eq. (19) is:

u(t) = t+ 1, 0 ⩽ t ⩽ 2.

Assume that the approximate solution of the example is:

u(t) ∼= u1(t) =

1∑
i=0

ciBi,1(t).

When the three approaches are applied, Table 1. presents the comparison between the
exact and collocation, partition and Galerkin methods with the aid of Bernstein polyno-
mial for example 1. depending on least square error (L.S.E.) where m = 10, h = 0.2, tj =
jh, j = 0, 1, · · · ,m.

Table 1
Numerical results of Example 1.

t Exact Collocation Partition Galerkin
Bernstein Hermite Bernstein Hermite Bernstein Hermite

0 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.2 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000
0.4 1.4 1.4000 1.4000 1.4000 1.4000 1.4000 1.4000
0.6 1.6 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000
0.8 1.8 1.8000 1.8000 1.8000 1.8000 1.8000 1.8000
1 2 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
1.2 2.2 2.2000 2.2000 2.2000 2.2000 2.2000 2.2000
1.4 2 2.4000 2.4000 2.4000 2.4000 2.4000 2.4000
1.6 2.6 2.6000 2.6000 2.6000 2.6000 2.6000 2.6000
1.8 2.8 2.8000 2.8000 2.8000 2.8000 2.8000 2.8000
2 3 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
L.S.E 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Example 2. Consider the following Ferdholm integral equation with multiple time lags:

u(t− 0.2) = (e(t−1/5) − te+ t− 1) +

∫ τ2

0
(t+ x)u(x)dx, t ∈ [0, 1], (21)

where τ2 = 1 and the exact solution of eq. (29) is:

u(t) = et, 0 ⩽ t ⩽ 1.
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Assume that the approximate solution of the example is:

u(t) ∼= u5(t) =

5∑
i=0

ciBi,5(t).

When the three approaches are applied, Table 2. presents the comparison between the
exact and collocation, partition and Galerkin methods with the aid of Bernstein polyno-
mial for example 2. depending on least square error (L.S.E.) where m = 10, h = 0.1, tj =
jh, j = 0, 1, · · · ,m.

Table 2
Numerical results of Example 2

t Exact Collocation Partition Galerkin
Bernstein Hermite Bernstein Hermite Bernstein Hermite

0 1.0000 1.0000 1.0000 1.0000 1.0003 1.0000 1.0001
0.1 1.1052 1.1052 1.1058 1.1052 1.1060 1.1052 1.1058
0.2 1.2214 1.2214 1.2225 1.2214 1.2226 1.2214 1.2224
0.3 1.3499 1.3499 1.3513 1.3499 1.3514 1.3499 1.3512
0.4 1.4918 1.4918 1.4935 1.4918 1.4936 1.4918 1.4934
0.5 1.6487 1.6487 1.6504 1.6488 1.6505 1.6487 1.6504
0.6 1.8221 1.8221 1.8237 1.8222 1.8238 1.8221 1.8237
0.7 2.0138 2.0138 2.0150 2.0138 2.0150 2.0138 2.0150
0.8 2.2255 2.2255 2.2263 2.2256 2.2256 2.2255 2.2263
0.9 2.4596 2.4596 2.4596 2.4596 2.4596 2.4596 2.4597
1 2.7183 2.7182 2.7174 2.7182 2.7173 2.7182 2.7175
L.S.E. 7.2959e-9 1.446e-5 1.413e-8 1.66e-5 7.2951e-9 1.413e-5

8. Conclusion

The approximated solutions using three types of expansion methods containing (col-
location, partition and Galerkin) with the aid of two different types of basis functions
( Bernstein polynomial and orthogonal functions) were obtained for two examples. The
results showed a marked improvement in the least square errors and the following con-
clusion points are listed:
1. In terms of the results, Galerkins method gave more accurate results than collocation
and partition methods, see table (2).
2. For basis functions, Bernstein polynomial gave more accurate results than orthogonal
function ( Hermite polynomial), see table (2).
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