Journal of Linear and Topological Algebra Vol. 04, No. 01, 2015, 35-42

The solutions to some operator equations in Hilbert C^* -module

M. Mohammadzadeh Karizaki^a, M. Hassani^{a*}

^aDepartment of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

Received 28 November 2014; Revised 7 March 2015; Accepted 27 March 2015.

Abstract. In this paper, we state some results on product of operators with closed ranges and we solve the operator equation $TXS^* - SX^*T^* = A$ in the general setting of the adjointable operators between Hilbert C^* -modules, when TS = 1. Furthermore, by using some block operator matrix techniques, we find explicit solution of the operator equation $TXS^* - SX^*T^* = A$.

© 2015 IAUCTB. All rights reserved.

Keywords: Operator equation; Moore-Penrose inverse; Complemented submodule, Closed range, Hilbert C^* -module.

2010 AMS Subject Classification: Primary 47A62; Secondary 15A24; 46L08.

1. Introduction and preliminaries

The equation $TXS^* - SX^*T^* = A$ was studied by Yuan [13] for finite matrices and Xu et al. [12] generalized the results to Hilbert C^* -modules, under the condition that ran(S) is contained in ran(T). When T equals an identity matrix or identity operator, this equation reduces to $XS^* - SX^* = A$, which was studied by Braden [2] for finite matrices, and Djordjevic [3] for the Hilbert space operators. In this paper, we state some results of product of operators with closed ranges, therefore we solve the operator equation $TXS^* - SX^*T^* = A$, when TS = 1. Furthermore, by using some block operator matrix techniques, we find explicit solution of the operator equation $TXS^* - SX^*T^* = A$ in the general setting of the adjointable operators between Hilbert C^* -modules.

Hilbert C^* -modules are objects like Hilbert spaces, except that the inner product take its values in a C^* -algebra, instead of being complex-valued. Throughout the paper \mathcal{A} is a

 $^{^{*}}$ Corresponding author.

E-mail address: mhassanimath@gmail.com, hassani@mshdiau.ac.ir (M. Hassani).

C*-algebra (not necessarily unital). A (right) pre-Hilbert module over a C*-algebra \mathcal{A} is a complex linear space \mathcal{X} , which is an algebraic right \mathcal{A} -module and $\lambda(xa) = (\lambda x)a = x(\lambda a)$ equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle : \mathcal{X} \times \mathcal{X} \to \mathcal{A}$ satisfying,

- (i) $\langle x, x \rangle \ge 0$, and $\langle x, x \rangle = 0$ iff x = 0,
- (ii) $\langle x, y + \lambda z \rangle = \langle x, y \rangle + \lambda \langle x, z \rangle$,
- (iii) $\langle x, ya \rangle = \langle x, y \rangle a$,
- (iv) $\langle y, x \rangle = \langle x, y \rangle^*$.

for each $x, y, z \in \mathcal{X}, \lambda \in \mathbb{C}, a \in \mathcal{A}$. A pre-Hilbert \mathcal{A} -module \mathcal{X} is called a Hilbert \mathcal{A} module if it is complete with respect to the norm $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$. Left Hilbert \mathcal{A} -modules are defined in a similar way. For example every C^* -algebra \mathcal{A} is a Hilbert \mathcal{A} -module with respect to inner product $\langle x, y \rangle = x^*y$, and every inner product space is a left Hilbert \mathbb{C} -module.

Suppose that \mathcal{X} and \mathcal{Y} are Hilbert \mathcal{A} -modules. Then, $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ is the set of all maps $T : \mathcal{X} \to \mathcal{Y}$ for which there is a map $T^* : \mathcal{Y} \to \mathcal{X}$, the so-called adjoint of T such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for each $x \in \mathcal{X}, y \in \mathcal{Y}$. It is known that any element T of $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ must be a bounded linear operator, which is also \mathcal{A} -linear in the sense that T(xa) = (Tx)a for $x \in \mathcal{X}$ and $a \in \mathcal{A}$ [7, Page 8]. We use the notations $\mathcal{L}(\mathcal{X})$ in place of $\mathcal{L}(\mathcal{X}, \mathcal{X})$, and ker(\cdot) and ran(\cdot) for the kernel and the range of operators, respectively. The identity operator on \mathcal{X} is denoted by $1_{\mathcal{X}}$ or 1 if there is no ambiguity.

Suppose that \mathcal{X} is a Hilbert \mathcal{A} -module and \mathcal{Y} is a closed submodule of \mathcal{X} . We say that \mathcal{Y} is orthogonally complemented if $\mathcal{X} = \mathcal{Y} \oplus \mathcal{Y}^{\perp}$, where $\mathcal{Y}^{\perp} := \{y \in \mathcal{X} : \langle x, y \rangle = 0$ for all $x \in \mathcal{Y}\}$ denotes the orthogonal complement of \mathcal{Y} in \mathcal{X} . The reader is referred to [5–7] and the references cited therein for more details.

Throughout this paper \mathcal{X} and \mathcal{Y} are Hilbert \mathcal{A} -modules. Recall that a closed submodule in a Hilbert module is not necessarily orthogonally complemented, however Lance proved that certain submodules are orthogonally complemented as follows.

Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. A bounded adjointable operator $S \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ is called an inner inverse of T if TST = T. If $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has an inner inverse S, then the bounded adjointable operator $T^{\times} = STS$ in $\mathcal{L}(\mathcal{Y}, \mathcal{X})$ satisfies

$$TT^{\times}T = T, \quad T^{\times}TT^{\times} = T^{\times}.$$
(1)

The bounded adjointable operator T^{\times} which satisfies (1) is called generalized inverse of T. It is known that a bounded adjointable operator T has a generalized inverse if and only if ran(T) is closed, see e.g. [1].

Theorem 1.1 [7, Theorem 3.2] Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then

- ker(T) is orthogonally complemented in \mathcal{X} , with complement ran(T^{*}).
- ran(T) is orthogonally complemented in \mathcal{Y} , with complement ker(T^*).
- The map $T^* \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ has closed range.

Definition 1.2 Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. The Moore-Penrose inverse T^{\dagger} of T (if it exists) is an element in $L(\mathcal{Y}, \mathcal{X})$ which satisfies:

(i) $T T^{\dagger}T = T$, (ii) $T^{\dagger}T T^{\dagger} = T^{\dagger}$, (iii) $(T T^{\dagger})^* = T T^{\dagger}$, (iv) $(T^{\dagger}T)^* = T^{\dagger}T$.

Motivated by these conditions T^{\dagger} is unique and $T^{\dagger}T$ and TT^{\dagger} are orthogonal pro-

jections, in the sense that they are selfadjoint idempotent operators. Clearly, T is Moore-Penrose invertible if and only if T^* is Moore-Penrose invertible, and in this case $(T^*)^{\dagger} = (T^{\dagger})^*$. The following theorem is known.

Theorem 1.3 [11, Theorem 2.2] Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. Then the Moore-Penrose inverse T^{\dagger} of T exists if and only if T has closed range.

By Definition 1.2, we have

$$\operatorname{ran}(\mathbf{T}) = \operatorname{ran}(\mathbf{T}\,\mathbf{T}^{\dagger}), \qquad \operatorname{ran}(\mathbf{T}^{\dagger}) = \operatorname{ran}(\mathbf{T}^{\dagger}\mathbf{T}) = \operatorname{ran}(\mathbf{T}^{\ast}), \\ \operatorname{ker}(T) = \operatorname{ker}(T^{\dagger}T), \qquad \operatorname{ker}(T^{\dagger}) = \operatorname{ker}(T\,T^{\dagger}) = \operatorname{ker}(T^{\ast}),$$

and by Theorem 1.1, we have

$$\begin{aligned} \mathcal{X} &= \ker(T) \oplus \operatorname{ran}(\mathbf{T}^{\dagger}) = \ker(\mathbf{T}^{\dagger}\mathbf{T}) \oplus \operatorname{ran}(\mathbf{T}^{\dagger}\mathbf{T}), \\ \mathcal{Y} &= \ker(T^{\dagger}) \oplus \operatorname{ran}(\mathbf{T}) = \ker(\mathbf{T}\,\mathbf{T}^{\dagger}) \oplus \operatorname{ran}(\mathbf{T}\,\mathbf{T}^{\dagger}). \end{aligned}$$

A matrix form of a bounded adjointable operator $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ can be induced by some natural decompositions of Hilbert C^* -modules. Indeed, if \mathcal{M} and \mathcal{N} are closed orthogonally complemented submodules of \mathcal{X} and \mathcal{Y} , respectively, and $\mathcal{X} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, $\mathcal{Y} = \mathcal{N} \oplus \mathcal{N}^{\perp}$, then T can be written as the following 2×2 matrix

$$T = \begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}$$
(2)

where, $T_1 \in \mathcal{L}(\mathcal{M}, \mathcal{N}), T_2 \in \mathcal{L}(\mathcal{M}^{\perp}, \mathcal{N}), T_3 \in \mathcal{L}(\mathcal{M}, \mathcal{N}^{\perp})$ and $T_4 \in \mathcal{L}(\mathcal{M}^{\perp}, \mathcal{N}^{\perp})$. Note that $P_{\mathcal{M}}$ denotes the projection corresponding to \mathcal{M} .

In fact $T_1 = P_{\mathcal{N}}TP_{\mathcal{M}}$, $T_2 = P_{\mathcal{N}}T(1-P_{\mathcal{M}})$, $T_3 = (1-P_{\mathcal{N}})TP_{\mathcal{M}}$, $T_4 = (1-P_{\mathcal{N}})T(1-P_{\mathcal{M}})$.

Recall that if $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range, then $TT^{\dagger} = P_{\operatorname{ran}(T)}$ and $T^{\dagger}T = P_{\operatorname{ran}(T^*)}$.

The proof of the following Lemma can be found [9, Corollary 1.2.] or [4, Lemma 1.1.].

Lemma 1.4 Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then T has the following matrix decomposition with respect to the orthogonal decompositions of closed submodules $\mathcal{X} = \operatorname{ran}(T^*) \oplus \ker(T)$ and $\mathcal{Y} = \operatorname{ran}(T) \oplus \ker(T^*)$:

$$T = \begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(\mathrm{T}^*) \\ \ker(T) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(\mathrm{T}) \\ \ker(T^*) \end{bmatrix}$$

where T_1 is invertible. Moreover

$$T^{\dagger} = \begin{bmatrix} T_1^{-1} \ 0\\ 0 \ 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(\mathbf{T})\\ \ker(T^*) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(\mathbf{T}^*)\\ \ker(T) \end{bmatrix}$$

Lemma 1.5 (see [10, Lemma 1.2.]) Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Let $\mathcal{X}_1, \mathcal{X}_2$ be closed submodules of \mathcal{X} and $\mathcal{Y}_1, \mathcal{Y}_2$ be closed submodules of \mathcal{Y} such that $\mathcal{X} = \mathcal{X}_1 \oplus \mathcal{X}_2$ and $\mathcal{Y} = \mathcal{Y}_1 \oplus \mathcal{Y}_2$. Then the operator T has the following matrix representations with respect to the orthogonal sums of submodules $\mathcal{X} = \operatorname{ran}(T^*) \oplus \ker(T)$ and $\mathcal{Y} =$

38 M. Mohammadzadeh Karizaki et al. / J. Linear. Topological. Algebra. 04(01) (2015) 35-42.

 $ran(T) \oplus ker(T^*)$:

$$T = \begin{bmatrix} T_1 & T_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{X}_1 \\ \mathcal{X}_2 \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T^*) \end{bmatrix}$$

Then $D = T_1T_1^* + T_2T_2^* \in \mathcal{L}(\operatorname{ran}(T))$ is positive and invertible. Moreover,

$$T^{\dagger} = \begin{bmatrix} T_1^* D^{-1} \ 0 \\ T_2^* D^{-1} \ 0 \end{bmatrix}.$$
(3)

$$T = \begin{bmatrix} T_1 \ 0 \\ T_3 \ 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(\mathrm{T}^*) \\ \ker(T) \end{bmatrix} \to \begin{bmatrix} \mathcal{Y}_1 \\ \mathcal{Y}_2 \end{bmatrix}, \tag{4}$$

where $F = T_1^*T_1 + T_3^*T_3 \in \mathcal{L}(\operatorname{ran}(T^*))$ is positive and invertible. Moreover,

$$T^{\dagger} = \begin{bmatrix} F^{-1}T_1^* \ F^{-1}T_2^* \\ 0 \ 0 \end{bmatrix}.$$
 (5)

2. Main results

In this section we solve $TXS^* - SX^*T^* = A$ via the some results of product of operators with closed ranges.

Lemma 2.1 Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and let $Q \in \mathcal{L}(\mathcal{X})$ and $P \in \mathcal{L}(\mathcal{Y})$ be orthogonal projections and TQ and PT have closed ranges. Then

(i) $(TQ)^{\dagger} = Q(TQ)^{\dagger}$, (ii) $(PT)^{\dagger} = (PT)^{\dagger}P$

Proof. (i) Since ran(TQ) is closed, the operator $(TQ)^{\dagger}$ exists. Therefore, ran $((TQ)^{\dagger}) =$ $\operatorname{ran}((\mathrm{TQ})^*) = \operatorname{ran}(\mathrm{QT}^*) \subseteq \operatorname{ranQ}$. Hence $Q((TQ)^{\dagger}) = (TQ)^{\dagger}$. The proof for (ii) is similar.

Lemma 2.2 Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and $S \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ such that $TS = 1_{\mathcal{Y}}$. Then

(i) $(1_{\mathcal{X}} - ST)^{\dagger} = (1_{\mathcal{X}} - SS^{\dagger})(1_{\mathcal{X}} - T^{\dagger}T),$ (ii) $T^{\dagger} = P_{N(T)^{\perp}}SP_{R(T)}.$

Proof. (i) Since $TS = 1_{\mathcal{Y}}$, the operator S is generalized inverse of T and vise versa. Therefore T and S have closed ranges, hence T^{\dagger} and S^{\dagger} exist. Put $Q = 1_{\mathcal{X}} - ST$. From $TS = 1_{\mathcal{Y}}$, we have QS = 0 and TQ = 0. Put $M = (1_{\mathcal{X}} - SS^{\dagger})(1_{\mathcal{X}} - T^{\dagger}T)$. Then

$$QM = (1_{\mathcal{X}} - ST)(1_{\mathcal{X}} - SS^{\dagger})(1_{\mathcal{X}} - T^{\dagger}T) = (1_{\mathcal{X}} - ST)(1_{\mathcal{X}} - T^{\dagger}T) = 1_{\mathcal{X}} - T^{\dagger}T,$$

$$MQ = (1_{\mathcal{X}} - SS^{\dagger})(1_{\mathcal{X}} - T^{\dagger}T)(1_{\mathcal{X}} - ST) = (1_{\mathcal{X}} - SS^{\dagger})(1_{\mathcal{X}} - ST) = 1_{\mathcal{X}} - SS^{\dagger}.$$

Hence, $QMQ = (1_{\mathcal{X}} - T^{\dagger}T)(1_{\mathcal{X}} - ST) = (1_{\mathcal{X}} - ST) = Q$ and $MQM = (1_{\mathcal{X}} - SS^{\dagger})(1_{\mathcal{X}} - SS^{\dagger})(1_{\mathcal{X}} - ST) = M$. So $(1_{\mathcal{X}} - ST)^{\dagger} = (1_{\mathcal{X}} - SS^{\dagger})(1_{\mathcal{X}} - T^{\dagger}T)$.

To prove (ii) By (i) we know that ran(T) is closed. Put $N = P_{N(T)^{\perp}} SP_{R(T)}$. Then

$$TN = TP_{N(T)^{\perp}}SP_{R(T)} = TSP_{R(T)} = P_{R(T)},$$

and

$$NT = P_{N(T)^{\perp}}SP_{R(T)}T = P_{N(T)^{\perp}}$$

Obviously, we have $TNT = P_{R(T)}T = T$ and NTN = N. Hence, $T^{\dagger} = P_{N(T)^{\perp}}SP_{R(T)}$.

Corollary 2.3 Let $T, S \in \mathcal{L}(\mathcal{X})$ be such that $TS = 1_{\mathcal{X}}$. Then T^2 has closed range and $(T^2)^{\dagger} = P_{N(T^2)^{\perp}} S^2 P_{R(T^2)}$.

Proof. Since $TS = 1_{\mathcal{X}}$. Then $T^2S^2 = 1_{\mathcal{X}}$. Hence, the bounded adjointable operator S^2 is generalized inverse of T^2 . Therefore T^2 has closed range. Lemma 2.2(ii) implies that $(T^2)^{\dagger} = P_{N(T^2)^{\perp}}S^2P_{R(T^2)}$.

In the following theorems we obtain explicit solutions to the operator equation

$$TXS^* - SX^*T^* = A, (6)$$

when TS = 1.

Theorem 2.4 Suppose $T, S \in \mathcal{L}(\mathcal{X})$ such that TS = 1 and $A \in \mathcal{L}(\mathcal{X})$. Then the following statements are equivalent:

(a) There exists a solution $X \in \mathcal{L}(\mathcal{X})$ to Eq. (6).

(b) $A = -A^*$ and $(1 - T^2(T^2)^{\dagger})TAT^*(1 - T^2(T^2)^{\dagger}) = 0.$

If (a) or (b) is satisfied, then any solution to Eq. (6) has the form

$$\begin{split} X &= \frac{1}{2} P_{N(T^2)^{\perp}} S^2 P_{R(T^2)} T A T^* T^2 P_{N(T^2)^{\perp}} S^2 P_{R(T^2)} + P_{N(T^2)^{\perp}} S^2 P_{R(T^2)} Z T^2 P_{N(T^2)^{\perp}} S^2 P_{R(T^2)} \\ &+ P_{N(T^2)^{\perp}} S^2 P_{R(T^2)} T A T^* (1 - T^2 P_{N(T^2)^{\perp}} S^2 P_{R(T^2)}) + (1 - P_{N(T^2)^{\perp}} S^2 P_{R(T^2)} T^2) Y, \end{split}$$

where $Z \in \mathcal{L}(\mathcal{X})$ satisfies $T^*(Z - Z^*)T = 0$, and $Y \in \mathcal{L}(\mathcal{X})$ is arbitrary.

Proof. By multiplication T of the left and T^* of the right of Eq. (6) get into

$$T^{2}X - X^{*}(T^{*})^{2} = TAT^{*}.$$
(7)

Corollary 2.3 implies that T^2 has closed range. Now, [8, Theorem 3] implies that (a) and (b) are equivalent. Again by [8, Theorem 3] implies that

$$X = \frac{1}{2} (T^2)^{\dagger} T A T^* T^2 (T^2)^{\dagger} + (T^2)^{\dagger} Z T^2 (T^2)^{\dagger} + (T^2)^{\dagger} T A T^* (1 - T^2 (T^2)^{\dagger}) + (1 - (T^2)^{\dagger} T^2) Y,$$

where $Z \in \mathcal{L}(\mathcal{X})$ satisfies $T^*(Z - Z^*)T = 0$, and $Y \in \mathcal{L}(\mathcal{X})$ is arbitrary. Again by Corollary 2.3, equivalently

$$\begin{split} X &= \frac{1}{2} P_{N(T^2)^{\perp}} S^2 P_{R(T^2)} T A T^* T^2 P_{N(T^2)^{\perp}} S^2 P_{R(T^2)} + P_{N(T^2)^{\perp}} S^2 P_{R(T^2)} Z T^2 P_{N(T^2)^{\perp}} S^2 P_{R(T^2)} \\ &+ P_{N(T^2)^{\perp}} S^2 P_{R(T^2)} T A T^* (1 - T^2 P_{N(T^2)^{\perp}} S^2 P_{R(T^2)}) + (1 - P_{N(T^2)^{\perp}} S^2 P_{R(T^2)} T^2) Y \end{split}$$

The following remark is the same as in the matrix case.

39

Remark 1 Let $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range and $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. Then to the operator equation

$$TX = A$$
 , $X \in \mathcal{L}(\mathcal{X})$ (8)

is solvable iff $TT^{\dagger}A = A$. Therefore

$$X = T^{\dagger}A.$$
 (9)

is solution to Eq. (8).

Theorem 2.5 Suppose that $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ are Hilbert \mathcal{A} -modules, $S \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and $T \in \mathcal{L}(\mathcal{Z}, \mathcal{Y})$ and $(1 - P_{ran(S)})T$ have closed ranges, $A \in \mathcal{L}(\mathcal{Y})$ and $\mathcal{X} = ran(S^*) \oplus ker(S)$ and $\mathcal{Y} = ran(S) \oplus ker(S^*)$ and $\mathcal{Z} = ran(T^*) \oplus ker(T)$. If the operator equation

$$TXS^* - SX^*T^* = A \quad , \quad X \in \mathcal{L}(\mathcal{X}, \mathcal{Z})$$
⁽¹⁰⁾

is solvable, then

$$X = \begin{bmatrix} ((1 - P_{\operatorname{ran}(S)})T)^{\dagger}AS^{\dagger} X_{2} \\ X_{3} & X_{4} \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(S^{*}) \\ \ker(S) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T^{*}) \\ \ker(T) \end{bmatrix}$$

is solution to the operator equation (10), such that X_2, X_3, X_4 are arbitrary operators.

Proof. Since S, T have closed ranges, we have $\mathcal{X} = \operatorname{ran}(S^*) \oplus \ker(S)$ and $\mathcal{Y} = \operatorname{ran}(S) \oplus \ker(S^*)$ and $\mathcal{Z} = \operatorname{ran}(T^*) \oplus \ker(T)$. Hence by (2) and orthogonal complemented submodules $\operatorname{ran}(S^*)$, $\operatorname{ran}(T^*)$ and $\operatorname{ran}(S)$ and using the matrix forms for X, A, that is,

$$A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(S) \\ \ker(S^*) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(S) \\ \ker(S^*) \end{bmatrix},$$

and

$$X = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(S^*) \\ \ker(S) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T^*) \\ \ker(T) \end{bmatrix},$$

and matrix forms for S, T as describe in Lemma 1.4 and Lemma 1.5, respectively. Now the operator equation $TXS^* - SX^*T^* = A$ can be written in an equivalent form

$$\begin{bmatrix} T_1 \ 0 \\ T_3 \ 0 \end{bmatrix} \begin{bmatrix} X_1 \ X_2 \\ X_3 \ X_4 \end{bmatrix} \begin{bmatrix} S_1^* \ 0 \\ 0 \ 0 \end{bmatrix} - \begin{bmatrix} S_1 \ 0 \\ 0 \ 0 \end{bmatrix} \begin{bmatrix} X_1^* \ X_3^* \\ X_2^* \ X_4^* \end{bmatrix} \begin{bmatrix} T_1^* \ T_3^* \\ 0 \ 0 \end{bmatrix} = \begin{bmatrix} A_1 \ A_2 \\ A_3 \ A_4 \end{bmatrix}$$

That is,

$$\begin{bmatrix} T_1 X_1 S_1^* - S_1 X_1^* T_1^* & -S_1 X_1^* T_3^* \\ T_3 X_1 S_1^* & 0 \end{bmatrix} = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}$$

Since Eq. (10) is solvable, then $A_4 = 0$. Therefore

$$T_1 X_1 S_1^* - S_1 X_1^* T_1^* = A_1 \tag{11}$$

$$-S_1 X_1^* T_3^* = A_2 \tag{12}$$

$$T_3 X_1 S_1^* = A_3 \tag{13}$$

This means that for every operators X_2, X_3, X_4 , is a solution to Eq. (10). By Eq. (13) we have $T_3X_1S_1^* = A_3$. By Lemma 2, S_1^* is invertible. Hence we have

$$T_3 X_1 = A_3 (S_1^*)^{-1}. (14)$$

By using the matrix form (2) implies that $T_3 = (1 - P_{ran(S)})TP_{ran(T^*)} = (1 - P_{ran(S)})TP_{ran(T^*)}$ $P_{\text{ran}(S)}TT^{\dagger}T = (1 - P_{\text{ran}(S)})T$ and $A_3 = (1 - P_{\text{ran}(S)})AP_{\text{ran}(S)}$, hence we have

$$((1 - P_{ran(S)})T)X_{1} = (1 - P_{ran(S)})AP_{ran(S)}(S_{1}^{*})^{-1}$$
(15)
$$= (1 - P_{ran(S)})ASS^{\dagger}(S^{*})^{\dagger}$$
$$= (1 - P_{ran(S)})AS^{\dagger}$$

Since Eq. (10) is solvable then Eq. (15) is solvable. Since $T_3 = (1 - P_{ran(S)})T$ has closed range, by Remark 1 Eq. (15) is solvable and

$$X_1 = ((1 - P_{\text{ran}(S)})T)^{\dagger} (1 - P_{\text{ran}(S)})AS^{\dagger}.$$

By Lemma 2.1, equivalently

$$X_1 = ((1 - P_{\operatorname{ran}(S)})T)^{\dagger} A S^{\dagger}.$$

Acknowledgements

The authors are grateful to the referee for his/her careful reading and his/her useful comments.

References

- [1] T. Aghasizadeha and S. Hejazian, Maps preserving semi-Fredholm operators on Hilbert C*-modules, J. Math. Anal. Appl. 354 (2009), 625-629.
- [2] H. Braden, The equations $A^T X \pm X^T A = B$, SIAM J. Matrix Anal. Appl. 20 (1998), 295–302. [3] D. S. Djordjevic, Explicit solution of the operator equation $A^*X + X^*A = B$, J. Comput. Appl. Math. 200 (2007) 701-704
- [4] D. S. Djordjevic and N. C. Dincic, Reverse order law for the Moore-Penrose inverse, J. Math. Anal. Appl. 361 (2010) 252-261.
- M. Frank, Geometrical aspects of Hilbert C*-modules, Positivity 3 (1999), 215-243.
 M. Frank, Self-duality and C*-reflexivity of Hilbert C*-modules, Z. Anal. Anwendungen 9 (1990), 165-176. [6]
- E. C. Lance, Hilbert C*-Modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995.
- M. Mohammadzadeh Karizaki, M. Hassani, Explicit solution to the operator equation $TXS^* SX^*T^* = A$ [8] in Hilbert C^* -module, (Submitted)
- M. Mohammadzadeh Karizaki, M. Hassani, M. Amyari and M. Khosravi, Operator matrix of Moore-Penrose inverse operators on Hilbert C^{*}-modules, to appear in Colloq. Math. [9]

- [10] K. Sharifi, B. Ahmadi Bonakdar, The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules, to appear in Bull. Iranian Math. Soc.
 [11] Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C*-modules, Linear Advances of Adjointable operators on Hilbert C*-modules, Linear Adjointable operators on Hilbert C*-modules, Lin
- [11] Q. Hu and E. Sheng, Positive contractive of adjointance operators on Interver Contractive Interver Algebra Appl. 428 (2008), 992-1000.
 [12] Q. Xu, L. Sheng, Y. Gu, The solutions to some operator equations, Linear Algebra Appl. 429 (2008) 1997-
- 2024.
- [13] Y. Yuan, Solvability for a class of matrix equation and its applications, J, Nanjing Univ. (Math. Biquart.) 18 (2001) 221-227.