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The solutions to some operator equations in Hilbert C∗-module
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Abstract. In this paper, we state some results on product of operators with closed ranges
and we solve the operator equation TXS∗ − SX∗T ∗ = A in the general setting of the
adjointable operators between Hilbert C∗-modules, when TS = 1. Furthermore, by using
some block operator matrix techniques, we find explicit solution of the operator equation
TXS∗ − SX∗T ∗ = A.
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1. Introduction and preliminaries

The equation TXS∗ − SX∗T ∗ = A was studied by Yuan [13] for finite matrices and
Xu et al. [12] generalized the results to Hilbert C∗-modules, under the condition that
ran(S) is contained in ran(T). When T equals an identity matrix or identity operator, this
equation reduces to XS∗−SX∗ = A, which was studied by Braden [2] for finite matrices,
and Djordjevic [3] for the Hilbert space operators. In this paper, we state some results
of product of operators with closed ranges, therefore we solve the operator equation
TXS∗ − SX∗T ∗ = A, when TS = 1. Furthermore, by using some block operator matrix
techniques, we find explicit solution of the operator equation TXS∗−SX∗T ∗ = A in the
general setting of the adjointable operators between Hilbert C∗-modules.

Hilbert C∗-modules are objects like Hilbert spaces, except that the inner product take
its values in a C∗-algebra, instead of being complex-valued. Throughout the paper A is a
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C*-algebra (not necessarily unital). A (right) pre-Hilbert module over a C∗-algebra A is a
complex linear space X , which is an algebraic rightA-module and λ(xa) = (λx)a = x(λa)
equipped with an A-valued inner product ⟨., .⟩ : X × X → A satisfying,

(i) ⟨x, x⟩ ⩾ 0, and ⟨x, x⟩ = 0 iff x = 0,
(ii) ⟨x, y + λz⟩ = ⟨x, y⟩+ λ⟨x, z⟩,
(iii) ⟨x, ya⟩ = ⟨x, y⟩a,
(iv) ⟨y, x⟩ = ⟨x, y⟩∗.

for each x, y, z ∈ X , λ ∈ C, a ∈ A. A pre-Hilbert A-module X is called a Hilbert A-

module if it is complete with respect to the norm ∥x∥ = ∥⟨x, x⟩∥
1

2 . Left HilbertA-modules
are defined in a similar way. For example every C∗-algebra A is a Hilbert A-module with
respect to inner product ⟨x, y⟩ = x∗y, and every inner product space is a left Hilbert
C-module.

Suppose that X and Y are Hilbert A-modules. Then, L(X ,Y) is the set of all maps
T : X → Y for which there is a map T ∗ : Y → X , the so-called adjoint of T such that
⟨Tx, y⟩ = ⟨x, T ∗y⟩ for each x ∈ X , y ∈ Y. It is known that any element T of L(X ,Y) must
be a bounded linear operator, which is also A-linear in the sense that T (xa) = (Tx)a for
x ∈ X and a ∈ A [7, Page 8]. We use the notations L(X ) in place of L(X ,X ), and ker(·)
and ran(·) for the kernel and the range of operators, respectively. The identity operator
on X is denoted by 1X or 1 if there is no ambiguity.

Suppose that X is a Hilbert A-module and Y is a closed submodule of X . We say
that Y is orthogonally complemented if X = Y ⊕ Y⊥, where Y⊥ := {y ∈ X : ⟨x, y⟩ =
0 for all x ∈ Y} denotes the orthogonal complement of Y in X . The reader is referred
to [5–7] and the references cited therein for more details.

Throughout this paper X and Y are HilbertA-modules. Recall that a closed submodule
in a Hilbert module is not necessarily orthogonally complemented, however Lance proved
that certain submodules are orthogonally complemented as follows.

Let T ∈ L(X ,Y). A bounded adjointable operator S ∈ L(Y,X ) is called an inner
inverse of T if TST = T . If T ∈ L(X ,Y) has an inner inverse S, then the bounded
adjointable operator T× = STS in L(Y,X ) satisfies

TT×T = T, T×TT× = T×. (1)

The bounded adjointable operator T× which satisfies (1) is called generalized inverse of
T . It is known that a bounded adjointable operator T has a generalized inverse if and
only if ran(T) is closed, see e.g. [1].

Theorem 1.1 [7, Theorem 3.2] Suppose that T ∈ L(X ,Y) has closed range. Then

• ker(T ) is orthogonally complemented in X , with complement ran(T∗).

• ran(T) is orthogonally complemented in Y, with complement ker(T ∗).

• The map T ∗ ∈ L(Y,X ) has closed range.

Definition 1.2 Let T ∈ L(X ,Y). The Moore-Penrose inverse T † of T (if it exists) is an
element in L(Y,X ) which satisfies:

(i) T T †T = T ,
(ii) T † T T † = T †,
(iii) (T T †)∗ = T T †,
(iv) (T † T )∗ = T †T .

Motivated by these conditions T † is unique and T †T and T T † are orthogonal pro-
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jections, in the sense that they are selfadjoint idempotent operators. Clearly, T is
Moore-Penrose invertible if and only if T ∗ is Moore-Penrose invertible, and in this case
(T ∗)† = (T †)∗. The following theorem is known.

Theorem 1.3 [11, Theorem 2.2] Suppose that T ∈ L(X ,Y). Then the Moore-Penrose
inverse T † of T exists if and only if T has closed range.

By Definition 1.2, we have

ran(T) = ran(TT†), ran(T†) = ran(T†T) = ran(T∗),
ker(T ) = ker(T †T ), ker(T †) = ker(T T †) = ker(T ∗),

and by Theorem 1.1, we have

X = ker(T )⊕ ran(T†) = ker(T†T)⊕ ran(T†T),

Y = ker(T †)⊕ ran(T) = ker(TT†)⊕ ran(TT†).

A matrix form of a bounded adjointable operator T ∈ L(X ,Y) can be induced by some
natural decompositions of Hilbert C∗-modules. Indeed, if M and N are closed orthog-
onally complemented submodules of X and Y, respectively, and X = M⊕M⊥, Y =
N ⊕N⊥, then T can be written as the following 2× 2 matrix

T =

[
T1 T2

T3 T4

]
(2)

where, T1 ∈ L(M,N ), T2 ∈ L(M⊥,N ), T3 ∈ L(M,N⊥) and T4 ∈ L(M⊥,N⊥). Note
that PM denotes the projection corresponding to M.

In fact T1 = PNTPM, T2 = PNT (1−PM), T3 = (1−PN )TPM, T4 = (1−PN )T (1−
PM).

Recall that if T ∈ L(X ,Y) has closed range, then TT † = Pran(T) and T †T = Pran(T∗).
The proof of the following Lemma can be found [9, Corollary 1.2.] or [4, Lemma 1.1.].

Lemma 1.4 Suppose that T ∈ L(X ,Y) has closed range. Then T has the following ma-
trix decomposition with respect to the orthogonal decompositions of closed submodules
X = ran(T∗)⊕ ker(T) and Y = ran(T)⊕ ker(T∗):

T =

[
T1 0
0 0

]
:

[
ran(T∗)
ker(T )

]
→

[
ran(T)
ker(T ∗)

]
where T1 is invertible. Moreover

T † =

[
T−1
1 0
0 0

]
:

[
ran(T)
ker(T ∗)

]
→

[
ran(T∗)
ker(T )

]
Lemma 1.5 ( see [10, Lemma 1.2.]) Suppose that T ∈ L(X ,Y) has closed range. Let
X1, X2 be closed submodules of X and Y1, Y2 be closed submodules of Y such that X =
X1⊕X2 and Y = Y1⊕Y2. Then the operator T has the following matrix representations
with respect to the orthogonal sums of submodules X = ran(T∗) ⊕ ker(T) and Y =
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ran(T)⊕ ker(T∗):

T =

[
T1 T2

0 0

]
:

[
X1

X2

]
→

[
ran(T)
ker(T ∗)

]
Then D = T1T

∗
1 + T2T

∗
2 ∈ L(ran(T)) is positive and invertible. Moreover,

T † =

[
T ∗
1D

−1 0
T ∗
2D

−1 0

]
. (3)

T =

[
T1 0
T3 0

]
:

[
ran(T∗)
ker(T )

]
→

[
Y1

Y2

]
, (4)

where F = T ∗
1 T1 + T ∗

3 T3 ∈ L(ran(T∗)) is positive and invertible. Moreover,

T † =

[
F−1T ∗

1 F−1T ∗
2

0 0

]
. (5)

2. Main results

In this section we solve TXS∗−SX∗T ∗ = A via the some results of product of operators
with closed ranges.

Lemma 2.1 Let T ∈ L(X ,Y) and letQ ∈ L(X ) and P ∈ L(Y) be orthogonal projections
and TQ and PT have closed ranges. Then

(i) (TQ)† = Q(TQ)†,
(ii) (PT )† = (PT )†P .

Proof. (i) Since ran(TQ) is closed, the operator (TQ)† exists. Therefore, ran((TQ)†) =
ran((TQ)∗) = ran(QT∗) ⊆ ranQ. Hence Q((TQ)†) = (TQ)†. The proof for (ii) is similar.
■

Lemma 2.2 Let T ∈ L(X ,Y) and S ∈ L(Y,X ) such that TS = 1Y . Then

(i) (1X − ST )† = (1X − SS†)(1X − T †T ),
(ii) T † = PN(T )⊥SPR(T ).

Proof. (i) Since TS = 1Y , the operator S is generalized inverse of T and vise versa.
Therefore T and S have closed ranges, hence T † and S† exist. Put Q = 1X − ST . From
TS = 1Y , we have QS = 0 and TQ = 0. Put M = (1X − SS†)(1X − T †T ). Then

QM = (1X − ST )(1X − SS†)(1X − T †T ) = (1X − ST )(1X − T †T ) = 1X − T †T,

MQ = (1X − SS†)(1X − T †T )(1X − ST ) = (1X − SS†)(1X − ST ) = 1X − SS†.

Hence, QMQ = (1X −T †T )(1X −ST ) = (1X −ST ) = Q and MQM = (1X −SS†)(1X −
SS†)(1X − ST ) = M . So (1X − ST )† = (1X − SS†)(1X − T †T ).

To prove (ii) By (i) we know that ran(T) is closed. Put N = PN(T )⊥SPR(T ). Then

TN = TPN(T )⊥SPR(T ) = TSPR(T ) = PR(T ),
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and

NT = PN(T )⊥SPR(T )T = PN(T )⊥ .

Obviously, we have TNT = PR(T )T = T and NTN = N . Hence, T † = PN(T )⊥SPR(T ). ■

Corollary 2.3 Let T, S ∈ L(X ) be such that TS = 1X . Then T 2 has closed range and
(T 2)† = PN(T 2)⊥S

2PR(T 2).

Proof. Since TS = 1X . Then T 2S2 = 1X . Hence, the bounded adjointable operator S2

is generalized inverse of T 2. Therefore T 2 has closed range. Lemma 2.2(ii) implies that
(T 2)† = PN(T 2)⊥S

2PR(T 2). ■

In the following theorems we obtain explicit solutions to the operator equation

TXS∗ − SX∗T ∗ = A, (6)

when TS = 1.

Theorem 2.4 Suppose T, S ∈ L(X ) such that TS = 1 and A ∈ L(X ). Then the
following statements are equivalent:
(a) There exists a solution X ∈ L(X ) to Eq. (6).
(b) A = −A∗ and (1− T 2(T 2)†)TAT ∗(1− T 2(T 2)†) = 0.

If (a) or (b) is satisfied, then any solution to Eq. (6) has the form

X =
1

2
PN(T 2)⊥S

2PR(T 2)TAT
∗T 2PN(T 2)⊥S

2PR(T 2) + PN(T 2)⊥S
2PR(T 2)ZT 2PN(T 2)⊥S

2PR(T 2)

+ PN(T 2)⊥S
2PR(T 2)TAT

∗(1− T 2PN(T 2)⊥S
2PR(T 2)) + (1− PN(T 2)⊥S

2PR(T 2)T
2)Y,

where Z ∈ L(X ) satisfies T ∗(Z − Z∗)T = 0, and Y ∈ L(X ) is arbitrary.

Proof. By multiplication T of the left and T ∗ of the right of Eq. (6) get into

T 2X −X∗(T ∗)2 = TAT ∗. (7)

Corollary 2.3 implies that T 2 has closed range. Now, [8, Theorem 3] implies that (a) and
(b) are equivalent. Again by [8, Theorem 3] implies that

X =
1

2
(T 2)†TAT ∗T 2(T 2)† + (T 2)†ZT 2(T 2)† + (T 2)†TAT ∗(1− T 2(T 2)†)

+ (1− (T 2)†T 2)Y,

where Z ∈ L(X ) satisfies T ∗(Z − Z∗)T = 0, and Y ∈ L(X ) is arbitrary. Again by
Corollary 2.3, equivalently

X =
1

2
PN(T 2)⊥S

2PR(T 2)TAT
∗T 2PN(T 2)⊥S

2PR(T 2) + PN(T 2)⊥S
2PR(T 2)ZT 2PN(T 2)⊥S

2PR(T 2)

+ PN(T 2)⊥S
2PR(T 2)TAT

∗(1− T 2PN(T 2)⊥S
2PR(T 2)) + (1− PN(T 2)⊥S

2PR(T 2)T
2)Y

■

The following remark is the same as in the matrix case.
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Remark 1 Let T ∈ L(X ,Y) has closed range and A ∈ L(X ,Y). Then to the operator
equation

TX = A , X ∈ L(X ) (8)

is solvable iff TT †A = A. Therefore

X = T †A. (9)

is solution to Eq. (8).

Theorem 2.5 Suppose that X ,Y,Z are Hilbert A-modules, S ∈ L(X ,Y) and T ∈
L(Z,Y) and (1− Pran(S))T have closed ranges, A ∈ L(Y) and X = ran(S∗)⊕ ker(S) and
Y = ran(S)⊕ ker(S∗) and Z = ran(T∗)⊕ ker(T). If the operator equation

TXS∗ − SX∗T ∗ = A , X ∈ L(X ,Z) (10)

is solvable, then

X =

[
((1− Pran(S))T )

†AS† X2

X3 X4

]
:

[
ran(S∗)
ker(S)

]
→

[
ran(T∗)
ker(T )

]

is solution to the operator equation (10) , such that X2, X3, X4 are arbitrary operators.

Proof. Since S, T have closed ranges, we have X = ran(S∗) ⊕ ker(S) and Y =
ran(S)⊕ ker(S∗) and Z = ran(T∗)⊕ ker(T). Hence by (2) and orthogonal complemented
submodules ran(S∗), ran(T∗) and ran(S) and using the matrix forms for X,A, that is,

A =

[
A1 A2

A3 A4

]
:

[
ran(S)
ker(S∗)

]
→

[
ran(S)
ker(S∗)

]
,

and

X =

[
X1 X2

X3 X4

]
:

[
ran(S∗)
ker(S)

]
→

[
ran(T∗)
ker(T )

]
,

and matrix forms for S, T as describe in Lemma 1.4 and Lemma 1.5, respectively. Now
the operator equation TXS∗ − SX∗T ∗ = A can be written in an equivalent form

[
T1 0
T3 0

] [
X1 X2

X3 X4

] [
S∗
1 0
0 0

]
−
[
S1 0
0 0

] [
X∗

1 X∗
3

X∗
2 X∗

4

] [
T ∗
1 T ∗

3

0 0

]
=

[
A1 A2

A3 A4

]

That is,

[
T1X1S

∗
1 − S1X

∗
1T

∗
1 −S1X

∗
1T

∗
3

T3X1S
∗
1 0

]
=

[
A1 A2

A3 A4

]
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Since Eq. (10) is solvable, then A4 = 0. Therefore

T1X1S
∗
1 − S1X

∗
1T

∗
1 = A1 (11)

−S1X
∗
1T

∗
3 = A2 (12)

T3X1S
∗
1 = A3 (13)

This means that for every operators X2, X3, X4, is a solution to Eq. (10). By Eq. (13)
we have T3X1S

∗
1 = A3. By Lemma 2, S∗

1 is invertible. Hence we have

T3X1 = A3(S
∗
1)

−1. (14)

By using the matrix form (2) implies that T3 = (1 − Pran(S))TPran(T∗) = (1 −
Pran(S))TT

†T = (1− Pran(S))T and A3 = (1− Pran(S))APran(S), hence we have

((1− Pran(S))T )X1 = (1− Pran(S))APran(S)(S
∗
1)

−1 (15)

= (1− Pran(S))ASS†(S∗)†

= (1− Pran(S))AS†

Since Eq. (10) is solvable then Eq. (15) is solvable. Since T3 = (1− Pran(S))T has closed
range, by Remark 1 Eq. (15) is solvable and

X1 = ((1− Pran(S))T )
†(1− Pran(S))AS†.

By Lemma 2.1, equivalently

X1 = ((1− Pran(S))T )
†AS†.

■
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