Journal of Linear and Topological Algebra Vol. 04, No. 01, 2015, 11-23

Characterization of $G_2(q)$, where $2 < q \equiv 1 \pmod{3}$ by order components

P. Nosratpour^{*}

Department of Mathematics, Ilam Branch, Islamic Azad University, Ilam, Iran.

Received 3 July 2014; Revised 14 November 2014; Accepted 20 February 2015.

Abstract. In this paper we will prove that the simple group $G_2(q)$ where $2 < q \equiv 1 \pmod{3}$ is recognizable by the set of its order components, also other word we prove that if G is a finite group with $OC(G) = OC(G_2(q))$, then G is isomorphic to $G_2(q)$.

© 2015 IAUCTB. All rights reserved.

Keywords: Prime graph, order component, linear group.2010 AMS Subject Classification: 20D05, 20D60.

1. Introduction

Let G be a finite group. We denote by $\pi(n)$ the set of all prime divisors of n, where n is a natural number. The prime graph of G is a graph $\Gamma(G)$ with vertex set $\pi(G)$, the set of all prime divisors of |G|, and two distinct vertices p and q are adjacent by an edge if G has an element of order pq. Let $\pi_i = \pi_i(G)$, $1 \leq i \leq s(G)$, be the connected components of $\Gamma(G)$. For a group of even order we let $2 \in \pi_1(G)$. Then |G| can be expressed as the product of $m_1, m_2, \ldots, m_{s(G)}$, where m_i 's are positive integers with $\pi(m_i) = \pi_i$. These m'_is are called the order components of G. We write $OC(G) = \{m_1, m_2, \ldots, m_{s(G)}\}$ and call it the set of order components of G.

Definition 1.1 Given a finite group G, denote by h(G) the number of non-isomorphism classes of finite groups S such that OC(G) = OC(S) and this is called the *h*-function

 $^{*} {\rm Corresponding \ author}.$

Print ISSN: 2252-0201 Online ISSN: 2345-5934 © 2015 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

E-mail address: p.nosratpour@ilam-iau.ac.ir (P. Nosratpour).

of G. A group G is called k-recognizable by its set of order components if h(G) = k. Moreover, if h(G) = 1 we say that G is characterizable by order components. In this case G is uniquely determined by the set of its order components.

Using [24] and [26] we list the order components for non-abelian finite simple groups P in the Table 1., Table 2. and Table 3. This information is used to prove our main theorem.

In a series of articles [3–5, 25] it is proved that the sporadic groups, and finite groups $PSL_2(q)$, ${}^{3}D_4(q)$, ${}^{2}D_n(3)$, where $9 \leq n = 2^m + 1$ not a prime, and ${}^{2}D_{p+1}(q)$, where $5 , are characterized by order components. The recognizability of groups <math>L_{p+1}(2)$, ${}^{2}D_p(3)$, where $p \geq 5$ is a prime number not of the form $2^m + 1$, ${}^{2}D_n(2)$, where $n = 2^m + 1 \geq 5$, $D_{p+1}(2)$, $D_{p+1}(3)$ and $D_p(q)$, where $p \geq 5$ is a prime number and q = 2, 3 or 5, are proved by M.R. Darafsheh et. al. in [7–11]. Also characterizability of the groups $E_6(q)$, ${}^{2}E_6(q)$, ${}^{2}D_n(q)$, where $n = 2^m$, PSL(p,q), PSU(p,q), PSL(p+1,q), PSU(p+1,q), PSU(p+1,q), PSU(p+1,q), PSL(3,q) where q is an odd prime power, PSL(3,q) for $q = 2^n$ and PSU(3,q) for q > 5 by their order components is proved in a series of articles by B. Khosravi et. al. [12–14, 16–20, 22, 23]. In addition, r-recognizability of $B_n(q)$ and $C_n(q)$, where $n = 2^m \geq 4$, are proved in [21].

The following open problem contains all remaining cases related to that all simple non-abelian groups, as P, with s(P) = 2 are characterizable by order components.

Open problem [15]. Are the groups $F_4(q)(q \text{ odd})$, $G_2(q)(2 < q \equiv \pm 1 \pmod{3})$ and $C_p(2)$ characterizable by their order components?

In this paper we consider the simple group $G_2(q)$, where $2 < q \equiv 1 \pmod{3}$, and prove that this group is characterizable by order components.

By [24] the prime graph of the group $G_2(q)$, where $2 < q \equiv 1 \pmod{3}$, has two components $m_1 = q^6(q^3+1)(q^2-1)(q-1) = q^6(q+1)^2(q-1)^2(q^2+q+1)$ and $m_2 = q^2-q+1$.

Main Theorem. Let G be a finite group such that $OC(G) = OC(G_2(q))$, where $2 < q \equiv 1 \pmod{3}$, then $G \cong G_2(q)$.

2. Preliminaries

Definition 2.1 A group G is called a 2-Frobenius group, if there exists a normal series $1 \leq H \leq K \leq G$ of G, such that K and G/H are Frobenius groups with kernels H and K/H respectively.

The following lemmas are taken from [1] and [2].

Lemma 2.2

- (a) Let G be a Frobenius group of even order where H and K are Frobenius complement and Frobenius kernel of G, respectively. Then s(G) = 2 and the prime graph components of G are $\pi(H)$ and $\pi(K)$.
- (b) Let G be a 2-Frobenius group of even order. Then s(G) = 2 and G has a normal series $1 \leq H \leq K \leq G$, such that $|K/H| = m_2$, $|H||G/K| = m_1$ and |G/K| | (|K/H| 1) and H is a nilpotent π_1 -group.

Lemma 2.3 Let G be a finite group with $s(G) \ge 2$. If $H \le G$ is a π_i -group, then

$$(\prod_{j=1, j\neq i}^{s(G)} m_j) \mid (|H| - 1).$$

The structure of finite groups with non-connected prime graph is described in the following Lemma:

Lemma 2.4 Let G be a finite group with $s(G) \ge 2$. Then one of the following holds:

- (a) G is a Frobenius or a 2-Frobenius group;
- (b) G has a normal series $1 \leq H \leq K \leq G$, such that H and G/K are π_1 -groups and K/H is a non-abelian simple group, where π_1 is the prime graph component containing 2, H is a nilpotent group, and $|G/K| \mid |Out(K/H)|$. Moreover, any odd order components of G is also an odd order components of K/H.

The following Lemma of Zsigmondy is used to prove the main theorem.

Lemma 2.5 [27] Let n and a be integers greater than 1. There there exists a prime divisor p of $a^n - 1$ such that p dose not divide $a^i - 1$ for all $i, 1 \leq i < n$, except in the following cases:

(a) $n = 2, a = 2^k - 1$, where $k \ge 2$, (b) n = 6, a = 2.

The prime p in the above lemma is called a Zsigmondy prime for $a^n - 1$.

3. Proof of the main theorem

To prove the theorem we will use Lemma 2.4. But first we will prove the following Lemmas.

Lemma 3.1 Let $M = G_2(q)$ where $2 < q \equiv 1 \pmod{3}$ and set $D(q) = q^2 - q + 1$,

- (a) If $p \in \pi(M)$, then $|S_p| \leq q^6$, where $S_p \in Syl_p(M)$;
- (b) If $p \in \pi_1(M)$, $p^{\alpha} \mid |M|$ and $p^{\alpha} 1 \equiv 0 (modD(q))$, then $p^{\alpha} = q^6$ or $p^{\alpha} = 27$, where q = 4.

Proof. We have

- (a) $|G_2(q)| = q^6(q+1)^2(q-1)^2(q^2-q+1)(q^2+q+1)$ (1). An easy calculation shows that (q+1,q-1) = (2,q-1) $(q-1,q^2+q+1) = (3,q-1)$ $(q-1,q^2-q+1) = 1$ $(q+1,q^2-q+1) = (3,q+1)$ $(q+1,q^2+q+1) = 1$ $(q^2+q+1,q^2-q+1) = 1$ (2) Where (.,.) denotes the greatest common divisor of two numbers. If $p^{\alpha} \mid |M|$, then regarding (1) and (2) we obtain $p^{\alpha} \mid q^6, 2^2.3(q+1)^2, 2^2.3(q-1)^2, q^2+q+1$
 - or $q^2 q + 1$. Then (a) follows immediately.
- (b) If $p^{\alpha} 1 \equiv 0 \pmod{p(q)}$, then we have $p^{\alpha} > D(q)$, since $q \ge 4$, we obtain $p^{\alpha} > 13$. Consider the following cases:
 - (1) If $p^{\alpha} \mid 3^{2}(q^{2} + q + 1)$, then $p^{\alpha} \mid 3^{3}$ or $p^{\alpha} \mid q^{2} + q + 1$. If $p^{\alpha} \mid 3^{3}$, then we have $p^{\alpha} = 27$ and q = 4. If $p^{\alpha} \mid q^{2} + q + 1$, then $p^{\alpha} = \frac{q^{2} + q + 1}{t}$. Also, we have $p^{\alpha} - 1 = r.D(q)$, where $r \in N$, then $D(q) = \frac{q^{2} + q + 1 - t}{tr}$. But since

$$\frac{q^2 + q + 1}{2} < D(q) = \frac{q^2 + q + 1 - t}{t} < \frac{q^2 + q + 1}{tr}, \text{ then } tr \leq 2 \text{ and}$$
$$(tr - 1)q^2 - (tr + 1)q + (tr + t - 1) = 0.$$

From this equation we deduce $q \mid (tr+t-1)$, therefore $4 \leq q \leq tr+t-1 \leq 3$, which is impossible.

(2) If $p^{\alpha} \mid 2^2 . 3.(q \pm 1)^2$, then $p^{\alpha} \mid 4(q \pm 1)^2$ or $p^{\alpha} \mid 3.(q \pm 1)^2$. Since the proof of these two cases are similar we only deal with one of them.

If $p^{\alpha} \mid 4(q+1)^2$, then $tp^{\alpha} = 4(q+1)^2$, i.e., $p^{\alpha} = 4(q+1)^2/t$, where t is a natural number. Also, we have $p^{\alpha} - 1 = r.D(q)$, where r is a natural number, then $D(q) = \frac{4(q+1)^2 - t}{tr}$. But since $\frac{4(q+1)^2}{8} < D(q) = \frac{4(q+1)^2 - t}{tr} < \frac{4(q+1)^2}{tr}$, then $tr \leq 8$ and $(tr - 4)q^2 - (tr + 8)q + (tr + t - 4) = 0$. From this equation we deduce $q \mid (tr + t - 4)$. Now using tr = 1, 2, ..., 8 we get contradictions. (3) If $p^{\alpha} \mid q^6$, then we deduce

$$p^{\alpha} - 1 \leqslant (q^{6} - 1) = (q^{3} + 1)(q^{3} - 1) \Rightarrow q^{3} + 1 \leqslant p^{\alpha} - 1 = r(q^{2} - q + 1)$$
$$\Rightarrow (q + 1)(q^{2} - q + 1) \leqslant r(q^{2} - q + 1) \Rightarrow r \geqslant q + 1.$$

From this we deduce that

 $p^{\alpha}-1 = r(q^2-q+1) \ge (q+1)(q^2-q+1) = q^3+1 \Rightarrow p^{\alpha} \ge q^3+2 > q^3.$ Therefore, $p^{\alpha} > q^3$, now we have $p^{\alpha} = q^3.p^m$, $m \ge 1$. Then

$$r.D(q) = p^{\alpha} - 1 = p^{m}.q^{3} - 1 = p^{m}.q^{3} + p^{m} - p^{m} - 1$$
$$= p^{m}(q+1)D(q) - (p^{m}+1),$$

which implies that $p^m + 1 \equiv 0 (modD(q))$, then $p^m = q^3$ and $p^{\alpha} = q^6$.

Lemma 3.2 Let G be a finite group such that $OC(G) = OC(G_2(q))$, where $2 < q \equiv 1 \pmod{3}$, then G is neither a Frobenius nor 2-Frobenius group.

Proof. If G is a Frobenius group, then G = HK with Frobenius complement H and Frobenius kernel K. By Lemma 2.2 we have $OC(G) = \{|H|, |K|\}$. Since $|H| \mid (|K| - 1)$, so |H| < |K|, therefore $|K| = m_1$ and $|H| = m_2$. There is a prime number p such that $p^{\alpha} \mid 4(q+1)^2$. If $S_p = S$ is a p-Sylow subgroup of K, then by nilpotency of K we have $S \leq G$, and by Lemma 2.3, $m_2 \mid (|S| - 1)$, hence $|S| \equiv 1(modD(q))$, then by Lemma 3.1, $p^{\alpha} = q^6$ or 27 and q = 4, which is impossible since $|S| \leq 4(q+1)^2 < q^6$ or if |S| = 27, then $27 \nmid 4.5^2$.

If G be a 2-Frobenius group, then there is a normal series $1 \leq H \leq K \leq G$, for G such that H is a nilpotent π_1 -group, $|K/H| = m_2$ and $|G/K| \mid (|K/H| - 1)$, hence $|G/K| \mid q(q-1)$. We have $|K/H| = q^2 - q + 1 < 4(q+1)^2$, thus there is a prime p such that $p \mid 4(q+1)^2$ and $p \mid |H|$. If $S = S_p \in Syl_p(H)$, then by nilpotency of H we have $S \leq K$ and $|K| = (q^2 - q + 1)|H|$, so by Lemma 2.3, $m_2 \mid (|S| - 1)$, hence $|S| \equiv 1(modD(q))$, then by Lemma 3.1, $|S| = q^6$ or 27 and q = 4, which is impossible since $|S| \leq 4(q+1)^2 < q^6$ or if |S| = 27, then $27 \nmid 4.5^2$.

Now we continue the proof of our main theorem. By Lemma 2.4, there is a normal series $1 \leq H \leq K \leq G$ for G such that K/H is a non-abelian simple group, H and G/K are π_1 -group and H is a nilpotent group. Moreover |G/K| | |Out(K/H)| and odd order components of G is one of the odd order components of K/H and $s(K/H) \geq 2$.

Since P = K/H is a non-abelian simple group with disconnected prime graph, by the classification of finite simple groups we have one of the possibilities in Tables 1, 2 and 3 for P.

Case(1): $P \cong^2 A_3(2)$, ${}^2F_4(2)'$, $A_2(2)$, $A_2(4)$, ${}^2A_5(2)$, $E_7(2)$, $E_7(3)$, ${}^2E_6(2)$ or one of the 26 Sporadic groups listed in Tables 1, 2 and 3.

The odd order component of G is equal to $m_2 = q^2 - q + 1$ and must be equal to one of the odd order components of the groups listed above. By inspecting Tables 1, 2 and 3, the largest odd order component of the above groups is 1093. Therefore $q^2 + q + 1 \leq 1093$, from which we obtain $q \leq 31$. Hence the possibilities for q are: q = 4, 7, 13, 16, 19, 25, 31 (note that $q \equiv 1(mod3)$). If q = 7, 13, 16, 19, 25, 31, then we have $m_2 = 43, 157, 241, 343, 601, 931$, respectively. But any group in Tables 1, 2 and 3 do not have these odd components. Therefore, we deduce q = 4. If q = 4, then $m_2 = 13$ corresponds to $P \cong Fi_{22}$ or Suz, but for both cases we have $7, 11 \mid |P|$ and $7, 11 \nmid |G|$, hence $|P| \nmid |G|$. Therefore the above possibilities are ruled out.

Case(2): $P \cong A_n$, where n = p, p+1, p+2, one of n or n-2 is prime, and n = p, p-2 are both prime where $p \ge 6$ is a prime number.

By Tables 1 and 2, the odd order components of A_n are p and p-2, hence $q^2-q+1=p$ or p-2. If $q^2-q+1=p$, then $p-2=q^2-q-1$, hence $q^2-q-1 \mid |G|$, which is impossible. If $q^2-q+1=p-2$, hence $p=q^2-q+3$, therefore we deduce $q^2-q+3 \mid |G|$, which is impossible.

Case(3): $P \cong E_6(q')$. By Table 1, we have $\frac{q'^6 + q'^3 + 1}{(3,q'-1)} = q^2 - q + 1$, now if (3,q'-1) = 3, then

 $\frac{q'^6 + q'^3 + 1}{3} = q^2 - q + 1 \Rightarrow q'^9 - 1 \equiv 0(modD(q)) \Rightarrow q'^9 \equiv 1(modD(q)).$ Hence, by Lemma 3.1, we have $q'^9 = q^6$, therefore $q'^{36} = q^{24} > q^6$. Then *P* has a Sylow subgroup with order great than q^6 , which is impossible by Lemma 3.1. But if (3, q' - 1) = 1, then $q'^6 + q'^3 + 1 = q^2 - q + 1$, therefore $q'^3(q'^3 + 1) = q(q - 1)$, hence $q = q'^3$, this implies $q(q - 1) = q'^3(q'^3 - 1) < q'^3(q'^3 + 1)$ a contradiction.

Case(4): $P \cong G_2(q')$, $2 < q' \equiv \pm 1 \pmod{3}$. By Table 1, if $\epsilon = -1$, then $q'^2 + q' + 1 = q^2 - q + 1$, hence q'(q' + 1) = q(q - 1). Since $q \neq q'$, therefore q' = q - 1 = 3k, is a contradiction. If $\epsilon = 1$ we have $q'^2 - q' + 1 = q^2 - q + 1$ which implies q = q'. Therefore $P \cong G_2(q)$, since $|P| \mid |G|$ and $|P| = |G_2(q)| = |G|$, hence $P \cong G$. From this we deduce that $G \cong G_2(q)$.

Case(5): $P \cong B_p(3)$. By Table 1, we have $q^2 - q + 1 = \frac{3^p - 1}{2}$, then $3^p \equiv 1(modD(q))$, therefore, by lemma 3.1, we have $3^p = q^6$, therefore $q \equiv 0(mod3)$, a contradiction, or $3^p = 27$ and q = 4, hence p = 3. Therefore we have $P \cong B_3(3)$, but we have $|B_3(3)| > |G_2(4)|$, a contradiction.

Case(6): $P \cong C_p(q'), q' = 2, 3$. If q' = 3 then by Table 1, we have $\frac{3^p-1}{2} = q^2 - q + 1$, so $3^p \equiv 1(modD(q))$. Therefore, by Lemma 3.1, we have $3^p = q^6$, therefore $q \equiv 0(mod3)$, a contradiction, or $3^p = 27$ and q = 4, hence p = 3. Therefore we have $P \cong C_3(3)$, but we have $|C_3(3)| > |G_2(4)|$, a contradiction.

If q' = 2, then by Table 1, we have $2^p - 1 = q^2 - q + 1$, so $2^p \equiv 1(modD(q))$. Therefore, by Lemma 3.1, we have $2^p = q^6$, therefore $q \equiv 0(mod2)$, i.e., $2 \mid q$. Also we have $2^p - 1 = q^2 - q + 1$, then $q(q-1) = 2(2^{p-1} - 1)$, therefore we deduce $4 \nmid q$. Since $2 \mid q \text{ and } 4 \nmid q$, then q = 2 a contradiction. (we have $q \ge 4$)

Case(7): $P \cong D_p(q'), p \ge 5, q' = 2, 3, 5$. By Table 1, we have $q^2 - q + 1 = \frac{q'^p - 1}{q - 1}$. therefore $q'^p \equiv 1 \pmod{p}$. Then, by Lemma 3.1, we have $q'^p = q^6$. Since $p \ge 5$ then $p(p-1) \ge 20$. From this we deduce that $q'^{p(p-1)} > q^6$, which is impossible, by Lemma 3.1.(Since $p > 3 \Rightarrow q'^p \neq 27$)

Case(8): $P \cong D_{p+1}(q'), q' = 2, 3$. By Table 1, if q' = 2, then we have $q^2 - q + 1 = 2^p - 1$, therefore, $2^p \equiv 1 \pmod{p}$. Then, by Lemma 3.1, we have $2^p = q^6$, hence $q \equiv 0 \pmod{2}$. Also, $q^2 - q + 1 = 2^p - 1$, then $q(q - 1) = 2(2^{p-1} - 1)$, therefore $4 \nmid q$, which imply q = 2, a contradiction. If q' = 3, then we have $q^2 - q + 1 = \frac{3^p - 1}{2}$, therefore $3^p \equiv 1 \pmod{(q)}$. Then, by Lemma 3.1, we have $3^p = q^6$, hence $q \equiv 0 \pmod{3}$, a contradiction, or $3^p = 27$ and q = 4, hence p = 3. Therefore we have $P \cong D_4(3)$, but we have $|D_4(3)| > |G_2(4)|$, a contradiction..

Case(9): $P \cong F_4(q')$. By Tables 1 and 2, the odd order components of $F_4(q')$ are $q'^4 - q'^2 + 1$ and $q'^4 + 1$. If $q'^4 - q'^2 + 1 = q^2 - q + 1$, then $q'^2(q'^2 - 1) = q(q - 1)$, hence $q = q'^2$, therefore we deduce $q'^{24} = q^{12} > q^6$, which is impossible, by Lemma 3.1. If $q^2 - q + 1 = q'^4 + 1$, then $q(q - 1) = q'^4$, that is impossible.

Case(10): $P \cong {}^{2}G_{2}(q'), q' = 3^{2m+1} > 3$. By Table 2, we have $q^{2} - q + 1 = q' \pm \sqrt{3q'} + 1 = q' \pm \sqrt{3q'} + 1$ $3^{2m+1} \pm \sqrt{3^{2(m+1)}} + 1$, hence $q(q-1) = 3^{m+1}(3^m \pm 1)$, therefore $q = 3^{m+1}$ or $q = 3^m \pm 1$. If $q = 3^{m+1}$, then $q \equiv 0 \pmod{3}$, a contradiction.

If $q = 3^m \pm 1$, then from $q = 3^m + 1$ we deduce $q(q-1) = 3^m(3^m + 1)$, then $3^{m}(3^{m}+1) = 3^{m+1}(3^{m}+1)$, therefore $3^{m+1} = 3^{m}$, which is impossible and from $q = 3^m - 1$ we deduce $q(q-1) = (3^m - 1)(3^m - 2)$, then $(3^m - 2)(3^m - 1) = 3^{m+1}(3^m - 1)$, therefore $3^m - 2 = 3^{m+1}$, which is impossible.

Case(11): $P \cong E_8(q')$. By Table 3, the odd order components of $E_8(q')$ are $q'^8 - q'^4 + 1$, $\frac{q'^{10} \pm q'^5 + 1}{q'^2 \pm q' + 1}$ and $\frac{q'^{10} + 1}{q'^2 + 1}$.

 $\begin{aligned} q^{\prime 2} \pm q^{\prime + 1} & q^{\prime 2 + 1} \\ \text{If } q^{2} - q + 1 &= q^{\prime 8} - q^{\prime 4} + 1, \text{ then } q(q - 1) = q^{\prime 4}(q^{\prime 4} - 1). \text{ From this we deduce } q = q^{\prime 4}, \\ \text{then } q^{\prime 120} &= q^{30} > q^{6}, \text{ which is impossible by Lemma 3.1.} \\ \text{If } q^{2} - q + 1 &= \frac{q^{\prime 10} + q^{\prime 5} + 1}{q^{\prime 2} + q^{\prime + 1}}, \text{ then } q^{\prime 15} \equiv 1(modD(q)). \text{ Hence, by Lemma 3.1, } q^{\prime 15} = q^{6}, \end{aligned}$

then $q'^{120} = q^{48} > q^6$, which is impossible by Lemma 3.1. If $q^2 - q + 1 = \frac{q'^{10} - q'^5 + 1}{q'^2 - q' + 1}$ then $q'^{30} \equiv 1(modD(q))$. Hence, by Lemma 3.1, $q'^{30} = q^6$, then $q'^{120} = q^{24} > q^6$, which is impossible by Lemma 3.1. If $q^2 - q + 1 = \frac{q'^{10} - q'^5 + 1}{q'^2 - q' + 1}$, then $q'^{20} \equiv 1(modD(q))$. Hence, by Lemma 3.1, $q'^{20} = q^6$, then $\int_{120}^{120} \frac{q^6}{q^6} = \frac{q^{10} + 1}{q'^2 + 1}$, then $q'^{20} \equiv 1(modD(q))$. Hence, by Lemma 3.1, $q'^{20} = q^6$, then

 $q'^{120} = q^{36} > q^6$, which is impossible by Lemma 3.1.

Case(12): $P \cong {}^{2}E_{6}(q')$, q > 2. By Table 1, we have $\frac{q'^{6}-q'^{3}+1}{(3,q'+1)} = q^{2}-q+1$. Now if (3,q'+1) = 1, we have $q'^{6}-q'^{3}+1 = q^{2}-q+1$, then $q'^{3}(q'^{3}-1) = q(q-1)$, therefore $q'^{3} = q$. From this we deduce $q'^{36} = q^{12} > q^{6}$, which is impossible by Lemma 3.1. If (3,q'+1) = 3, then $\frac{q'^{6}-q'^{3}+1}{3} = q^{2}-q+1$. From this we deduce $q'^{18} \equiv 1(modD(q))$, then by Lemma 3.1, we have $q'^{18} = q^{6}$, this implies $q'^{36} = q^{12} > q^{6}$, which is impossible

by Lemma 3.1.

Case(13): $P \cong {}^{2}D_{n}(2), n = 2^{m} + 1 \ge 5$. By Table 1, $q^{2} - q + 1 = 2^{n-1} + 1$, then $q(q-1) = 2^{n-1}$, a contradiction.

Case(14): $P \cong A_p(q')$, where $(q'-1) \mid (p+1)$. By Table 1, $q^2 - q + 1 = \frac{q'^p - 1}{q' - 1}$, then $q'^p \equiv 1(modD(q))$, therefore, by Lemma 3.1, we have $q'^p = q^6$, hence $q'^{p(p+1)/2} > q^6$, which is impossible by Lemma 3.1, or $q'^p = 27$ and q = 4, hence p = 3 and q' = 3. Therefore we have $P \cong A_3(3)$, but we have $3^6 \mid |A_3(3)|$ and $3^6 \nmid |G_2(4)|$, a contradiction.

Case(15): $P \cong {}^{2}D_{p}(3)$, where $5 \leq p$. By Tables 1 and 2, the odd order components of ${}^{2}D_{p}(3)$ are $\frac{3^{p}+1}{4}$ and $\frac{3^{p-1}+1}{2}$. If $q^{2}-q+1=\frac{3^{p}+1}{4}$, then $3^{2p}\equiv 1(modD(q))$, so, by Lemma 3.1, $3^{2p}=q^{6}$, therefore $q\equiv 0(mod3)$, a contradiction or $3^{2p}=27$ and q=4, therefore 2p=3 is impossible. If $q^{2}-q+1=\frac{3^{p-1}+1}{2}$, then $3^{2p-2}\equiv 1(modD(q))$, so, by Lemma 3.1, $3^{2p-2}=q^{6}$, therefore $q\equiv 0(mod3)$, a contradiction or $3^{2p-2}\equiv 27$ and q=4, therefore 2p-2=3, hence 2p=5 is impossible.

Case(16): $P \cong {}^{2}D_{n}(3)$, where $5 \leq p \neq 2^{m} + 1$. By Table 1, $q^{2} - q + 1 = \frac{3^{n-1}+1}{2}$, we deduce $3^{2n-2} \equiv 1(modD(q))$. Then, by Lemma 3.1, we have $3^{2n-2} = q^{6}$, therefore $q \equiv 0(mod3)$, a contradiction or or $3^{2n-2} = 27$ and q = 4, therefore 2n - 2 = 3, hence 2n = 5 is impossible.

Case(17): $P \cong {}^{2}B_{2}(q')$, where $q' = 2^{2m+1} > 2$. By Table 3, the odd order components of ${}^{2}B_{2}(q')$ are q'-1, $q'-\sqrt{2q'}+1$ and $q'+\sqrt{2q'}+1$. If $q^{2}-q+1=q'-1$ then we have $q' \equiv 1(modD(q))$. Hence, by Lemma 3.1, $q' = q^{6}$, then we deduce $q'^{2} = q^{12} > q^{6}$, which is impossible by Lemma 3.1

If $q^2 - q + 1 = q' \pm \sqrt{2q'} + 1$, then, $q(q - 1) = 2^{m+1}(2^m \pm 1)$. Therefore, $2^{m+1} \mid q$ or $2^{m+1} \mid (q - 1)$. If $2^{m+1} \mid q$, then $q = 2^{m+1}$, hence $q(q - 1) = 2^{m+1}(2^{m+1} - 1) > 2^{m+1}(2^m - 1)$, a contradiction. If $2^{m+1} \mid (q - 1)$, then $q - 1 = 2^{m+1} = 3k$, which is impossible.

Case(18): $P \cong {}^{2}F_{4}(q')$, where $q' = 2^{2m+1} > 2$. By Table 2, the odd order components of ${}^{2}F_{4}(q')$ are $q' \pm \sqrt{2q'^{3}} + q' \pm \sqrt{2q'} + 1$. Then $q^{2} - q + 1 = q' \pm \sqrt{2q'^{3}} + q' \pm \sqrt{2q'} + 1$, hence $q(q - 1) = 2^{m+1}(2^{3m+1} \pm 2^{2m+1} + 2^{m} \pm 1)$. From this equation we deduce $2^{m+1} \mid q$ or $2^{m+1} \mid (q - 1)$. If $2^{m+1} \mid q$, then $q = 2^{m+1}$, which implies $2^{m+1}(2^{m+1} - 1) = 2^{m+1}(2^{3m+1} \pm 2^{2m+1} + 2^{m} \pm 1)$, which is impossible. Similar to above case we can deduce $2^{m+1} \mid (q - 1)$, which is impossible.

Case(19): $P \cong A_{p-1}(q'), (p,q') \neq (3,2), (3,4)$. By Table 1, $q^2 - q + 1 = \frac{q'^p - 1}{(p,q'-1)(q'-1)}$. Then $q'^p \equiv 1(modD(q))$, therefore, by Lemma 3.1, we deduce $q'^p = q^6$. Since $p \ge 5$, then $q'^{\frac{p(p-1)}{2}} > q^6$, which is impossible by Lemma 3.1.

Case(20): $P \cong A_1(q')$, where q' is a power of 2. By Table 2, the odd order components of $A_1(q')$ are q' + 1 and q' - 1. If $q^2 - q + 1 = q' + 1$, we deduce q(q - 1) = q', which is impossible. If $q^2 - q + 1 = q' - 1$, then we deduce $q' \equiv 1(modD(q))$, therefore, by Lemma 3.1, we have $q' = q^6$. If $q' = q^6$, then $q^2 - q + 1 = q' - 1 = q^6 - 1 = (q^3 - 1)(q + 1)(q^2 - q + 1)$, from this we deduce $(q + 1)(q^3 - 1) = 1$, which is impossible, since $q \ge 4$.

Case(21): $P \cong {}^{2}A_{p}(q')$, where $(q'+1) \mid (p+1)$ and $(p,q') \neq (3,3), (5,2)$. By Table 1, the odd order components of ${}^{2}A_{p}(q')$ is $\frac{q'^{p}+1}{q'+1}$. For both cases we have $q'^{2p} \equiv 1(modD(q))$, therefore by Lemma 3.1, we deduce $q'^{2p} = q^{6}$, hence $q'^{p} = q^{3}$. Since $(q'+1) \mid (p+1)$ and $q' \geq 4$, since if q' = 3, then we have $q \equiv 0(mod3)$. Hence p > 5, and $q'^{p(p+1)/2} > q^{6}$,

which is impossible by Lemma 3.1, or $q'^{2p} = 27$ and q = 4, hence 2p = 3 and q' = 3, is impossible, since $4 = (q'+1) \mid (p+1)$, therefore $p \ge 3$ and $2p \ge 6$.

Case(22): $P \cong {}^{2}D_{n}(q')$, $n = 2^{m} \ge 4$. By Table 1, the odd order component of ${}^{2}D_{n}(q')$ is $\frac{q'^{n}+1}{(2,q+1)}$. If (2,q+1) = 1, then we have $q^{2}-q+1 = q'^{n}+1$, hence $q(q-1) = q'^{n}$, which is impossible. If (2, q + 1) = 2, then we have $q'^{2n} \equiv 1(modD(q))$, therefore, by Lemma 3.1, $q'^{2n} = q^6$, hence $q'^n = q^3$. If n > 4, then we have n - 1 > 3, therefore $q^{n(n-1)} > q^6$, which is impossible by Lemma 3.1. Now if n = 4, then $P \cong {}^2D_4(q')$, hence we have $q'^4 = q^3$. By Table 1, we have

 $|P| = q'^{12}(q'^2 - 1)(q'^4 - 1)(q'^6 - 1)(q'^4 + 1)/2 = q^6(q^3 - 1)(q^2 - q + 1)(q'^2 - 1)($ $\begin{aligned} |r| &= q \quad (q - 1)(q - 1)($ a contradiction, or $q'^{2n} = 27$ and q = 4, hence 2n = 3 is impossible.

Case(23): $P \cong C_n(q'), n = 2^m \ge 4$ or $P \cong B_n(q'), n = 2^m \ge 4, q'$ odd. In the above cases the odd order component is $\frac{q'^n+1}{2}$ and $q^2 - q + 1 = \frac{q'^n+1}{2}$, therefore, by Lemma 3.1, $q'^{2n} = q^6$, this implies $q'^n = q^3$, then we have $q'^{n^2} = q^{3n} \ge q^{12} > q^6$, which is impossible by Lemma 3.1 or $q^{2n} = 27$ and q = 4, hence 2n = 3 is impossible.

Case(24): $P \cong {}^{2}D_{p+1}(2)$, where $n \ge 2$ and $p = 2^{n} - 1$. By Table 2, the odd order components of ${}^{2}D_{p+1}(2)$ are $2^{p}+1$ and $2^{p+1}+1$. If $q^{2}-q+1=2^{p}+1$, then $q(q-1)=2^{p}$, which is impossible. If $q^{2}-q+1=2^{p+1}+1$, then $q(q-1)=2^{p+1}$, which is impossible.

Case(25): $P \cong C_2(q')$, q' is odd. By Table 1, the odd order component of $C_2(q')$ is $\frac{q'^{2}+1}{2}$. If $q^{2}-q+1 = \frac{q'^{2}+1}{2}$, then $q'^{2} = 2q^{2}-2q+1$. From this we deduce $|C_{2}(q')| = q'^{4}(q'^{2}-1)^{2}(q'^{2}+1)/2 = 4q^{2}(q-1)^{2}(q^{2}-q+1)(2q^{2}-2q+1)^{2}$. Since $|P| \mid |G|$, hence $(2q^2 - 2q + 1) | q^6(q - 1)^2(q + 1)^2(q^2 + q + 1)$. Since $(2q^2 - 2q + 1, q + 1) = (5, q - 1)$ $(2q^2 - 2q + 1, q^2 + q + 1) = 1$

 $(2q^2 - 2q + 1, q - 1) = 1$ (3) then we have $(2q^2 - 2q + 1) | 5^2$, this is not correct unless q = 4. If q = 4, then we have $|C_2(4)| = 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 17$ and $|G| = 2^{12} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 13$. Since $|C_2(4)| \mid |G|$, but $17 \nmid |G|$, a contradiction.

Case(26): $P \cong {}^{3}D_{4}(q')$. By Table 1, we have $q^{2} - q + 1 = q'^{4} - q'^{2} + 1$, then q(q-1) = $q^{\prime 2}(q^{\prime 2}-1)$, therefore $q=q^{\prime 2}$. From this we deduce that $|{}^{q} U_{q}(q')| = q'^{12}(q'^{6} - 1)(q'^{2} - 1)(q'^{4} + q'^{2} + 1)(q'^{4} - q'^{2} + 1) = q^{6}(q^{3} - 1)(q - 1)(q^{2} + q + 1)$ $(q^{2} - q + 1) = q^{6}(q - 1)^{2}(q^{2} + q + 1)^{2}(q^{2} - q + 1)$ Since $|{}^{3}D_{4}(q')| \mid |G|$, then we have $(q^{2} + q + 1)^{2} \mid |G|$. An easy calculation shows that

 $(q+1, q^2 + q + 1) = 1$

$$(q-1, q^2 + q + 1) = (3, q-1)$$

 $(q^2 + q + 1, q^2 - q + 1) = 1$ (4) Therefore $(q^2 + q + 1)^2 ||G| = q^6(q - 1)^2(q + 1)^2(q^2 + q + 1)(q^2 - q + 1)$ is impossible.

Case(27): $P \cong A_1(q')$, q' is not a power of 2. By Table 2, the odd order components of $A_1(q')$ are q' and (q'+1)/2 or (q'-1)/2. If $q^2 - q + 1 = q'$, then $|A_1(q')| = q'(q' + q')$ $1)(q'-1)/2 = (q^2-q+1)(q^2-q+2)q(q-1)/2$. Since $|P| \mid |G|$, we deduce $\frac{(q^2-q+2)}{2}$ $q^{6}(q-1)^{2}(q+1)^{2}(q^{2}-q+1)$. An easy calculation shows that;

- $(q^2 q + 2, q 1) = (2, q 1)$ $(q^2 q + 2, q + 1) = (4, q + 1)$
- $(q^2 q + 2, q^2 + q + 1) = (7, q^2 + 5)$

 $(q^2 - q + 2, q^2 + q + 1) = (7, q^2 + 5)$ (5) Therefore $(q^2 - q + 2)/2 \mid 2^6.7$, this implies $(q^2 - q + 2)/2 = 2^4.7$, then for this equation we have q = 11, which is impossible (q = 3k + 1). Also we have $(q^2 - q + 2)/2 \mid 2^6$. From this we deduce $q^2 - q + 2 = 2^5$, then q(q-1) = 6.5, therefore we have q = 6, which is impossible because q = 3k + 1.

If $4 \mid q'+1$, then $q^2 - q + 1 = q' - 1/2$, hence $q' = 2q^2 - 2q + 3$. From this we deduce $|A_1(q')| = 2(q^2 - q + 1)(q^2 - q + 2)(2q^2 - 2q + 3)$. Since $|P| \mid |G|$, so we have $(q^2 - q + 2) \mid q^6(q - 1)^2(q + 1)^2(q^2 + q + 1)$. By (4) we have $(q^2 - q + 2) \mid 2^6.7$, this implies $(q^2+q+2) = 2^5.7$, then for this equation we have q = 11, which is impossible (q = 3k+1). Also we have $(q^2 - q + 2) | 2^6$. From this we deduce $q^2 - q + 2 = 2^5$, then q(q + 1) = 6.5, therefore we have q = 6, which is impossible because q = 3k + 1.

If $4 \mid q'-1$, then $q^2 - q + 1 = q' + 1/2$, hence $q' = 2q^2 - 2q + 1$. From this we deduce $|A_1(q')| = 2q(q-1)(q^2 - q + 1)(2q^2 - 2q + 1)$. Since $|P| \mid |G|$, so $(2q^2 - 2q + 1) \mid q^6(q-1)^2(q+1)^2(q^2 + q + 1)$. Therefore, by (3) we have $2q^2 - 2q + 1 \mid 5^2$, then $2q^2 - 2q + 1 = 5$, this implies 2q(q - 1) = 4, then q = 2, a contradiction or $2q^2 - 2q + 1 = 25$, this implies 2q(q - 1) = 24, then q = 4 and q' = 25. Therefore $P \cong A_1(25)$. By [6], we have |Out(P)| = 4 and by Lemma 2.4, we have |G/K| | |Out(P)|. Now we set |G/K| = t and obtain t = 1, 2 or 4, and t|H||P| = |G|, then $t|H|(2^3.3.5^2.13) = 2^{12}.3^3.5^2.7.13$. Hence $|H| = 2^9.3^2.7/t$, where t = 1, 2 or 4. Now let $S \in Syl_7(H)$, then |S| = 7. Since H is nilpotent, therefore $S \leq G$ and by Lemma 2.3 it follows that $m_2 | |S| - 1$, i.e., 13 | 7 - 1 which is impossible.

Case(28): $P \cong {}^{2}A_{p-1}(q')$. By Table 1, $q^{2} - q + 1 = \frac{q'^{p}+1}{(q'+1)(p,q'+1)}$. Then $q'^{2p} \equiv 1(modD(q))$, therefore by Lemma 3.1, we deduce $q'^{2p} = q^{6}$, hence $q'^{p} = q^{3}$. Now if p > 5, we have $q^{p(p-1)/2} > q^{6}$, which is impossible by Lemma 3.1. If p = 5, by Table 1, $q^{2} - q + 1 = \frac{q'^{5}+1}{(q'+1)(5,q'+1)}$ and $q'^{5} = q^{3}$. Now if (5,q'+1) = 1, then we have $q^{2} - q + 1 = (q^{3} + 1)/(q + 1) = (q'^{5} + 1)/(q' + 1) = (q^{3} + 1)/(q' + 1)$, then we deduce q = q', which is impossible. Therefore, (5,q'+1) = 5, then we have $q^{2} - q + 1 = (q^{3} + 1)/(q + 1) = (q'^{5} + 1)/(q' + 1) = 5$, then we have Therefore, (5, q' + 1) = 5, then we have $q^2 - q + 1 = (q^3 + 1)/(q + 1) = \frac{q'^5 + 1}{5(q' + 1)} = \frac{q^3 + 1}{5(q' + 1)}$, then we have (q + 1) = 5(q' + 1) = 5q' + 5, hence q = 5q' + 4, which is impossible (q is power of a prime number). If p = 3, then, by Table 1, we have $q^2 - q + 1 = \frac{(q'^3 + 1)}{(q' + 1)(3,q' + 1)}$. Therefore, by Lemma 3.1, $q'^6 \equiv 1(modD(q))$, then $q'^6 = q^6$. From this we deduce that q = q', then $q^2 - q + 1 = (q^3 + 1)/(q + 1) = \frac{(q'^3 + 1)}{(q' + 1)(3,q' + 1)} = \frac{(q^3 + 1)}{(q + 1)(3,q + 1)}$, then (q + 1)(3, q + 1) = (q + 1). Therefore (3, q + 1) = 1and $|^2A_2(q)| = q^3(q + 1)(q^2 - 1)(q^3 + 1)/(q + 1) = 3(q + 1)^2(q - 1)(q^3 - 1)(q^3$ and $|{}^{2}A_{2}(q)| = q^{3}(q+1)(q^{2}-1)(q^{3}+1)/(q+1) = q^{3}(q+1)^{2}(q-1)(q^{2}-q+1)$. By [6], we have |Out(P)| = f, such that $q^2 = r^f$, where r is a prime number. By Lemma 2.4, we have |G/K| | |Out(P)|. Now we set |G/K| = t and obtain t|H||P| = |G|, then $t|H| = q^3(q-1)(q^2+q+1)$ and $t \mid f$. Since q = 3k+1 we have q-1 = 3k. If t = 1, then $|H| = q^3(q-1)(q^2+q+1)$. We have $(q-1,q^2+q+1) = 3$, therefore if we set $S \in Syl_3(H)$, then $|S| = 3(q-1)_3$. Since H is nilpotent, therefore $S \leq G$ and by Lemma 2.3 it follows that $m_2 \mid |S| = 1$, i.e., $q^2 = q + 1 \mid 3(q-1)_3 = 1$ which is impossible.

P	Restrictions on P	m_1	m_2
A_n	6 < n = p, p + 1, p + 2	n!/2p	p
	one of $n, n-2$		
	is not a prime		
$A_{p-1}(q)$	$(p,q) \neq (3,2), (3,4)$	$q^{\frac{p(p-1)}{2}}\prod_{i=1}^{p-1}(q^i-1)$	$\frac{q^p-1}{(q-1)(p,q-1)}$
$A_p(q)$	$(q-1) \mid (p+1)$	$q^{\frac{p(p+1)}{2}}(q^{p+1}-1)\prod_{i=2}^{p-1}(q^{i}-1)$	$\frac{q^p-1}{q-1}$
$^{2}A_{p-1}(q)$		$q^{\frac{p(p-1)}{2}}\prod_{i=1}^{p-1}(q^i-(-1)^i)$	$\frac{q^p+1}{(q+1)(p,q+1)}$
$^2A_p(q)$	$(q+1) \mid (p+1)$	$q^{\frac{p(p+1)}{2}}(q^{p+1}-1)\prod_{i=2}^{p-1}(q^{i}-1)$	$\frac{q^p+1}{q+1}$
	$(p,q) \neq (3,3), (5,2)$		
$^{2}A_{3}(2)$		$2^{6}.3^{4}$	5
$B_n(q)$	$n = 2^m \ge 4, q \text{ odd}$	$q^{n^2}(q^n-1)\prod_{i=1}^{n-1}(q^{2i}-1)$	$\frac{q^n+1}{2}$
$B_p(3)$		$3^{p^2}(3^p+1)\prod_{i=1}^{p-1}(3^{2i}-1)$	$\frac{3^{p}-1}{2}$
$C_n(q)$	$n = 2^m \ge 2, q \text{ odd}$	$q^{n^{2}}(q^{n}-1)\prod_{i=1}^{n-1}(q^{2i}-1)$	$\frac{q^n+1}{(2,q-1)}$
$C_p(q)$	q = 2, 3	$q^{p^2}(q^p+1)\prod_{i=1}^{p-1}(q^{2i}-1)$	$\frac{q^p-1}{(2,q-1)}$
$D_p(q)$	$p \geqslant 5, q = 2, 3, 5$	$q^{p(p-1)}\prod_{i=1}^{p-1}(q^{2i}-1)$	$\frac{q^p-1}{q-1}$
$D_{p+1}(q)$	q = 2, 3	$\frac{1}{(2,q-1)}q^{p(p+1)}(q^p+1)$	$\frac{q^p-1}{(2,q-1)}$
		$(q^{p+1}-1)\prod_{i=1}^{p-1}(q^{2i}-1)$	
$^{2}D_{n}(q)$	$n = 2^m \ge 4$	$q^{n(n-1)}\prod_{i=1}^{n-1}(q^{2i}-1)$	$\frac{q^n+1}{(2,q+1)}$
$^{2}D_{n}(2)$	$n = 2^m + 1 \ge 5$	$2^{n(n-1)}(2^n+1)(2^{n-1}-1)$	$2^{n-1} + 1$
		$\prod_{i=1}^{n-2} (2^{2i} - 1)$	
$^{2}D_{p}(3)$	$5\leqslant p\neq 2^m+1$	$3^{p(p-1)}\prod_{i=1}^{p-1}(3^{2i}-1)$	$\frac{3^p+1}{4}$
$^{2}D_{n}(3)$	$9 \leqslant 2^m + 1 \neq p$	$\frac{\frac{1}{2}3^{n(n-1)}(3^n+1)(3^{n-1}-1)}{(3^{n-2}(2^{2i}-1))}$	$\frac{3^{n-1}+1}{2}$
		$\prod_{i=1}^{n-2} (3^{2i} - 1)$	2
$G_2(q)$	$2 < q \equiv \epsilon \pmod{3}, \epsilon = \pm 1$	$\frac{q^{0}(q^{3}-\epsilon)(q^{2}-1)(q+\epsilon)}{12(6-1)(2-1)(4-2-1)(q+\epsilon)}$	$q^2 - \epsilon q + 1$
$^{3}D_{4}(q)$	11	$q^{12}(q^0-1)(q^2-1)(q^4+q^2+1)$	$q^4 - q^2 + 1$
$F_4(q)$	q odd	$q^{2*}(q^{\circ}-1)(q^{\circ}-1)^{2}(q^{*}-1)$	$q^{2} - q^{2} + 1$
$-F_4(2)$		$2^{-1}.3^{\circ}.3^{-1}$	13
$E_6(q)$		$\begin{array}{c} q^{50}(q^{12}-1)(q^{5}-1)(q^{5}-1)\\ (q^{5}-1)(q^{3}-1)(q^{2}-1) \end{array}$	$\frac{q-q-1}{(3,q-1)}$
$\frac{2}{2}E(z)$	~ > 9	(q - 1)(q - 1)(q - 1)	$q^6 - q^3 + 1$
$L_6(q)$	q > 2	$\frac{q^{2}(q^{2}-1)(q^{2}-1)(q^{2}-1)}{(a^{5}+1)(a^{3}+1)(a^{2}-1)}$	(3,q+1)
M12		$2^{6}.3^{3}.5$	11
J_2		$2^{7}.3^{3}.5^{2}$	7
Ru		$2^{14}.3^{3}.5^{3}.7.13$	29
He		$2^{10}.3^3.5^2.7^3$	17
McL		$2^7.3^6.5^3.7$	11
Co ₁		$2^{21}.3^9.5^4.7^2.11.13$	23
Co ₃		$2^{10}.3^7.5^3.7.11$	23
Fi_{22}		$2^{17}.3^{9}.5^{2}.7.11$	13
HN		$2^{14}.3^{6}.5^{6}.7.11$	19

Table 1.: The order components of finite simple groups P with s(P) = 2

		· ·	•	
Р	Restrictions on P	m_1	m_2	m_3
A_n	n > 6, n = p,	$\frac{n!}{2n(n-2)}$	p	p-2
	p-2 are primes	()		
$A_1(q)$	4 (q+1)	q + 1	q	$\frac{q-1}{2}$
$A_1(q)$	4 (q-1)	q - 1	q	$\frac{q\bar{+}1}{2}$
$A_1(q)$	$2 \mid q$	q	q + 1	q - 1
$A_2(2)$		8	3	7
$^{2}A_{5}(2)$		$2^{15}.3^{6}.5$	7	11
$^{2}D_{p}(3)$	$5\leqslant p=2^m+1$	$2.3^{p(p-1)}(3^{p-1}-1)$	$\frac{3^{p-1}+1}{2}$	$\frac{3^p+1}{4}$
		$\prod_{i=1}^{p-2} (3^{2i} - 1)$	2	1
$^{2}D_{p+1}(2)$	$n \ge 2, p = 2^n - 1$	$2^{p(p+1)}(2^p-1)$	$2^p + 1$	$2^{p+1} + 1$
1		$\prod_{i=1}^{p-1} (2^{2i} - 1)$		
$G_2(q)$	$q \equiv 0(mod3)$	$q^6(q^2-1)^3$	$q^2 - q + 1$	$q^2 + q + 1$
$^{2}G_{2}(q)$	$q = 3^{2m+1} > 3$	$q^3(q^2-1)$	$q - \sqrt{3q} + 1$	$q + \sqrt{3q} + 1$
$F_4(q)$	q even	$q^{24}(q^6-1)^2(q^4-1)^2$	$q^4 + 1$	$q^4 - q^2 + 1$
$^{2}F_{4}(q)$	$q = 2^{2m+1} > 2$	$q^{12}(q^4-1)q^3+1)$	$q^2 - \sqrt{2q^3} +$	$q^2 + \sqrt{2q^3} +$
			$q - \sqrt{2q} + 1$	$q + \sqrt{2q} + 1$
$E_7(2)$		$2^{36}.3^{11}.5^2.7^3.11.13$	73	127
		17.19.31.43		
$E_7(3)$		$2^{23}.3^{63}.5^2.7^3.11^2.13^2$	757	1093
		19.37.41.61.73.547		
M_{11}		$2^4.3^2$	5	11
M_{23}		$2^7.3^2.5.7$	11	23
M_{24}		$2^{10}.3^3.5.7$	11	23
J_3		$2^{7}.3^{5}.5$	17	19
HiS		$2^9.3^2.5^3$	7	11
Suz		$2^{13}.3^7.5^2.7$	11	13
Co_2		$2^{18}.3^6.5^3.7$	11	23
Fi_{23}		$2^{18}.3^{13}.5^2.7.11.13$	17	23
F_3		$2^{15}.3^{10}.5^3.7^2.13$	19	31
F_2		$2^{24}.3^{13}.5^{6}.7^{2}.$	31	47
		11.13.17.19.23		

Table 2.: The order components of finite simple groups P withs(P) = 3

$_{1}$ Table 5 The order components of mine simple groups 1 with $J(1) > 0$									
P	Restrictions	m_1	m_2	m_3	m_4	m_5	m_6		
	on P								
$A_2(4)$		2^{6}	3	5	7				
$^{2}B_{2}(q)$	$q = 2^{2m+1} > 2$	q^2	q-1	$q - \sqrt{2q}$	$q + \sqrt{2q}$				
				+1	+1				
$^{2}E_{6}(2)$		$2^{36}.3^9.5^2.7^2.11$	13	17	19				
$E_8(q)$	$q \equiv 2, 3$	$q^{120}(q^{20}-1)(q^{18}-1)$	$\frac{q^{10}-q^5+1}{q^2-q+1}$	$\frac{q^{10}+q^5+1}{q^2+q+1}$	$q^8 - q^4$				
	(mod5)	$(q^{14}-1)(q^{12}-1)$	1 1	1 1 1	+1				
		$(q^{10}-1)(q^8-1)$							
		$(q^4+1)(q^4+q^2+1)$							
M_{22}		$2^{7}.3^{2}$	5	7	11				
J_1		$2^3.3.5$	7	11	19				
O'N		$2^9.3^4.5.7^3$	11	19	31				
LyS		$2^8.3^7.5^6.7.11$	31	37	67				
Fi'_{24}		$2^{21}.3^{16}.5^2.7^3.11.13$	17	23	29				
F_1		$2^{46}.3^{20}.5^{9}.7^{6}.11^{2}.13^{3}$	41	59	71				
		17.19.23.29.31.47							
$E_8(q)$	$q \equiv 0, 1, 4$	$q^{120}(q^{18}-1)(q^{14}-1)$	$\frac{q^{10}-q^5+1}{a^2-a+1}$	$\frac{q^{10}+q^5+1}{a^2+a+1}$	$q^8 - q^4$	$\frac{q^{10}+1}{q^2+1}$			
	(mod5)	$(q^{12}-1)^2(q^{10}-1)^2$	q - q + 1	q + q + 1	+1	9 -1			
		$(q^{\hat{8}}-1)^2(q^{\hat{4}}+q^2+1)$							
J_4		$2^{21}.3^3.5.7.11^3$	23	29	31	37	43		

Table 3 · The order components of finite simple groups P with s(P) > 3

References

- G. Y. Chen, A new characterization of sporadic simple groups, Algebra Colloq. 3, No. 1, 49-58(1996).
- [2] G. Y. Chen, On Frobenius and 2-Frobenius group, Jornal of Southwest China Normal University, 20(5), 485-487(1995).(in Chinese)
- [3] G. Y. Chen, A new characterization of $PSL_2(q)$, Southeast Asian Bull. Math., 22(3), 257-263(1998).
- [4] G. Y. Chen, Characterization of ${}^{3}D_{4}(q)$, Southeast Asian Bull. Math., 25, 389-401(2001). [5] G. Y. Chen and H.Shi, ${}^{2}D_{n}(3)(9 \le n = 2^{m} + 1 \text{ not a prim})$ can be characterized by its order components, J. Appl. Math. Comput., 19(1-2), 353-362(2005).
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon [6]Press, Oxford 1985.
- [7] M.R.Darafsheh and A.Mahmiani, A quantitative characterization of the linear groups $L_{p+1}(2)$, Kumamoto J. Math., 20, 33-50(2007).
- [8] M.R.Darafsheh, Characterizability of the group ${}^{2}D_{p}(3)$ by its order components, where $p \ge 5$ is a prime number not of the form $2^m + 1$, Acta Math. Sin., (Engl. Ser) 24(7), 1117-1126(2008). M.R.Darafsheh and A.Mahmiani, A characterization of the group ${}^2D_n(2)$, where $n = 2^m + 1 \ge 5$, J. Appl.
- [9] Math. Comput., 31(1-2), 447-457(2009).
- [10] M.R.Darafsheh, Characterization of the groups $D_{p+1}(2)$ and $D_{p+1}(3)$ using order components, J. Korean Math. Soc., 47(2), 311-329(2010).
- [11] M.R.Darafsheh and M. Khademi, Characterization of the groups $D_p(q)$ by order components, where $p \ge 5$ is a prime and q = 2, 3 or 5, (manuscript).
- [12] A. Iranmanesh, S.H. Alavi and B. Khosravi, A characterization of PSL(3, q), where q is an odd prime power, J. Pure Appl. Algebra, 170(2-3), 243-254(2002).
- [13] A. Iranmanesh, S.H. Alavi and B. Khosravi, A characterization of PSL(3,q) for $q = 2^n$, Acta Math. Sin. (Engl. Ser.), 18(3), 463-472(2002).
- [14] A. Iranmanesh, B. Khosravi and S.H. Alavi, A characterization of PSU(3,q) for q > 5, South Asian Bull. Math., 26(2), 33-44(2002).
- [15] M. Khademi, Characterizability of finite simple groups by their order components: a summary of resoults, International Journal of Algebra, vol. 4, no.9, 413-420(2010).
- [16]Behrooz Khosravi and Bahnam Khosravi, A characterization of $E_6(q)$, Algebras, Groups and Geometries, 19, 225-243(2002).

- [17] Behrooz Khosravi and Bahnam Khosravi, A characterization of ${}^{2}E_{6}(q)$, Kumamoto J. Math., 16, 1-11(2003). [18] A. Khosravi and B. Khosravi, A characterization of ${}^{2}D_{n}(q)$, where $n = 2^{m}$, Int. J. Math., Game theory and
- algebra, 13, 253-265(2003). [19]
- A. Khosravi and B. Khosravi, A new characterization of PSL(p,q), Comm. Alg., 32, 2325-2339(2004).
- [20]Bahman Khosravi, Behnam Khosravi and Behrooz Khosravi, A new characterization of PSU(p,q), Acta Math. Hungar., 107(3), 235-252(2005).
- [21]A. Khosravi and B. Khosravi, r-recognizability of $B_n(q)$ and $C_n(q)$, where $n = 2^m \ge 4$, Journal of pure and applied alg., 199, 149-165(2005).
- [22] Behrooz Khosravi, Bahman Khosravi and Behnam Khosravi, Characterizability of PSL(p+1,q) by its order components, Houston Journal of Mathematics, 32(3), 683-700(2006). [23] A. Khosravi and B. Khosravi, Characterizability of PSU(p+1,q) by its order components, Rocky mountain
- J. Math., 36(5), 1555-1575(2006).
- [24] A.S.Kondratev, On prime graph components of finite simple groups, Mat. Sb. 180, No. 6, 787-797, (1989).
- [25] H. Shi and G.Y. Chen, ${}^{2}D_{p+1}(2)(5 \le p \ne 2^{m} 1)$ can be characterized by its order components, Kumamoto J. Math., 18, 1-8(2005).
- J.S.Williams, Prime graph components of finite groups, J. Alg. 69, No.2,487-513(1981). [26]
- [27] K.Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys.3, no. 1, 265-284 (1892).