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Abstract. New norm and numerical radius inequalities for operators on Hilbert space are
given. Among other inequalities, we prove that if A,B ∈ B(H), then

∥A∥ − 3∥A−B∗∥
2

⩽ ω

([
0 A
B 0

])
.

Moreover, ω(AB) ⩽ 3
2
∥Im(A)∥∥B∥ + DB ω(A). In particular, if A is self-adjointable, then

ω(AB) ⩽ DB∥A∥, where DB = inf
λ∈C

∥B − λI∥.
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1. Introduction and preliminaries

Let B(H) denote the C∗-algebra of all bounded linear operators on a complex Hilbert
space H with inner product ⟨·, ·⟩. The numerical radius of A ∈ B(H) is defined by
ω(A) = sup{ |⟨Ax, x⟩| : ∥x∥ = 1 }. In [11], Yamazaki proved for any A ∈ B(H) that
ω(A) = supθ∈R ∥Re(eiθA)∥. It is well known that ω(·) is a norm on B(H) which is
equivalent to the usual operator norm ∥.∥. In fact, for all A ∈ B(H),

∥A∥
2

⩽ ω(A) ⩽ ∥A∥. (1)
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The first inequality becomes an equality if A2 = 0. The second inequality becomes an
equality if A is normal. Several numerical radius inequalities improving the inequalities
in (1) have been recently given in [2, 6, 8, 9].

If A and B are operators in B(H), we write the direct sum A⊕B for the 2×2 operator

matrix

[
A 0
0 B

]
, regarded as an operator on H⊕H. Thus, ω(A⊕B) = max(ω(A), ω(B)).

Also,

∥A⊕B∥ =

∥∥∥∥[ 0 A
B 0

]∥∥∥∥ = max(∥A∥, ∥B∥).

Some numerical radius inequalities for certain 2× 2 operator matrices is obtained in [4].
More precisely,

2n
√

max(ω((AB)n), ω((BA)n) ⩽ ω

([
0 A
B 0

])
⩽ ∥A∥+ ∥B∥

2

for n = 1, 2, .... In [5], Holbrook showed for any A,B ∈ B(H) that ω(AB) ⩽ 4ω(A)ω(B).
In the case AB = BA, then ω(AB) ⩽ 2ω(A)ω(B). In [3], it is shown for any A,B ∈ B(H)
that

ω(A∗B ±BA) ⩽ 2∥A∥ω(B). (2)

Let DA = inf
λ∈C

∥A− λI∥ and let RA denote the radius of the smallest disk in the complex

plane containing σ(A) (the spectrum of A). Stampfli in [10] proved that if A ∈ B(H)
and A is normal, then DA = RA.

The question about the best constant k such that the inequality

w (AB) ≤ k∥A∥ω(B) (3)

holds for all operators A,B ∈ B(H) is still open.
Concerning the inequality (3), it is shown in [1] that if A,B ∈ B(H), then ω(AB) ⩽

(∥A∥+DA)ω(B) and

ω(AB) ⩽ ∥A∥ω(B) +
1

2
ω(B∗A∗ −AB∗). (4)

Also, if A > 0, then ω(AB) ⩽ 3
2∥A∥ω(B).

In Section 2, we introduce some inequalities between the operator norm and the nu-
merical radius of operators on Hilbert spaces. Particularly, we establish lower bound for
the numerical radius of the off-diagonal parts of 2× 2 operator matrices.

2. Main results

In order to derive our main results, we need the following lemma. The lemma, which
can be found in [7], gives new numerical radius inequalities for products of two Hilbert
space operators.
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Lemma 2.1 Let A,B ∈ B(H). Then

w (AB) ≤ ω(A)ω(B) +DADB. (5)

The following result may be as well.

Theorem 2.2 If A,B,C ∈ B(H), then

∥Re(CA)∥ ⩽ 3∥A−B∗∥∥C∥
4

+
1

2
ω(CA+BC∗).

Proof. Clearly, ∥Re(AB)∥ = ω(Re(AB)). Then

∥Re(AB)∥ = ω(Re(AB))

= ω(
AB +B∗A∗

2
)

⩽ 1

2
ω(A(B +B∗)) +

1

2
ω(AB −BA∗)

⩽ ∥B +B∗∥ω(A)

2
+

1

2
DADB+B∗ +

1

2
ω(AB −BA∗) (by (5))

⩽ ∥B +B∗∥
2

(ω(A) + ∥A∥) + 1

2
ω(AB −BA∗).

Hence,

∥Re(AB)∥ ⩽ ∥B +B∗∥
2

(ω(A) + ∥A∥) + 1

2
ω(AB −BA∗). (6)

Now, let A1 =

[
0 C
0 0

]
and B1 =

[
0 −B
A 0

]
. By (6), we have

∥Re(A1B1)∥ ⩽ ∥B1 +B1
∗∥

2
(ω(A1) + ∥A1∥) +

1

2
ω(A1B1 −B1A1

∗)

and so

∥Re(CA)∥ =

∥∥∥∥Re

([
CA 0
0 0

])∥∥∥∥
= ∥Re(A1B1)∥

⩽ 1

2

∥∥∥∥[ 0 A∗ −B
A−B∗ 0

]∥∥∥∥ (ω(A1) + ∥A1∥) +
1

2
ω

([
CA+BC∗ 0

0 0

])
=

1

2
∥A∗ −B∥(ω(A1) + ∥C∥) + 1

2
ω(CA+BC∗).

Consequently,

∥Re(CA)∥ ⩽ 1

2
∥A∗ −B∥(ω(A1) + ∥C∥) + 1

2
ω(CA+BC∗). (7)
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Since A1
2 = 0 and ω(A1) =

∥C∥
2 , the result follows from (7). ■

The following result may be as well.

Corollary 2.3 If A,B ∈ B(H), then

∥A∥ − 3∥A−B∗∥
2

⩽ ω

([
0 A
B 0

])
.

Proof. Replacing C by I in Theorem 2.2 gives

∥Re(A)∥ ⩽ 3∥A−B∗∥
4

+
1

2
ω(A+B). (8)

Now, let

A1 =

[
0 A
0 0

]
and B1 =

[
0 0
B 0

]
.

By (8), we have

∥A∥
2

= ∥Re(A1)∥

⩽ 3

4
∥A1 −B1

∗∥+ 1

2
ω(A1 +B1)

⩽ 3

4

∥∥∥∥[0 A−B∗

0 0

]∥∥∥∥+
1

2
ω

([
0 A
B 0

])
and so

∥A∥ ⩽ 3∥A−B∗∥
2

+ ω

([
0 A
B 0

])
.

This completes the proof. ■

As a natural application of the above Corollary in providing upper bounds for the
nonnegative quantity ∥A∥ − ω(A), A ∈ B(H), we can state the following result:

Corollary 2.4 If A,B ∈ B(H), then ∥A∥ − ω(A) ⩽ 3∥Im(A)∥.

Proof. Replacing B by A in Theorem 2.3, we deduce the desired result. ■

The following result may be as well.

Theorem 2.5 If A,C ∈ B(H), then ω(CA) ⩽ 3
2∥Im(A)∥∥C∥+DC ω(A).

Proof. By Theorem 2.2,

∥Re(CA)∥ ⩽ 3∥A−B∗∥∥C∥
4

+
1

2
ω(CA+BC∗).
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Replacing B by A in the last inequality gives

∥Re(CA)∥ ⩽ 3∥A−A∗∥∥C∥
4

+
1

2
ω(CA+AC∗)

=
3

2
∥Im(A)∥∥C∥+ 1

2
ω(CA+AC∗).

Therefore,

∥Re(CA)∥ ⩽ 3

2
∥Im(A)∥∥C∥+ 1

2
ω(CA+AC∗).

Let α0 = z̄0
|z0| , where z0 ∈ C is such that ∥C − z0I∥ = DC . Replacing C by α0C in the

inequality (6) gives

∥Re(α0CA)∥ ⩽ 3

2
∥Im(A)∥∥C∥+ 1

2
ω(α0CA− ᾱ0CA∗)

⩽ 3

2
∥Im(A)∥∥C∥+ 1

2
ω(α0(C − z0I)A− ᾱ0A(C − z0I)

∗)

⩽ 3

2
∥Im(A)∥∥C∥+ ∥C − z0I∥ω(A). (by (2))

Thus,

∥Re(α0CA)∥ ⩽ 3

2
∥Im(A)∥∥C∥+DC ω(A). (9)

On the other hand, there exists θ0 ∈ R such that α0 = eiθ0 . Let θ ∈ R and replacing C
by eiθC in the inequality (9) gives

∥Re(ei(θ+θ0)CA)∥ ⩽ 3

2
∥Im(A)∥∥C∥+DC ω(A).

Taking the supremum over θ ∈ R gives

ω(CA) ⩽ 3

2
∥Im(A)∥∥C∥+DC ω(A),

which is exactly the desired result. ■

The following corollary are immediate consequences of Theorem 2.5.

Corollary 2.6 If A,C ∈ B(H) and A is self-adjointable, then ω(CA) ⩽ DC∥A∥.

The following theorem is a considerable improvement of the inequality (4).

Theorem 2.7 If A,B ∈ B(H), then ω(AB) ⩽ DAω(B) + 1
2ω(AB −BA∗).
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Proof. Let θ ∈ R. We have

∥Re(eiθAB)∥ = ω(Re(eiθAB))

= ω(
eiθAB + e−iθB∗A∗

2
)

= ω(
A(eiθB + e−iθB∗)

2
+

e−iθ(B∗A∗ −AB∗)

2
)

⩽ 1

2
DA∥eiθB + e−iθB∗∥+ 1

2
ω(B∗A∗ −AB∗) (by Corollary(2.6))

= DA∥Re(eiθB)∥+ 1

2
ω(B∗A∗ −AB∗).

Consequently,

∥Re(eiθAB)∥ ⩽ DA∥Re(eiθB)∥+ 1

2
ω(B∗A∗ −AB∗).

Taking the supremum over θ ∈ R gives ω(AB) ⩽ DAω(B) + 1
2ω(B

∗A∗ −AB∗), which is
exactly the desired result. ■

The following corollary are immediate consequences of Theorem 2.7.

Corollary 2.8 If A,B ∈ B(H) and AB = BA∗, then ω(AB) ⩽ DAω(B).
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