Linear and Topological Algebra
Vol. 03, No. 01, 2014, 1-6

# On the commuting graph of non-commutative rings of order $p^{n} q$ 

E. Vatandoost ${ }^{\text {a* }}$, F. Ramezani ${ }^{\text {a }}$ and A. Bahraini ${ }^{\text {b }}$<br>${ }^{a}$ Faculty of Basic Science, Imam Khomeini International University, Qazvin, Iran.<br>${ }^{\mathrm{b}}$ Department of Mathematics, Islamic Azad University, Central Tehran Branch, Tehran, Iran.

Received 17 May 2014; revised 19 July 2014; accepted 4 August 2014.


#### Abstract

Let $R$ be a non-commutative ring with unity. The commuting graph of $R$ denoted by $\Gamma(R)$, is a graph with vertex set $R \backslash Z(R)$ and two vertices $a$ and $b$ are adjacent iff $a b=b a$. In this paper, we consider the commuting graph of non-commutative rings of order $p q$ and $p^{2} q$ with $Z(R)=0$ and non-commutative rings with unity of order $p^{3} q$. It is proved that $C_{R}(a)$ is a commutative ring for every $0 \neq a \in R \backslash Z(R)$. Also it is shown that if $a, b \in R \backslash Z(R)$ and $a b \neq b a$, then $C_{R}(a) \cap C_{R}(b)=Z(R)$. We show that the commuting graph $\Gamma(R)$ is the disjoint union of $k$ copies of the complete graph and so is not a connected graph.


(c) 2014 IAUCTB. All rights reserved.

Keywords: Commuting graph; non-commutative ring; non-connected graph; algebraic graph.
2010 AMS Subject Classification: 05C25, 05C50.

## 1. Introduction

Let $G$ be a simple graph on vertex set $V(G)$ and edge set $E(G)$. A graph is said to be connected if each pair of vertices are joined by a walk. The number of edges of the shortest walk joining $v$ and $u$ is called the distance between $v$ and $u$ and denoted by $d(v, u)$. The maximum value of the distance function in a connected graph $G$ is called the diameter of $G$ and denoted by $\operatorname{diam}(G)$. If $G$ is a graph, then the complement of $G$, denoted by $G^{c}$ is a graph with vertex set $V(G)$ in which two vertices are adjacent if and only if they are not adjacent in $G$. The complete graph $K_{n}$ is the graph with

[^0]$n$ vertices in which each pair of vertices are adjacent. We show $G=t K_{m}$ for disjoint union of $t$ complete graph of size $m$. $G$ is complete $t$-partite graph if there is a partition $V_{1} \cup V_{2} \cup \ldots \cup V_{t}=V(G)$ of the vertex set, such that $v_{i}$ and $v_{j}$ are adjacent if and only if $v_{i}$ and $v_{j}$ are in different parts of the partition. If $\left|V_{k}\right|=n_{k}$, then $G$ is denoted by $K_{n_{1}, n_{2}, \ldots, n_{t}}$.

Let $R$ be a non-commutative ring with unity 1 and let $Z(R)$ denotes the center of $R$. We are assuming $1 \neq 0$. A ring with unity is a division ring if every non-zero element $a$ has a multiplicative inverse (that is, an element $x$ with $a x=x a=1$ ). If $X$ is either an element or a subset of the ring $R$, then $C_{R}(X)$ denotes the centralizer of $X$ in $R$. We introduce a graph with vertex set $R \backslash Z(R)$ and join two vertices $a$ and $b$ if $a \neq b$ and $a b=b a$. This graph is called the commuting graph of $R$ and denoted by $\Gamma(R)$.

Akbari et.al [3] determined the diameters of some induced subgraphs of $\Gamma\left(M_{n}(D)\right)$, for a division ring $D$ and $n \geqslant 3$. Also they showed that if $F$ is an algebraically closed field or $n$ is a prime number and $\Gamma\left(M_{n}(F)\right)$ is a connected graph, then diameter of $\Gamma\left(M_{n}(F)\right)$ is equal to 4. Akbari and Raja [4] showed that if $A, N, F$ and $T$ are the sets of all non-invertible, nilpotent, idempotent and involutions matrices over division ring $D$, respectively, then $\Gamma(A), \Gamma(N), \Gamma(F)$ and $\Gamma(T)$ are connected graphs. In [1], two rings with distinct cardinality and the same commuting graphs are introduced. In [2], it has been shown that for a non-commutative ring $R$, the graph $\Gamma(R)^{c}$ is Hamiltonian and $\partial\left(\Gamma(R)^{c}\right) \leqslant 2$. In [9], it has been shown that for a non-commutative ring $R$, the diameter of $\Gamma(R)^{c}$ is one if and only if $R$ is the non-commutative ring on 4 elements. Also they characterized all rings where the complements of their commuting graphs are planar.

In this work, we consider the commuting graph of non-commutative rings of order $p q$ and $p^{2} q$ with $Z(R)=0$ and non-commutative rings with unity of order $p^{3} q$. We show that for $0 \neq a \in R \backslash Z(R), C_{R}(a)$ is a commutative ring. Also $C_{R}(a) \cap C_{R}(b)=Z(R)$ for $0 \neq a, b \in R \backslash Z(R)$ and $a b \neq b a$. The main result is that the commuting graph $\Gamma(R)$ is the disjoint union of some copies of complete graphs.

## 2. Commuting graph of non-commutative rings

Throughout this paper, $p$ and $q$ are distinct prime numbers.
Lemma 2.1 [8] Let $R$ be a finite ring of order $m$ with a unity. If $m$ has a cube free factorization, then $R$ is a commutative ring.
As our first result, we prove the following Lemma.

Lemma 2.2 Let $R$ be a non-commutative ring and $Z(R) \neq(0)$. Then $[R: Z(R)]$ is not prime.

Proof. Let $[R: Z(R)]=t$ be prime. Then group $(R,+) /(Z(R),+)$ is a cyclic group of order $t$. Let $(R,+) /(Z(R),+)=\langle a+Z(R)\rangle$. Then for any two elements of $x, y \in R$, there exist integer numbers $n, m$ such that $x+Z(R)=n a+Z(R)$ and $y+Z(R)=m a+Z(R)$. So there exist elements $z_{1}$ and $z_{2}$ in $Z(R)$ such that $x=n a+z_{1}$ and $y=m a+z_{2}$. It is clear that $x y=y x$. This contradicts the fact that $R$ is non-commutative ring.
Lemma 2.3 Let $R$ be a finite ring of order $p^{2}$ or $p q$ and $Z(R) \neq\{0\}$. Then $R$ is commutative ring.

Proof. On the contrary let $R$ be a finite non-commutative ring and $Z(R) \neq(0)$. If $|R|=p^{2}$, then $|Z(R)|=p$. So for any $a \in R \backslash Z(R),\left|C_{R}(a)\right|=p^{2}$ and $a \in Z(R)$. This is contradiction. If $|R|=p q$, then $|Z(R)| \in\{p, q\}$. This is contradiction by Lemma 2.2. Hence $R$ is a commutative ring.

Lemma 2.4 Let $R$ be a non-commutative ring and $a, b \in R \backslash Z(R)$ such that $C_{R}(a)$ and $C_{R}(b)$ be commutative rings. If $a b=b a$, then $C_{R}(a)=C_{R}(b)$.

Proof.Let $x \in C_{R}(a)$. Since $a b=b a$ and $C_{R}(a)$ is commutative ring, $x b=b x$. So $C_{R}(a) \subseteq C_{R}(b)$. Similarly $C_{R}(b) \subseteq C_{R}(a)$. Thus $C_{R}(a)=C_{R}(b)$.
Lemma 2.5 Let $R$ be a non-commutative ring of order $p^{3}$ and $|Z(R)| \neq 0$, then $|Z(R)|=$ $p$.

Proof. Since $Z(R)$ is addition subgroup of $R,|Z(R)| \in\left\{1, p, p^{2}, p^{3}\right\}$. Also, since $R$ is a non-commutative ring and $|Z(R)| \neq 1$, then $|Z(R)|=p$ or $p^{2}$. By Lemma 2.2, $[R: Z(R)] \neq p$. So $|Z(R)|=p$.

### 2.1 Orders $p q$ and $\boldsymbol{p}^{2} \boldsymbol{q}$

Lemma 2.6 Let $R$ be a non-commutative ring of order $p^{n} q$ for $n=1,2$ and $Z(R)=\{0\}$. Then for every $0 \neq a \in R, C_{R}(a)$ is a commutative ring.

Proof. Let $0 \neq a \in R$. If $|R|=p q$, then $\left|C_{R}(a)\right|=p, q$ or $p q$. If $\left|C_{R}(a)\right|=p q$, then $R$ is a commutative ring. This is contradiction. So $\left|C_{R}(a)\right|$ is prime. Hence $C_{R}(a)$ is a commutative ring. Let $|R|=p^{2} q$. Since $\left|C_{R}(a)\right|\left||R|,\left|C_{R}(a)\right| \in\left\{p, q, p^{2}, p q\right\}\right.$. If $\left|C_{R}(a)\right|=p$ or $q$, then $C_{R}(a)$ is a commutative ring. Let $C_{R}(a)$ be a ring of order $p^{2}$ or $p q$. Since $a \in Z\left(C_{R}(a)\right), Z\left(C_{R}(a)\right) \neq(0)$. By Lemma $2.3, C_{R}(a)$ is a commutative ring. This completes the proof.

Theorem 2.7 Let $R$ be a non-commutative ring of order $p^{n} q$ for $n=1,2$ and $Z(R)=$ $\{0\}$. If $0 \neq a, b \in R$ and $a b \neq b a$, then $C_{R}(a) \cap C_{R}(b)=\{0\}$.

Proof. On the contrary suppose that $C_{R}(a) \cap C_{R}(b) \neq 0$. Suppose $x \in C_{R}(a) \cap C_{R}(b)$. So $x a=a x$ and $x b=b x$. By Lemmas 2.4 and 2.6, $C_{R}(a)=C_{R}(x)=C_{R}(b)$. Hence $a b=b a$. This is impossible. Therefore $C_{R}(a) \cap C_{R}(b)=\{0\}$.
Theorem 2.8 Let $R$ be a non-commutative ring of order $p q$ such that $Z(R)=\{0\}$. Then the following is hold:
(i) $\Gamma(R)=\frac{p q-1}{p-1} K_{p-1}$ if $(p-1) \mid(p q-1)$.
(ii) $\Gamma(R)=\frac{p q-1}{q-1} K_{q-1}$ if $(q-1) \mid(p q-1)$.
(iii) $\Gamma(R)=l_{1} K_{p-1} \cup l_{2} K_{q-1}$ where $l_{1}(p-1)+l_{2}(q-1)=p q-1$.

Proof. Let $a, b \in R \backslash Z(R)$ and $a b \neq b a$. By Theorem 2.7, $C_{R}(a) \cap C_{R}(b)=\{0\}$. Now if $x \in C_{R}(a), y \in C_{R}(b)$ and $x y=y x$, then by Lemma 2.4, $C_{R}(a)=C_{R}(x), C_{R}(b)=C_{R}(y)$ and $C_{R}(x)=C_{R}(y)$. So $C_{R}(a)=C_{R}(b)$, which is impossible. Therefore $\Gamma(R)$ is the disjoint union of the complete graphs. Since $R$ is non-commutative ring, for $0 \neq a \in R$, $\left|C_{R}(a)\right|=p$ or $q$. If for every $0 \neq a \in R,\left|C_{R}(a)\right|=p$, then $|V(\Gamma(R))|=l(p-1)$. On the other hand $|V(\Gamma(R))|=p q-1$. Thus $l=\frac{p q-1}{p-1}$. So $\Gamma(R)=\left(\frac{p q-1}{p-1}\right) K_{(p-1)}$ if $(p-1) \mid(p q-1)$. If for every $0 \neq a \in R,\left|C_{R}(a)\right|=q$, then $\Gamma(R)=\frac{p q-1}{q-1} K_{(q-1)}$ if $(q-1) \mid(p q-1)$. Let $\left|C_{R}(a)\right|=p$ and $\left|C_{R}(b)\right|=q$ for some $a, b \in R$. Hence $\Gamma(R)$ is the disjoint union of $l_{1}$ copies of complete graph $K_{(p-1)}$ and $l_{2}$ copies of complete graph $K_{(q-1)}$ where $l_{1}(p-1)+l_{2}(q-1)=p q-1$. This completes the proof.

Theorem 2.9 Let $R$ be a non-commutative ring of order $p^{2} q$ such that $Z(R)=\{0\}$. Then the following is hold:
(i) $\Gamma(R)=\frac{p^{2} q-1}{t-1} K_{t-1}$ such that $t \in\left\{p, q, p^{2}, p q\right\}$ and $t \mid\left(p^{2} q-1\right)$.
(ii) $\Gamma(R)=l_{1} K_{p-1} \cup l_{2} K_{q-1} \cup l_{3} K_{p^{2}-1} \cup l_{4} K_{p q-1}$ such that $\sum_{i=1}^{4} l_{i}=p^{2} q-1$.

Proof. Likewise the proof of Theorem $2.8, \Gamma(R)$ is the disjoint union of the complete graphs. Since $R$ is non-commutative ring, for $0 \neq a \in R,\left|C_{R}(a)\right| \in\left\{p, q, p^{2}, p q\right\}$. If for every $0 \neq a \in R,\left|C_{R}(a)\right|=t$ for $t \in\left\{p, q, p^{2}, p q\right\}$, then $|V(\Gamma(R))|=l(t-1)$. Also $|V(\Gamma(R))|=p^{2} q-1$. Thus $\Gamma(R)=\frac{p^{2} q-1}{t-1} K_{t-1}$ if $(t-1) \mid\left(p^{2} q-1\right)$ for $t \in\left\{p, q, p^{2}, p q\right\}$. Now let $\left|\left\{r \in R \backslash Z(R) ;\left|C_{R}(r)\right|=p\right\}\right|=l_{1},\left|\left\{r \in R \backslash Z(R) ;\left|C_{R}(r)\right|=q\right\}\right|=l_{2}, \mid\{r \in$ $\left.R \backslash Z(R) ;\left|C_{R}(r)\right|=p^{2}\right\} \mid=l_{3}$ and $\left|\left\{r \in R \backslash Z(R) ;\left|C_{R}(r)\right|=p q\right\}\right|=l_{4}$. Then $|V(\Gamma(R))|=$ $l_{1}(p-1)+l_{2}(q-1)+l_{3}\left(p^{2}-1\right)+l_{4}(p q-1)$. Thus $\Gamma(R)=l_{1} K_{p-1} \cup l_{2} K_{q-1} \cup l_{3} K_{p^{2}-1} \cup l_{4} K_{p q-1}$ where $\sum_{i=1}^{4} l_{i}=p^{2} q-1$. This completes the proof.

### 2.2 Order $p^{3} q$

Theorem 2.10 Let $R$ be a non-commutative ring with a unity of order $p^{3} q$ and $a \in$ $R \backslash Z(R)$. Then $C_{R}(a)$ is a commutative ring.

Proof. By Lemma 2.2 and since $R$ is non-commutative ring with unity, $|Z(R)| \in$ $\left\{p, p^{2}, q, p q\right\}$.
Case 1: Let $|Z(R)|=p$. Since $C_{R}(a)$ is the addition subgroup of $R$ and $a \notin Z(R)$, $\left|C_{R}(a)\right| \in\left\{p^{2}, p^{3}, p q, p^{2} q\right\}$.
Subcase i: If $\left|C_{R}(a)\right|=p^{2}, p q$ or $p^{2} q$, then by Lemma 2.1, $C_{R}(a)$ is a commutative ring. Subcase ii: If $\left|C_{R}(a)\right|=p^{3}$ and $C_{R}(a)$ is a non-commutative ring, then by Lemma 2.5, $\mid Z\left(C_{R}(a) \mid=p\right.$. It is clear that $Z(R) \cup(a+Z(R)) \subseteq Z\left(C_{R}(a)\right)$. Thus $p+p \leqslant p$. This is impossible.
Case 2: Let $|Z(R)|=p^{2}$. Since $|Z(R)|\left|\left|C_{R}(a)\right|,\left|C_{R}(a)\right| \in\left\{p^{3}, p^{2} q\right\}\right.$. If $| C_{R}(a) \mid=p^{2} q$, then by Lemma 2.1, $C_{R}(a)$ is a commutative ring. If $\left|C_{R}(a)\right|=p^{3}$ and $C_{R}(a)$ is a noncommutative ring, then likewise case 1 , subcase ii, $2 p^{2} \leqslant p$. Hence $C_{R}(a)$ is a commutative ring.
Case 3: Let $|Z(R)|=q$. Then $C_{R}(a)$ is of order $p q$ or $p^{2} q$. So this is a commutative ring. Case 4: If $|Z(R)|=p q$, then $\left|C_{R}(a)\right|=p^{2} q$. Hence $C_{R}(a)$ is a commutative ring. This completes the proof.

Theorem 2.11 Let $R$ be a non-commutative ring with a unity of order $p^{3} q$ such that $|Z(R)|$ is not prime. If $a, b \in R \backslash Z(R)$ and $a b \neq b a$, then $C_{R}(a) \cap C_{R}(b)=Z(R)$.

Proof. Since $|Z(R)| \in\left\{p^{2}, p q\right\}$, the proof falls naturally into two parts:
Part 1: If $|Z(R)|=p^{2}$, then for every $x \in R \backslash Z(R),\left|C_{R}(x)\right| \in\left\{p^{3}, p^{2} q\right\}$. Thus for $a, b \in R \backslash Z(R)$ there are three cases:
Case i: If $\left|C_{R}(a)\right|=\left|C_{R}(b)\right|=p^{3}$, then $\left|C_{R}(a) \cap C_{R}(b)\right|=p^{2}$ or $p^{3}$. Since $a b \neq b a$, $\left|C_{R}(a) \cap C_{R}(b)\right| \neq p^{3}$. So $C_{R}(a) \cap C_{R}(b)=Z(R)$.
Case ii: If $\left|C_{R}(a)\right|=\left|C_{R}(b)\right|=p^{2} q$, then $\left|C_{R}(a) \cap C_{R}(b)\right|=p^{2}$ or $p^{2} q$. If $\left|C_{R}(a) \cap C_{R}(b)\right|=$ $p^{2} q$, then $a b=b a$. This is not true. Hence $C_{R}(a) \cap C_{R}(b)=Z(R)$.
Case iii: Let $\left|C_{R}(a)\right|=p^{3}$ and $\left|C_{R}(b)\right|=p^{2} q$. Then $\left|C_{R}(a) \cap C_{R}(b)\right|=p^{2}$. So $C_{R}(a) \cap$ $C_{R}(b)=Z(R)$.
Part 2: If $|Z(R)|=p q$, then for every $x \in R \backslash Z(R),\left|C_{R}(x)\right|=p^{2} q$. Since $|Z(R)| \mid$ $\left|C_{R}(a) \cap C_{R}(b)\right|$ and $\left|C_{R}(a) \cap C_{R}(b)\right|\left|p^{2} q,\left|C_{R}(a) \cap C_{R}(b)\right| \in\left\{p q, p^{2} q\right\}\right.$. If $| C_{R}(a) \cap C_{R}(b) \mid=$ $p^{2} q$, then $a b=b a$. This is impossible. So $\left|C_{R}(a) \cap C_{R}(b)\right|=p q$. And $C_{R}(a) \cap C_{R}(b)=Z(R)$.

Theorem 2.12 Let $R$ be a non-commutative ring with a unity of order $p^{3} q$. If $|Z(R)|$ is not prime, then the following is hold:
(i) $\Gamma(R)=\left(\frac{p q-1}{p-1}\right) K_{\left(p^{3}-p^{2}\right)}$ if $(p-1) \mid(p q-1)$.
(ii) $\Gamma(R)=\left(\frac{p q-1}{q-1}\right) K_{\left(p^{2} q-p^{2}\right)}$ if $(q-1) \mid(p q-1)$.
(iii) $\Gamma(R)=l_{1} K_{\left(p^{3}-p^{2}\right)} \cup l_{2} K_{\left(p^{2} q-p^{2}\right)}$ where $l_{1}(p-1)+l_{2}(q-1)=p q-1$.
(iv) $\Gamma(R)=(p+1) K_{\left(p^{2} q-p q\right)}$.

Proof. Since $|Z(R)| \in\left\{p^{2}, p q\right\}$, the proof falls naturally into two parts:
Part 1: If $|Z(R)|=p^{2}$, then $\left|C_{R}(a)\right| \in\left\{p^{3}, p^{2} q\right\}$ for every $a \in R \backslash Z(R)$. Suppose $\left|C_{R}(a)\right|=p^{3}$ for every $a \in R \backslash Z(R)$. Let $a, b \in R \backslash Z(R)$ and $a b \neq b a$. By Theorem 2.11, $C_{R}(a) \cap C_{R}(b)=Z(R)$. Now if $x \in C_{R}(a), y \in C_{R}(b)$ and $x y=y x$, then by Lemma 2.4, $C_{R}(a)=C_{R}(x), C_{R}(b)=C_{R}(y)$ and $C_{R}(x)=C_{R}(y)$. So $C_{R}(a)=C_{R}(b)$, which is impossible. Therefore $\Gamma(R)$ is the disjoint union of $l$ copies of the complete graph of size $p^{3}-p^{2}$. So $|V(\Gamma(R))|=l\left(p^{3}-p^{2}\right)$. On the other hand $|V(\Gamma(R))|=|R|-|Z(R)|=p^{3} q-p^{2}$. Thus $l=\frac{p q-1}{p-1}$. Hence $\Gamma(R)=\left(\frac{p q-1}{p-1}\right) K_{\left(p^{3}-p^{2}\right)}$ if $(p-1) \mid(p q-1)$. Suppose $\left|C_{R}(a)\right|=p^{2} q$ for every $a \in R \backslash Z(R)$. By similar argument $\Gamma(R)$ is the disjoint union of $l$ copies of the complete graph of size $p^{2} q-p^{2}$ where $l=\frac{p q-1}{q-1}$. So $\Gamma(R)=\left(\frac{p q-1}{q-1}\right) K_{\left(p^{2} q-p^{2}\right)}$ if $(q-1) \mid(p q-1)$. Let $\left|C_{R}(a)\right|=p^{3}$ and $\left|C_{R}(b)\right|=p^{2} q$ for some $a, b \in R \backslash Z(R)$. Then by Theorem 2.11, $C_{R}(a) \cap C_{R}(b)=Z(R)$. It is easy to see that if $x \in C_{R}(a)$ and $y \in C_{R}(b)$, then $x y \neq y x$. Hence $\Gamma(R)$ is the disjoint union of $l_{1}$ copies of the complete graph of size $p^{3}-p^{2}$ and $l_{2}$ copies of the complete graph of size $p^{2} q-p^{2}$. So $|V(\Gamma(R))|=l_{1}\left(p^{3}-p^{2}\right)+l_{2}\left(p^{2} q-p^{2}\right)$. On the other hand we have $|V(\Gamma(R))|=|R|-|Z(R)|=p^{3} q-p^{2}$. Thus $p^{3} q-p^{2}=l_{1}\left(p^{3}-p^{2}\right)+l_{2}\left(p^{2} q-p^{2}\right)$. Therefore $\Gamma(R)=l_{1} K_{\left(p^{3}-p^{2}\right)} \cup l_{2} K_{\left(p^{2} q-p^{2}\right)}$, where $l_{1}$ and $l_{2}$ satisfy in $l_{1}(p-1)+l_{2}(q-1)=p q-1$, and this prove the Part (iii).
Part 2: If $|Z(R)|=p q$, then $\left|C_{R}(a)\right|=p^{2} q$. Likewise Part $1, \Gamma(R)$ is the disjoint union of $l$ copies of the complete graph of size $p^{2} q-p q$ where $l\left(p^{2} q-p q\right)=p^{3} q-p q$. Therefore $\Gamma(R)=(p+1) K_{\left(p^{2} q-p q\right)}$.

## Acknowledgements

The authors wish to thank the anonymous referee for some suggestions and corrections.

## References

[1] A. Abdollahi, Commuting graphs of full matrix rings over finite fields, Linear Algebra Appl. 422 (2008), 654-658.
[2] S. Akbari, M. Ghandehari, M. Hadian, and A. Mohammadian, On commuting graphs of semisimple rings, Linear Algebra and its Applications, 390 (2004), 345-355.
[3] S. Akbari, A. Mohammadian, H. Radjavi, and P. Raja, On the diameters of commuting graphs, Linear Algebra and its Applications, 418 (2006), 161-176.
[4] S. Akbari and P. Raja, Commuting graphs of some subsets in simple rings, Linear Algebra and its Applications, 416 (2006), 1038-1047.
[5] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.
[6] D. M. Cvetković, M. Doob, and H. Sachs, Spectra of graphs - Theory and applications, 3rd edition, Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995.
[7] J. B. Derr, G. F. Orr, and Paul S. Peck, Noncommutative rings of order $p^{4}$, Journal of Pure and Applied Algebra, 97 (1994), 109-116.
[8] K. E. Eldridge, Orders for finite noncommutative rings with unity, The American Mathematical Monthly, 75(5). (May, 1968), 512-514.
[9] G. R. Omidi, E. Vatandoost, On the commuting graph of rings, Journal of Algebra and Its Applications. 10 (2011), 521-527.


[^0]:    * Corresponding author.

    E-mail address: vatandoost@sci.ikiu.ac.ir (E. Vatandoost).

