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Abstract. In this paper, we investigate the relation between L-projections and conditional
expectations on subalgebras of the Fourier-Stieltjes algebra B(G), and we will show that
compactness of G plays an important role in this relation.
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1. Introduction

The concept of conditional expectation is fundamental for a large part of proba-
bility theory. Let (X,S, µ) be a probability space and T a σ-subalgebra of S. The
conditional expectation operator ET : L1(X,S, µ)→ L1(X, T , µ) is determined by
the relation

∫
T
ET (f) dµ =

∫
T
f dµ for T ∈ T and all f ∈ L1(X,S, µ). Existence

and uniqueness of ET follows from the Radon-Nikodym theorem. In [2], Douglas
gave a complete characterization of norm one projections on L1(X,S, µ) related
closely to the notion of conditional expectation.

The notion of conditional expectation ( or quasi-expectation in [9] ) is defined
for any algebra. Tomiyama in [11], proved that if A is a unital C∗-algebra and
P : A→ A is a norm one projection with P (1) = 1 and P (A) is a C∗-subalgebra of
A, then P is a conditional expectation. In view of this fundamental theorem, A.T.-
M. Lau and R.J. Loy in [7], explored the relation between norm one projections
and conditional expectations on Banach algebras related to locally compact groups.

In this paper, we investigate the relation between L-projections and conditional
expectations on B(G) and its certain subalgebras, for instance A∗(G), and we will
show that the compactness of G plays an important role in this relation.
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2. Preliminaries

Let X be a Banach space and P : X → X be a projection, i.e. P is a bounded
idempotent operator, then P is called L-projection if ‖x‖ = ‖Px‖+ ‖(I −P )x‖ for
all x ∈ X. It is clear that if P is an L-projection then ‖P‖ = 1.
Let A be an algebra. An idempotent operator P : A → A is a conditional ex-
pectation, if P (b1ab2) = b1P (a)b2 for all b1, b2 ∈ P (A) and a ∈ A. The following
proposition is a part of [7, Proposition 2.1], and its proof is a straightforward
calculation.

Proposition 2.1 Let A be a Banach algebra and P : A → A an idempotent
operator such that P (A) is a subalgebra of A, then the following statements are
equivalent:

(1) P is a conditional expectation.
(2) If b1, b2 ∈ P (A) and a ∈ kerP then P (b1ab2) = 0.

In [3], P. Eymard introduced B(G) and A(G), then proved that A(G) is a closed
ideal in B(G). In [6], M. Ilie and N. Spronk introduced A∗(G), the spine of Fourier-
Stieltjes algebra, as a subalgebra of B(G). We give a brief introduction of A∗(G).
Let G be a locally compact group. We will denote the topology on G and the almost
periodic compactification of G by τG and Gap respectively. Let the continuous
homomorphism ηap : G→ Gap be the compactification homomorphism. It is clear
that τap := η−1ap (τGap) is a group topology on G. Suppose that τ is a group topology
on G such that there are locally compact group Gτ and continuous homomorphism
ητ : G→ Gτ with the following three properties:

(1) ητ (G) = Gτ

(2) τ = η−1τ (τGτ
)

(3) τap ⊆ τ .

So Gτ is unique up to topological isomorphism between locally compact groups.
The set of such τ is shown by Tnq(G). It is trivial that τG, τap ∈ Tnq(G). If τ1, τ2 ∈
Tnq(G), we let τ1∨τ2 denote the smallest group topology on G which includes τ1 and
τ2. By [6], we know that τ1∨τ2 ∈ T (G). Under this operation Tnq(G) is a semigroup
in which all elements are idempotent. From [3], we know that Aτ (G) := A(Gτ )◦ητ
is a closed subalgebra of B(G) such that A(Gτ ) is isomorphic to Aτ (G) as Banach
algebras.

Theorem 2.2 If τ1, τ2 ∈ Tnq(G) and τ1 6= τ2, then we have

Aτ1(G)Aτ2(G) ⊆ Aτ1∨τ2(G) , Aτ1(G) ∩Aτ2(G) = {0}

Proof . This follows from [6, Lemma 3.4 and Proposition 3.1]. �

Definition 2.3 We let

A∗(G) =

τ∈Tnq(G)⊕

1

Aτ (G) (in the sense of Banach spaces)

and call this space the spine of B(G), it is clear that A∗(G) is a closed subalgebra
of B(G). We refer the reader to [6], for more details about A∗(G).
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3. L-projections on B(G)

Let G be a locally compact group. By [7, Proposition 3.8], if every positive contrac-
tive projection P : B(G) → B(G) whose range is a ∗-subalgebra, is a conditional
expectation , then G is compact. Now, we prove a similar result for L-projections.

Proposition 3.1 Let G be a locally compact group. If every L-projection P :
B(G)→ B(G) whose range is a ∗-subalgebra, is a conditional expectation, then G

is compact.

Proof . By [8, Theorem 2.1] or [1, Theorem 3.18, Corollary 3.13], there is a unique
continuous unitary representation π of G such that B(G) = A(G)⊕Aπ(G), where

Aπ(G) = span {〈π(g)ξ, η〉 ; ξ, η ∈ Hπ , g ∈ G}

Furthermore this is an ℓ1-direct sum, that is if f ∈ B(G) then there are unique
elements fρ ∈ A(G) and fπ ∈ Aπ(G) such that f = fρ+ fπ and ‖f‖ = ‖fρ‖+‖fπ‖.
Define P : B(G)→ A(G) ; f 7→ fρ , since

‖f‖ = ‖fρ‖+ ‖fπ‖ = ‖P (f)‖+ ‖(I − P )(f)‖

P is an L-projection. By [3, Proposition 3.8], A(G) is a ∗-subalgebra of B(G). So
P is a conditional expectation by the hypothesis. If f ∈ A(G) and g ∈ Aπ(G),
then P (fgf) = 0 by Proposition 2.1, and since A(G) is an ideal in B(G), then
P (fgf) = fgf . Consequently

∀f ∈ A(G) , ∀g ∈ Aπ(G) : f2g = 0 (1)

Let g ∈ Aπ(G). By (1), for each x ∈ G and each f ∈ A(G), we have f(x)g(x) = 0.
But from [3, Lemma 3.2], we know that A(G) separates the points of G. Thus g = 0
and Aπ(G) = {0}. Therefore B(G) = A(G), so G is compact. �

We prove the preceding proposition for A∗(G).

Proposition 3.2 Let G be a locally compact group. If every L-projection P :
A∗(G) → A∗(G) whose range is a ∗-subalgebra, is a conditional expectation, then
G is compact.

Proof . Suppose G is not compact. Since G is not topologically isomorphic with
the compact group Gap, by [12, Theorem 3] we know that A(G) 6= Aτap

(G), and
by Theorem 2.2, A(G) ∩ Aτap

(G) = {0}. Let τ1, τ2 ∈ Tnq(G) and τ1 6= τap . Thus
τ1 ∨ τ2 6= τap . So by Theorem 2.2, we have :

Aτ1∨τ2(G) ∩Aτap
(G) = {0} , Aτ1(G)Aτ2(G) ⊆ Aτ1∨τ2(G).

Therefore the Banach algebra

A :=

τap 6=τ∈Tnq(G)⊕

1

Aτ (G)

is an ideal in A∗(G). By [3, Proposition 3.8], Aτ (G) ∼= A(Gτ ). So the Banach
algebra A is a ∗-subalgebra of A∗(G) and we have A∗(G) = A ⊕1 Aτap

(G). Let
P : A∗(G) → A be the canonical projection. Clearly P is an L-projection and
P (A∗(G)) = A is a ∗-subalgebra of A∗(G). So by the hypothesis, P is a conditional
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expectation. Since A(G) ⊆ A, then A separates the points of G, and since A is
an ideal in A∗(G), by the same argument in the preceding proposition, we have
Aτap

(G) = {0}. Since Aτap
(G) ∼= A(Gap) = B(Gap), the constant function 1G , is

in the Aτap
(G) which is a contradiction. So G is compact. �

The following theorem strengthens the conclusions of two preceding propositions.

Theorem 3.3 Let G be a locally compact group, and A is a subalgebra of B(G).

(1) Suppose that A(G) ( A. If every L-projection P : A→ A whose range is a
∗-subalgebra, is a conditional expectation, then G is compact and A = B(G).

(2) Let A is a ∗-subalgebra and Aτap
(G) ( A. If every L-projection P : A →

A whose range is a ∗-subalgebra, is a conditional expectation, then G is
compact and A = B(G).

(3) Let Aτap
(G) ( A, if every L-projection P : A → A whose range is a

subalgebra, is a conditional expectation, then G is compact and A = B(G).

Proof . 1) As we discussed in the proof of Proposition 3.1, B(G) = A(G) ⊕1

Aπ(G). Suppose that G is not compact. So A(G) 6= B(G) and Aπ(G) 6= {0}. Let
B := A ∩ Aπ(G). Since A(G) ( A, then B 6= {0} and A = A(G) ⊕1 B. The
canonical projection P : A→ A(G) is an L-projection with range A(G). So P is a
conditional expectation. Similar to the proof of Proposition 3.1, B = {0} which is
a contradiction. So G is compact and consequently A(G) = A = B(G).

2) By [10], B(G) = APIF (G) ⊕1 Aτap
(G), where APIF (G) is a closed ideal in

B(G), (note that in [10], Aτap
(G) was shown by AF (G)). If G is not compact, as it

was shown in the Proposition 3.2, A(G)∩Aτap
(G) = {0} and by [10, p. 681, Remark

(2)], we know that A(G) ⊆ APIF (G). Since B(G) and Aτap
(G) are closed under

the complex conjugation, so is APIF (G), i.e. APIF (G) is a ∗-subalgebra of B(G).
Let B := A ∩APIF (G), since A and APIF (G) are ∗-subalgebras of B(G), then B

is a ∗-subalgebra, and since Aτap
(G) ( A, then B 6= {0}. Now, let P : A → B be

the canonical projection. Since A = B⊕1Aτap
(G), then P is an L-projection whose

range is a ∗-subalgebra. So P is a conditional expectation, by the hypothesis. Since
APIF (G) is an ideal and A is a subalgebra of B(G), then B is an ideal in A. Hence
we have:

∀f ∈ B , ∀g ∈ A : f2g = fgf = P (fgf) = 0 (1)

Since Aτap
(G) ∼= A(Gap) = B(Gap), the constant function 1G , is in Aτap

(G). By
taking g = 1G in the relation (1), we have f = 0 for every f ∈ B, i.e. B = {0}, and
this is a contradiction. Hence G is compact and Aτap

(G) = A = B(G).

3) Proof of this part is similar to the proof of part (2), but it should be noted
that since A is not necessarily closed under the complex conjugation, then B is
just a subalgebra.

�

Corollary 3.4 According to the part (2) of the preceding theorem, if every L-
projection P : Bρ(G) → Bρ(G) whose range is a ∗-subalgebra of Bρ(G), is a con-
ditional expectation, then G is compact.

Lemma 3.5 Let G be an abelian locally compact group. G is compact and 0-
dimentional iff Ĝ is a discrete torsion group.

Proof . Let G be a compact 0-dimentional group. Since G is compact, Ĝ is discrete
by [5, Theorem 23.17]. Let Φ ∈ Ĝ, by [5, Corollary 24.18], there is a compact
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subgroup H of Ĝ that contains Φ. Since Ĝ is discrete, then H is finite and therefore
Φ is of finite order. Consequently Ĝ is a torsion group. Conversely, let Ĝ be a
discrete torsion group. By [5, Theorem 23.17 , 24.8], G is compact, and since Ĝ is
a torsion group, G is 0-dimentional by [5, Theorem 24.21 , 24.8]. �

Let G be an abelian locally compact group. By Bochner’s theorem, [4, Theorem

33.3], the ∗-Banach algebras M(Ĝ) and B(G), are isomorphic. Now, by the pre-
ceding lemma and [7, Theorem 3.6], we have the following corollary. See also [7,
Corollary 3.12].

Corollary 3.6 Let G be an abelian locally compact group. The following four
statements are equivalent:

(1) G is a compact 0-dimentional group.

(2) Ĝ is a discrete torsion group.
(3) Each L-projection P : B(G) → B(G) whose range is a subalgebra, is a

conditional expectation.
(4) Each L-projection P : B(G) → B(G) whose range is a subalgebra and

P (1G) = 1G, is a conditional expectation.
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