The solutions to some operator equations in Hilbert C^{*}-module

M. Mohammadzadeh Karizaki ${ }^{\text {a }}$, M. Hassani ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran. Received 28 November 2014; Revised 7 March 2015; Accepted 27 March 2015.

Abstract

In this paper, we state some results on product of operators with closed ranges and we solve the operator equation $T X S^{*}-S X^{*} T^{*}=A$ in the general setting of the adjointable operators between Hilbert C^{*}-modules, when $T S=1$. Furthermore, by using some block operator matrix techniques, we find explicit solution of the operator equation $T X S^{*}-S X^{*} T^{*}=A$. (C) 2015 IAUCTB. All rights reserved.

Keywords: Operator equation; Moore-Penrose inverse; Complemented submodule, Closed range, Hilbert C^{*}-module.
2010 AMS Subject Classification: Primary 47A62; Secondary 15A24; 46L08.

1. Introduction and preliminaries

The equation $T X S^{*}-S X^{*} T^{*}=A$ was studied by Yuan [13] for finite matrices and Xu et al. [12] generalized the results to Hilbert C^{*}-modules, under the condition that $\operatorname{ran}(\mathrm{S})$ is contained in $\operatorname{ran}(\mathrm{T})$. When T equals an identity matrix or identity operator, this equation reduces to $X S^{*}-S X^{*}=A$, which was studied by Braden [2] for finite matrices, and Djordjevic [3] for the Hilbert space operators. In this paper, we state some results of product of operators with closed ranges, therefore we solve the operator equation $T X S^{*}-S X^{*} T^{*}=A$, when $T S=1$. Furthermore, by using some block operator matrix techniques, we find explicit solution of the operator equation $T X S^{*}-S X^{*} T^{*}=A$ in the general setting of the adjointable operators between Hilbert C^{*}-modules.

Hilbert C^{*}-modules are objects like Hilbert spaces, except that the inner product take its values in a C^{*}-algebra, instead of being complex-valued. Throughout the paper \mathcal{A} is a

[^0]C*-algebra (not necessarily unital). A (right) pre-Hilbert module over a C^{*}-algebra \mathcal{A} is a complex linear space \mathcal{X}, which is an algebraic right \mathcal{A}-module and $\lambda(x a)=(\lambda x) a=x(\lambda a)$ equipped with an \mathcal{A}-valued inner product \langle.,. . $: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{A}$ satisfying,
(i) $\langle x, x\rangle \geqslant 0$, and $\langle x, x\rangle=0$ iff $x=0$,
(ii) $\langle x, y+\lambda z\rangle=\langle x, y\rangle+\lambda\langle x, z\rangle$,
(iii) $\langle x, y a\rangle=\langle x, y\rangle a$,
(iv) $\langle y, x\rangle=\langle x, y\rangle^{*}$.
for each $x, y, z \in \mathcal{X}, \lambda \in \mathbb{C}, a \in \mathcal{A}$. A pre-Hilbert \mathcal{A}-module \mathcal{X} is called a Hilbert \mathcal{A} module if it is complete with respect to the norm $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$. Left Hilbert \mathcal{A}-modules are defined in a similar way. For example every C^{*}-algebra \mathcal{A} is a Hilbert \mathcal{A}-module with respect to inner product $\langle x, y\rangle=x^{*} y$, and every inner product space is a left Hilbert \mathbb{C}-module.

Suppose that \mathcal{X} and \mathcal{Y} are Hilbert \mathcal{A}-modules. Then, $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ is the set of all maps $T: \mathcal{X} \rightarrow \mathcal{Y}$ for which there is a map $T^{*}: \mathcal{Y} \rightarrow \mathcal{X}$, the so-called adjoint of T such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for each $x \in \mathcal{X}, y \in \mathcal{Y}$. It is known that any element T of $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ must be a bounded linear operator, which is also \mathcal{A}-linear in the sense that $T(x a)=(T x) a$ for $x \in \mathcal{X}$ and $a \in \mathcal{A}$ [7, Page 8]. We use the notations $\mathcal{L}(\mathcal{X})$ in place of $\mathcal{L}(\mathcal{X}, \mathcal{X})$, and $\operatorname{ker}(\cdot)$ and $\operatorname{ran}(\cdot)$ for the kernel and the range of operators, respectively. The identity operator on \mathcal{X} is denoted by $1_{\mathcal{X}}$ or 1 if there is no ambiguity.

Suppose that \mathcal{X} is a Hilbert \mathcal{A}-module and \mathcal{Y} is a closed submodule of \mathcal{X}. We say that \mathcal{Y} is orthogonally complemented if $\mathcal{X}=\mathcal{Y} \oplus \mathcal{Y}^{\perp}$, where $\mathcal{Y}^{\perp}:=\{y \in \mathcal{X}:\langle x, y\rangle=$ 0 for all $x \in \mathcal{Y}\}$ denotes the orthogonal complement of \mathcal{Y} in \mathcal{X}. The reader is referred to [5-7] and the references cited therein for more details.

Throughout this paper \mathcal{X} and \mathcal{Y} are Hilbert \mathcal{A}-modules. Recall that a closed submodule in a Hilbert module is not necessarily orthogonally complemented, however Lance proved that certain submodules are orthogonally complemented as follows.

Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. A bounded adjointable operator $S \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ is called an inner inverse of T if $T S T=T$. If $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has an inner inverse S, then the bounded adjointable operator $T^{\times}=S T S$ in $\mathcal{L}(\mathcal{Y}, \mathcal{X})$ satisfies

$$
\begin{equation*}
T T^{\times} T=T, \quad T^{\times} T T^{\times}=T^{\times} . \tag{1}
\end{equation*}
$$

The bounded adjointable operator T^{\times}which satisfies (1) is called generalized inverse of T. It is known that a bounded adjointable operator T has a generalized inverse if and only if $\operatorname{ran}(\mathrm{T})$ is closed, see e.g. [1].

Theorem 1.1 [7, Theorem 3.2] Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then

- $\operatorname{ker}(T)$ is orthogonally complemented in \mathcal{X}, with complement $\operatorname{ran}\left(\mathrm{T}^{*}\right)$.
- $\operatorname{ran}(\mathrm{T})$ is orthogonally complemented in \mathcal{Y}, with complement $\operatorname{ker}\left(T^{*}\right)$.
- The map $T^{*} \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ has closed range.

Definition 1.2 Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. The Moore-Penrose inverse T^{\dagger} of T (if it exists) is an element in $L(\mathcal{Y}, \mathcal{X})$ which satisfies:
(i) $T T^{\dagger} T=T$,
(ii) $T^{\dagger} T T^{\dagger}=T^{\dagger}$,
(iii) $\left(T T^{\dagger}\right)^{*}=T T^{\dagger}$,
(iv) $\left(T^{\dagger} T\right)^{*}=T^{\dagger} T$.

Motivated by these conditions T^{\dagger} is unique and $T^{\dagger} T$ and $T T^{\dagger}$ are orthogonal pro-
jections, in the sense that they are selfadjoint idempotent operators. Clearly, T is Moore-Penrose invertible if and only if T^{*} is Moore-Penrose invertible, and in this case $\left(T^{*}\right)^{\dagger}=\left(T^{\dagger}\right)^{*}$. The following theorem is known.

Theorem 1.3 [11, Theorem 2.2] Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. Then the Moore-Penrose inverse T^{\dagger} of T exists if and only if T has closed range.

By Definition 1.2, we have

$$
\begin{array}{rlr}
\operatorname{ran}(\mathrm{T})=\operatorname{ran}\left(\mathrm{T} \mathrm{~T}^{\dagger}\right), & \operatorname{ran}\left(\mathrm{T}^{\dagger}\right)=\operatorname{ran}\left(\mathrm{T}^{\dagger} \mathrm{T}\right)=\operatorname{ran}\left(\mathrm{T}^{*}\right), \\
\operatorname{ker}(T)=\operatorname{ker}\left(T^{\dagger} T\right), & \operatorname{ker}\left(T^{\dagger}\right)=\operatorname{ker}\left(T T^{\dagger}\right)=\operatorname{ker}\left(T^{*}\right),
\end{array}
$$

and by Theorem 1.1, we have

$$
\begin{aligned}
& \mathcal{X}=\operatorname{ker}(T) \oplus \operatorname{ran}\left(\mathrm{T}^{\dagger}\right)=\operatorname{ker}\left(\mathrm{T}^{\dagger} \mathrm{T}\right) \oplus \operatorname{ran}\left(\mathrm{T}^{\dagger} \mathrm{T}\right) \\
& \mathcal{Y}=\operatorname{ker}\left(T^{\dagger}\right) \oplus \operatorname{ran}(\mathrm{T})=\operatorname{ker}\left(\mathrm{T} \mathrm{~T}^{\dagger}\right) \oplus \operatorname{ran}\left(\mathrm{T} \mathrm{~T}^{\dagger}\right)
\end{aligned}
$$

A matrix form of a bounded adjointable operator $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ can be induced by some natural decompositions of Hilbert C^{*}-modules. Indeed, if \mathcal{M} and \mathcal{N} are closed orthogonally complemented submodules of \mathcal{X} and \mathcal{Y}, respectively, and $\mathcal{X}=\mathcal{M} \oplus \mathcal{M}^{\perp}, \quad \mathcal{Y}=$ $\mathcal{N} \oplus \mathcal{N}^{\perp}$, then T can be written as the following 2×2 matrix

$$
T=\left[\begin{array}{l}
T_{1} T_{2} \tag{2}\\
T_{3} \\
\hline
\end{array}\right]
$$

where, $T_{1} \in \mathcal{L}(\mathcal{M}, \mathcal{N}), T_{2} \in \mathcal{L}\left(\mathcal{M}^{\perp}, \mathcal{N}\right), T_{3} \in \mathcal{L}\left(\mathcal{M}, \mathcal{N}^{\perp}\right)$ and $T_{4} \in \mathcal{L}\left(\mathcal{M}^{\perp}, \mathcal{N}^{\perp}\right)$. Note that $P_{\mathcal{M}}$ denotes the projection corresponding to \mathcal{M}.

In fact $T_{1}=P_{\mathcal{N}} T P_{\mathcal{M}}, \quad T_{2}=P_{\mathcal{N}} T\left(1-P_{\mathcal{M}}\right), T_{3}=\left(1-P_{\mathcal{N}}\right) T P_{\mathcal{M}}, \quad T_{4}=\left(1-P_{\mathcal{N}}\right) T(1-$ $\left.P_{\mathcal{M}}\right)$.

Recall that if $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range, then $T T^{\dagger}=P_{\mathrm{ran}(\mathrm{T})}$ and $T^{\dagger} T=P_{\mathrm{ran}\left(\mathrm{T}^{*}\right)}$.
The proof of the following Lemma can be found [9, Corollary 1.2.] or [4, Lemma 1.1.].
Lemma 1.4 Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then T has the following matrix decomposition with respect to the orthogonal decompositions of closed submodules $\mathcal{X}=\operatorname{ran}\left(\mathrm{T}^{*}\right) \oplus \operatorname{ker}(\mathrm{T})$ and $\mathcal{Y}=\operatorname{ran}(\mathrm{T}) \oplus \operatorname{ker}\left(\mathrm{T}^{*}\right):$

$$
T=\left[\begin{array}{cc}
T_{1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}\left(\mathrm{T}^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}(\mathrm{T}) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right]
$$

where T_{1} is invertible. Moreover

$$
T^{\dagger}=\left[\begin{array}{cc}
T_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}(\mathrm{T}) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}\left(\mathrm{T}^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right]
$$

Lemma 1.5 (see [10, Lemma 1.2.]) Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Let $\mathcal{X}_{1}, \mathcal{X}_{2}$ be closed submodules of \mathcal{X} and $\mathcal{Y}_{1}, \mathcal{Y}_{2}$ be closed submodules of \mathcal{Y} such that $\mathcal{X}=$ $\mathcal{X}_{1} \oplus \mathcal{X}_{2}$ and $\mathcal{Y}=\mathcal{Y}_{1} \oplus \mathcal{Y}_{2}$. Then the operator T has the following matrix representations with respect to the orthogonal sums of submodules $\mathcal{X}=\operatorname{ran}\left(\mathrm{T}^{*}\right) \oplus \operatorname{ker}(\mathrm{T})$ and $\mathcal{Y}=$
$\operatorname{ran}(\mathrm{T}) \oplus \operatorname{ker}\left(\mathrm{T}^{*}\right):$

$$
T=\left[\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right]:\left[\begin{array}{l}
\mathcal{X}_{1} \\
\mathcal{X}_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}(\mathrm{T}) \\
\operatorname{ker}\left(T^{*}\right)
\end{array}\right]
$$

Then $D=T_{1} T_{1}^{*}+T_{2} T_{2}^{*} \in \mathcal{L}(\operatorname{ran}(\mathrm{~T}))$ is positive and invertible. Moreover,

$$
\begin{gather*}
T^{\dagger}=\left[\begin{array}{cc}
T_{1}^{*} D^{-1} & 0 \\
T_{2}^{*} D^{-1} & 0
\end{array}\right] \tag{3}\\
T=\left[\begin{array}{ll}
T_{1} & 0 \\
T_{3} & 0
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}\left(\mathrm{T}^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right] \rightarrow\left[\begin{array}{l}
\mathcal{Y}_{1} \\
\mathcal{Y}_{2}
\end{array}\right], \tag{4}
\end{gather*}
$$

where $F=T_{1}^{*} T_{1}+T_{3}^{*} T_{3} \in \mathcal{L}\left(\operatorname{ran}\left(T^{*}\right)\right)$ is positive and invertible. Moreover,

$$
T^{\dagger}=\left[\begin{array}{cc}
F^{-1} T_{1}^{*} & F^{-1} T_{2}^{*} \tag{5}\\
0 & 0
\end{array}\right]
$$

2. Main results

In this section we solve $T X S^{*}-S X^{*} T^{*}=A$ via the some results of product of operators with closed ranges.
Lemma 2.1 Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and let $Q \in \mathcal{L}(\mathcal{X})$ and $P \in \mathcal{L}(\mathcal{Y})$ be orthogonal projections and $T Q$ and $P T$ have closed ranges. Then
(i) $(T Q)^{\dagger}=Q(T Q)^{\dagger}$,
(ii) $(P T)^{\dagger}=(P T)^{\dagger} P$.

Proof. (i) Since ran(TQ) is closed, the operator $(T Q)^{\dagger}$ exists. Therefore, $\operatorname{ran}\left((T Q)^{\dagger}\right)=$ $\operatorname{ran}\left((\mathrm{TQ})^{*}\right)=\operatorname{ran}\left(\mathrm{QT}^{*}\right) \subseteq \operatorname{ranQ}$. Hence $Q\left((T Q)^{\dagger}\right)=(T Q)^{\dagger}$. The proof for (ii) is similar.

Lemma 2.2 Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and $S \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ such that $T S=1_{\mathcal{Y}}$. Then
(i) $\left(1_{\mathcal{X}}-S T\right)^{\dagger}=\left(1_{\mathcal{X}}-S S^{\dagger}\right)\left(1_{\mathcal{X}}-T^{\dagger} T\right)$,
(ii) $T^{\dagger}=P_{N(T)^{\perp}} S P_{R(T)}$.

Proof. (i) Since $T S=1_{\mathcal{Y}}$, the operator S is generalized inverse of T and vise versa. Therefore T and S have closed ranges, hence T^{\dagger} and S^{\dagger} exist. Put $Q=1_{\mathcal{X}}-S T$. From $T S=1_{\mathcal{Y}}$, we have $Q S=0$ and $T Q=0$. Put $M=\left(1_{\mathcal{X}}-S S^{\dagger}\right)\left(1_{\mathcal{X}}-T^{\dagger} T\right)$. Then

$$
\begin{gathered}
Q M=\left(1_{\mathcal{X}}-S T\right)\left(1_{\mathcal{X}}-S S^{\dagger}\right)\left(1_{\mathcal{X}}-T^{\dagger} T\right)=\left(1_{\mathcal{X}}-S T\right)\left(1_{\mathcal{X}}-T^{\dagger} T\right)=1_{\mathcal{X}}-T^{\dagger} T, \\
M Q=\left(1_{\mathcal{X}}-S S^{\dagger}\right)\left(1_{\mathcal{X}}-T^{\dagger} T\right)\left(1_{\mathcal{X}}-S T\right)=\left(1_{\mathcal{X}}-S S^{\dagger}\right)\left(1_{\mathcal{X}}-S T\right)=1_{\mathcal{X}}-S S^{\dagger} .
\end{gathered}
$$

Hence, $Q M Q=\left(1_{\mathcal{X}}-T^{\dagger} T\right)\left(1_{\mathcal{X}}-S T\right)=\left(1_{\mathcal{X}}-S T\right)=Q$ and $M Q M=\left(1_{\mathcal{X}}-S S^{\dagger}\right)\left(1_{\mathcal{X}}-\right.$ $\left.S S^{\dagger}\right)\left(1_{\mathcal{X}}-S T\right)=M$. So $\left(1_{\mathcal{X}}-S T\right)^{\dagger}=\left(1_{\mathcal{X}}-S S^{\dagger}\right)\left(1_{\mathcal{X}}-T^{\dagger} T\right)$.

To prove (ii) By (i) we know that $\operatorname{ran}(\mathrm{T})$ is closed. Put $N=P_{N(T)^{\perp}} S P_{R(T)}$. Then

$$
T N=T P_{N(T)^{\perp}} S P_{R(T)}=T S P_{R(T)}=P_{R(T)},
$$

and

$$
N T=P_{N(T)^{\perp}} S P_{R(T)} T=P_{N(T)^{\perp}}
$$

Obviously, we have $T N T=P_{R(T)} T=T$ and $N T N=N$. Hence, $T^{\dagger}=P_{N(T)^{\perp}} S P_{R(T)}$.
Corollary 2.3 Let $T, S \in \mathcal{L}(\mathcal{X})$ be such that $T S=1 \mathcal{X}$. Then T^{2} has closed range and $\left(T^{2}\right)^{\dagger}=P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)}$.
Proof. Since $T S=1_{\mathcal{X}}$. Then $T^{2} S^{2}=1_{\mathcal{X}}$. Hence, the bounded adjointable operator S^{2} is generalized inverse of T^{2}. Therefore T^{2} has closed range. Lemma 2.2(ii) implies that $\left(T^{2}\right)^{\dagger}=P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)}$.

In the following theorems we obtain explicit solutions to the operator equation

$$
\begin{equation*}
T X S^{*}-S X^{*} T^{*}=A \tag{6}
\end{equation*}
$$

when $T S=1$.
Theorem 2.4 Suppose $T, S \in \mathcal{L}(\mathcal{X})$ such that $T S=1$ and $A \in \mathcal{L}(\mathcal{X})$. Then the following statements are equivalent:
(a) There exists a solution $X \in \mathcal{L}(\mathcal{X})$ to Eq. (6).
(b) $A=-A^{*}$ and $\left(1-T^{2}\left(T^{2}\right)^{\dagger}\right) T A T^{*}\left(1-T^{2}\left(T^{2}\right)^{\dagger}\right)=0$.

If (a) or (b) is satisfied, then any solution to Eq. (6) has the form

$$
\begin{aligned}
X & =\frac{1}{2} P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)} T A T^{*} T^{2} P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)}+P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)} Z T^{2} P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)} \\
& +P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)} T A T^{*}\left(1-T^{2} P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)}\right)+\left(1-P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)} T^{2}\right) Y
\end{aligned}
$$

where $Z \in \mathcal{L}(\mathcal{X})$ satisfies $T^{*}\left(Z-Z^{*}\right) T=0$, and $Y \in \mathcal{L}(\mathcal{X})$ is arbitrary.
Proof. By multiplication T of the left and T^{*} of the right of Eq. (6) get into

$$
\begin{equation*}
T^{2} X-X^{*}\left(T^{*}\right)^{2}=T A T^{*} \tag{7}
\end{equation*}
$$

Corollary 2.3 implies that T^{2} has closed range. Now, [8, Theorem 3] implies that (a) and (b) are equivalent. Again by [8, Theorem 3] implies that

$$
\begin{aligned}
X & =\frac{1}{2}\left(T^{2}\right)^{\dagger} T A T^{*} T^{2}\left(T^{2}\right)^{\dagger}+\left(T^{2}\right)^{\dagger} Z T^{2}\left(T^{2}\right)^{\dagger}+\left(T^{2}\right)^{\dagger} T A T^{*}\left(1-T^{2}\left(T^{2}\right)^{\dagger}\right) \\
& +\left(1-\left(T^{2}\right)^{\dagger} T^{2}\right) Y
\end{aligned}
$$

where $Z \in \mathcal{L}(\mathcal{X})$ satisfies $T^{*}\left(Z-Z^{*}\right) T=0$, and $Y \in \mathcal{L}(\mathcal{X})$ is arbitrary. Again by Corollary 2.3, equivalently

$$
\begin{aligned}
X & =\frac{1}{2} P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)} T A T^{*} T^{2} P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)}+P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)} Z T^{2} P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)} \\
& +P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)} T A T^{*}\left(1-T^{2} P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)}\right)+\left(1-P_{N\left(T^{2}\right)^{\perp}} S^{2} P_{R\left(T^{2}\right)} T^{2}\right) Y
\end{aligned}
$$

The following remark is the same as in the matrix case.

Remark 1 Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range and $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. Then to the operator equation

$$
\begin{equation*}
T X=A \quad, \quad X \in \mathcal{L}(\mathcal{X}) \tag{8}
\end{equation*}
$$

is solvable iff $T T^{\dagger} A=A$. Therefore

$$
\begin{equation*}
X=T^{\dagger} A \tag{9}
\end{equation*}
$$

is solution to Eq. (8).
Theorem 2.5 Suppose that $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ are Hilbert \mathcal{A}-modules, $S \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and $T \in$ $\mathcal{L}(\mathcal{Z}, \mathcal{Y})$ and $\left(1-P_{\mathrm{ran}(\mathrm{S})}\right) T$ have closed ranges, $A \in \mathcal{L}(\mathcal{Y})$ and $\mathcal{X}=\operatorname{ran}\left(\mathrm{S}^{*}\right) \oplus \operatorname{ker}(\mathrm{S})$ and $\mathcal{Y}=\operatorname{ran}(\mathrm{S}) \oplus \operatorname{ker}\left(\mathrm{S}^{*}\right)$ and $\mathcal{Z}=\operatorname{ran}\left(\mathrm{T}^{*}\right) \oplus \operatorname{ker}(\mathrm{T})$. If the operator equation

$$
\begin{equation*}
T X S^{*}-S X^{*} T^{*}=A \quad, \quad X \in \mathcal{L}(\mathcal{X}, \mathcal{Z}) \tag{10}
\end{equation*}
$$

is solvable, then

$$
X=\left[\begin{array}{c}
\left(\left(1-P_{\mathrm{ran}(\mathrm{~S})}\right) T\right)^{\dagger} A S^{\dagger} X_{2} \\
X_{3}
\end{array} X_{4}\right]:\left[\begin{array}{c}
\operatorname{ran}\left(\mathrm{S}^{*}\right) \\
\operatorname{ker}(S)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}\left(\mathrm{T}^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right]
$$

is solution to the operator equation (10), such that X_{2}, X_{3}, X_{4} are arbitrary operators.
Proof. Since S, T have closed ranges, we have $\mathcal{X}=\operatorname{ran}\left(S^{*}\right) \oplus \operatorname{ker}(\mathrm{S})$ and $\mathcal{Y}=$ $\operatorname{ran}(\mathrm{S}) \oplus \operatorname{ker}\left(\mathrm{S}^{*}\right)$ and $\mathcal{Z}=\operatorname{ran}\left(\mathrm{T}^{*}\right) \oplus \operatorname{ker}(\mathrm{T})$. Hence by (2) and orthogonal complemented submodules $\operatorname{ran}\left(\mathrm{S}^{*}\right), \operatorname{ran}\left(\mathrm{T}^{*}\right)$ and $\operatorname{ran}(\mathrm{S})$ and using the matrix forms for X, A, that is,

$$
A=\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}(\mathrm{S}) \\
\operatorname{ker}\left(S^{*}\right)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}(\mathrm{S}) \\
\operatorname{ker}\left(S^{*}\right)
\end{array}\right]
$$

and

$$
X=\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]:\left[\begin{array}{c}
\operatorname{ran}\left(\mathrm{S}^{*}\right) \\
\operatorname{ker}(S)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{ran}\left(\mathrm{T}^{*}\right) \\
\operatorname{ker}(T)
\end{array}\right],
$$

and matrix forms for S, T as describe in Lemma 1.4 and Lemma 1.5, respectively. Now the operator equation $T X S^{*}-S X^{*} T^{*}=A$ can be written in an equivalent form

$$
\left[\begin{array}{ll}
T_{1} & 0 \\
T_{3} & 0
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]\left[\begin{array}{cc}
S_{1}^{*} & 0 \\
0 & 0
\end{array}\right]-\left[\begin{array}{cc}
S_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
X_{1}^{*} & X_{3}^{*} \\
X_{2}^{*} & X_{4}^{*}
\end{array}\right]\left[\begin{array}{cc}
T_{1}^{*} & T_{3}^{*} \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right]
$$

That is,

$$
\left[\begin{array}{cc}
T_{1} X_{1} S_{1}^{*}-S_{1} X_{1}^{*} T_{1}^{*} & -S_{1} X_{1}^{*} T_{3}^{*} \\
T_{3} X_{1} S_{1}^{*} & 0
\end{array}\right]=\left[\begin{array}{cc}
A_{1} A_{2} \\
A_{3} A_{4}
\end{array}\right]
$$

Since Eq. (10) is solvable, then $A_{4}=0$. Therefore

$$
\begin{align*}
T_{1} X_{1} S_{1}^{*}-S_{1} X_{1}^{*} T_{1}^{*} & =A_{1} \tag{11}\\
-S_{1} X_{1}^{*} T_{3}^{*} & =A_{2} \tag{12}\\
T_{3} X_{1} S_{1}^{*} & =A_{3} \tag{13}
\end{align*}
$$

This means that for every operators X_{2}, X_{3}, X_{4}, is a solution to Eq. (10). By Eq. (13) we have $T_{3} X_{1} S_{1}^{*}=A_{3}$. By Lemma $2, S_{1}^{*}$ is invertible. Hence we have

$$
\begin{equation*}
T_{3} X_{1}=A_{3}\left(S_{1}^{*}\right)^{-1} \tag{14}
\end{equation*}
$$

By using the matrix form (2) implies that $T_{3}=\left(1-P_{\mathrm{ran}(\mathrm{S})}\right) T P_{\mathrm{ran}\left(\mathrm{T}^{*}\right)}=(1-$ $\left.P_{\mathrm{ran}(\mathrm{S})}\right) T T^{\dagger} T=\left(1-P_{\mathrm{ran}(\mathrm{S})}\right) T$ and $A_{3}=\left(1-P_{\mathrm{ran}(\mathrm{S})}\right) A P_{\mathrm{ran}(\mathrm{S})}$, hence we have

$$
\begin{align*}
\left(\left(1-P_{\mathrm{ran}(\mathrm{~S})}\right) T\right) X_{1} & =\left(1-P_{\mathrm{ran}(\mathrm{~S})}\right) A P_{\mathrm{ran}(\mathrm{~S})}\left(S_{1}^{*}\right)^{-1} \tag{15}\\
& =\left(1-P_{\mathrm{ran}(\mathrm{~S})}\right) A S S^{\dagger}\left(S^{*}\right)^{\dagger} \\
& =\left(1-P_{\mathrm{ran}(\mathrm{~S})}\right) A S^{\dagger}
\end{align*}
$$

Since Eq. (10) is solvable then Eq. (15) is solvable. Since $T_{3}=\left(1-P_{\operatorname{ran}(\mathrm{S})}\right) T$ has closed range, by Remark 1 Eq. (15) is solvable and

$$
X_{1}=\left(\left(1-P_{\mathrm{ran}(\mathrm{~S})}\right) T\right)^{\dagger}\left(1-P_{\mathrm{ran}(\mathrm{~S})}\right) A S^{\dagger}
$$

By Lemma 2.1, equivalently

$$
X_{1}=\left(\left(1-P_{\operatorname{ran}(\mathrm{S})}\right) T\right)^{\dagger} A S^{\dagger}
$$

Acknowledgements

The authors are grateful to the referee for his/her careful reading and his/her useful comments.

References

[1] T. Aghasizadeha and S. Hejazian, Maps preserving semi-Fredholm operators on Hilbert C*-modules, J. Math. Anal. Appl. 354 (2009), 625-629.
[2] H. Braden, The equations $A^{T} X \pm X^{T} A=B$, SIAM J. Matrix Anal. Appl. 20 (1998), 295-302.
[3] D. S. Djordjevic, Explicit solution of the operator equation $A^{*} X+X^{*} A=B$, J. Comput. Appl. Math. 200 (2007) 701-704
[4] D. S. Djordjevic and N. C. Dincic, Reverse order law for the Moore-Penrose inverse, J. Math. Anal. Appl. 361 (2010) 252-261.
[5] M. Frank, Geometrical aspects of Hilbert C^{*}-modules, Positivity 3 (1999), 215-243.
[6] M. Frank, Self-duality and C^{*}-reflexivity of Hilbert C^{*}-modules, Z. Anal. Anwendungen 9 (1990), 165-176.
[7] E. C. Lance, Hilbert C^{*}-Modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995.
[8] M. Mohammadzadeh Karizaki, M. Hassani, Explicit solution to the operator equation $T X S^{*}-S X^{*} T^{*}=A$ in Hilbert C^{*}-module,(Submited)
[9] M. Mohammadzadeh Karizaki, M. Hassani, M. Amyari and M. Khosravi, Operator matrix of Moore-Penrose inverse operators on Hilbert C^{*}-modules, to appear in Colloq. Math.
[10] K. Sharifi, B. Ahmadi Bonakdar, The reverse order law for Moore-Penrose inverses of operators on Hilbert C^{*}-modules, to appear in Bull. Iranian Math. Soc.
[11] Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C^{*}-modules, Linear Algebra Appl. 428 (2008), 992-1000.
[12] Q. Xu, L. Sheng, Y. Gu, The solutions to some operator equations, Linear Algebra Appl. 429 (2008) 19972024.

13] Y. Yuan, Solvability for a class of matrix equation and its applications, J, Nanjing Univ. (Math. Biquart.) 18 (2001) 221-227.

[^0]: *Corresponding author.
 E-mail address: mhassanimath@gmail.com, hassani@mshdiau.ac.ir (M. Hassani).

