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Abstract. In this paper, we seek to provide an appropriate topology for a set of alleles of
a gene that have arbitrary interactions between its alleles. For this purpose, we first define
a suitable topology on a set of alleles between which there is a similar interaction. Next,
with the help of the topology on the set of alleles of a gene, we equip the set of phenotypes
of the desired gene with a suitable topology. In addition, the final section will discuss the
dependence relations between the alleles of a gene.
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1. Introduction

Hyperstructures are algebraic structures equipped with at least one multi-valued op-
eration, called a hyperoperation. The largest classes of the hyperstructures are the ones
called Hv-structures [10]. Hypergroups theory was first introduced in 1934 by Marty
[17]. Following the introduction of algebraic hypergroups, as a generalization of classical
algebraic groups, many studies have been done by mathematical scientists. Two of the
most important books in this field have been written by Corsini and Leoreanu [7], and
Davvaz and Leoreanu-Fotea [13] (also, see [4, 6, 8, 11, 15, 18–23]).

One of the topics studied in the field of hyperstructures is the topological properties of
these structures. In [3], Ameri presented the concept of topological (transposition) hyper-
groups. He introduced the concept of a (pseudo, strong pseudo) topological hypergroup
and gave some related basic results. In various branches of mathematics we encounter im-
portant examples of topologico-algebraical structures like topological groupoids, groups,
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rings, fields etc. See [3] to study the generalization of the concept of topological groupoid
to topological hypergroupoid. In this paper, we try to provide biological examples of
topological hyperstructures by equipping the biological hyperstructures introduced in
[1, 2, 12, 14] with a suitable topology.

In many real-life situations, there are contexts with numerous variables, which some-
how depend on one another. Consider, for instance, a group of people sharing several
secrets, which are not known to everybody because some subgroups, which overlap arbi-
trarily, share only some secrets; or we have several measurement stations, such as those
used in weather forecasting, which measure some data used for predictions for some other
places in some future time. In order to study this issue, from the algebraic point of view,
the concepts related to dependence relations were introduced [5].

The history of genetics dates from the classical era with contributions by Pythagoras,
Hippocrates, Aristotle, Epicurus and others. Modern genetics began with the Mendel’s
work. His work on pea plants, published in 1866, established the theory of Mendelian
inheritance. The year 1900 marked the “rediscovery of Mendel” by Hugo de Vries, Carl
Correns and Erich von Tschermak, and by 1915 the basic principles of Mendelian genet-
ics had been studied in a wide variety of organisms most notably the fruit fly Drosophila
melanogaster. Led by Thomas Hunt Morgan and his fellow “drosophilists”, geneticists
developed the Mendelian model, which was widely accepted by 1925. Alongside experi-
mental work, mathematicians developed the statistical framework of population genetics,
bringing genetic explanations into the study of evolution [9]. Various applications of al-
gebraic hyperstructures have been studied in other disciplines. From a biological point of
view, for some of the studies conducted in this field, we refer the reader to [1, 2, 12, 14].

2. Basic Definitions

2.1 Concepts of hyperstructures

In this subsection, we present some of the definitions and concepts related to hyper-
structures that are needed throughout this paper.

Definition 2.1 [13] Considering a non-empty set H and denoting by P∗(H) the set of
all non-empty subsets of H, a hyperoperation on H is a mapping ◦ : H ×H −→ P∗(H),
and the couple (H, ◦) is called a hypergroupoid. If we replace set P∗(H) with set P(H),
meaning that the image of some pairs of elements in H could be the empty set, then
(H, ◦) is a partial hypergroupoid.

We now consider the following two axioms:

1. (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b and c of H (associativity),
2. a ◦H = H ◦ a = H for all a of H (reproductivity),

if the hyperoperation ◦ satisfies Axiom 2, then the hypergroupoid (H, ◦) is a quasi-
hypergroup, and if the hyperoperation ◦ satisfies Axiom 1, then the hypergroupoid (H, ◦)
is a semihypergroup. Also, if the hyperoperation ◦ holds in both Axioms 1 and 2, then
the hypergroupoid (H, ◦) is called hypergroup. Note that, for any non-empty subsets
A and B of H, there is A ◦ B = ∪{a ◦ b; a ∈ A, b ∈ B} and A ◦ a = A ◦ {a} (and
similarly, a ◦ A = {a} ◦ A) for any a ∈ H. If the weak-associativity holds, meaning that
a ◦ (b ◦ c) ∩ (a ◦ b) ◦ c ̸= ∅ for all a, b, c ∈ H, then (H, ◦) is called an Hv-group. Besides,
the commutativity means that a ◦ b = b ◦ a for any a, b ∈ H.
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Definition 2.2 [13] A hypergroup (H, ◦) is called cyclic if, for some h ∈ H, there is

H = h1 ∪ h2 ∪ ... ∪ hn ∪ . . . , (1)

where h1 = {h} and hn = h ◦ · · · ◦ h. If there exists n ∈ N such that (1) is finite, we
say that H is a cyclic hypergroup with finite period; otherwise, H is a cyclic hypergroup
with infinite period. The element h ∈ H in (1) is called the generator of H, and the
smallest power n for which (1) is valid is called period of h. If all generators of H have
the same period n, then H is called cyclic with period n. If, for a given generator h,
(1) is valid, but no such n exists (i.e., (1) cannot be finite), then H is called cyclic with
infinite period. If we can write H = hn for some h ∈ H, then the hypergroup H is called
single-power cyclic with a generator h.

2.2 Concepts of topological hyperstructures

Here, we present some definitions related to topological hypergroupoids that are used
throughout the paper (see [16]).

Definition 2.3 [16] Let (X, τ) be a topological space. Then

1) (X, τ) is a T0-space if for all x ̸= y ∈ X, there exists U ∈ τ such that x ∈ U and
y is not in U or y ∈ U and x is not in U .

2) (X, τ) is a T1-space if for all x ̸= y ∈ X, there exist U, V ∈ τ such that x ∈ U
and y is not in U and y ∈ V and x is not in V .

3) (X, τ) is a T2-space if for all x ̸= y ∈ X, there exist U, V ∈ τ such that x ∈ U ,
y ∈ V and U ∩ V = ∅.

So, every T2-topological space is a T1-topological space and every T1-topological space
is a T0-topological space.

Definition 2.4 [16] Let (H, ◦) be a hypergroupoid and (H, τ) be a topological space.
The hyperoperation ◦ is called

1) pseudocontinuous (p-continuous) if for every O ∈ τ , the set O⋆ = {(x, y) ∈ H2 :
x ◦ y ⊆ O} is open in H ×H.

2) strongly pseudocontinuous (sp-continuous) if for every O ∈ τ , the set O⋆ =
{(x, y) ∈ H2 : x ◦ y ∩O ̸= ∅} is open in H ×H.

A simple way to prove that a hyperoperation ◦ is p-continuous (sp-continuous) is to
take any open set O in τ and (x, y) ∈ H2 such that x ◦ y ⊆ O (x ◦ y ∩O ̸= ∅) and prove
that there exist U, V ∈ τ such that x ∈ U , y ∈ V and u ◦ v ⊆ O (u ◦ v ∩ O ̸= ∅) for all
(u, v) ∈ U × V .

Definition 2.5 [16] Let (H, ◦) be a hypergroupoid, (H, τ) be a topological space
and τ⋆ be a topology on P∗(H). The triple (H, ◦, τ) is called a pseudotopological or
strongly pseudotopological hypergroupoid if the hyperoperation ◦ is p-continuous or
sp-continuous, respectively. The quadruple (H, ◦, τ, τ⋆) is called τ⋆-topological hyper-
groupoid if the hyperoperation ◦ is τ⋆-continuous.

Let (H, τ) be a topological space and V,U1, . . . , Uk ∈ τ . We define SV and IV as follows:

(1) SV = {U ∈ P∗(H) : U ⊆ V } = P∗(V ),
(2) IV = {U ∈ P∗(H) : U ∩ V ̸= ∅}.

S∅ = I∅ = ∅. For all V ̸= ∅, we have SV = P∗(V ) and IV ⊇ {H,P∗(V )}.
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Lemma 2.6 [16] Let (H, τ) be a topological space. Then {SV }V ∈τ forms a base for a
topology τU on P∗(H). Moreover, τU is called the upper topology. Then {IV }V ∈τ forms
a subbase for a topology τL on P∗(H). Moreover, τL is called the lower topology.

Then the following result was proved by S. Hoskova-Mayerova.

Theorem 2.7 [16] Let (H, ◦) be a hypergroupoid and (H, τ) be a topological space.
Then the triple (H, ◦, τ) is a pseudotopological hypergroupoid if and only if the quadru-
ple (H, ◦, τ, τU ) is a τU -topological hypergroupoid. The triple (H, ◦, τ) is a strongly pseu-
dotopological hypergroupoid if and only if the quadruple (H, ◦, τ, τL) is a τL-topological
hypergroupoid.

2.3 Concepts of dependence relations

Definition 2.8 [5] By a dependence relation, we mean a formula between several vari-
ables with a left-hand and right-hand side, expressing that the value of the variable on
the left-hand side depends (in an unspecific way) on the values of the variables on the
right-hand side.

For example x ∼ D(y, z, t), which can be written as (x, y, z, t) ∈ D (however, with
x always in the first position), suggests that we work with a relation of arity four. we
always have x ∼ D(x), i.e., (x, x) ∈ D. If, for a certain element, there exists only
the dependence x ∼ D(x), we call x an isolated element. If we have the dependence
a1 ∼ D(a2, a3, a4, a5), we read it as a1 depends on a2, a3, a4 and a5 without any order
preferences. Such a statement is obviously equivalent to saying {a2, a3, a4, a5} is the set
of components of the dependence that has a certain influence on the element a1. Besides,
we always consider that an element has a certain influence on itself, even though this
is not clearly evident in the written form of the dependence, so we will avoid writing
a1 ∼ D(a1, a2, a3, a4, a5). Thus, in this respect, we will speak of influential elements of a1
and write Infl(a1) = {a1, a2, a3, a4, a5}. Notice that the influential elements appear on
the right-hand side of the relation. Elements that do not appear on the right-hand side of
any of the dependencies, but appear on the left-hand side of at least one dependence, will
be called non-influential elements. Now, consider two dependencies: a1 ∼ D(a2, a3, a4, a5)
and a3 ∼ D(a2, a6). We can see that a2 is an influential element of both a1 and a3 or, in
other words, that a2 has some impact on a1 and a3. We can better describe this property
by introducing a new set, Imp(a2) = {a1, a3, a2} as the set of all elements on which a2
has an impact. Thus, such elements will be called elements influenced by a2. Notice that
in the relations, such elements appear on the left-hand side. Obviously, both of these
sets are non-empty because there is always x ∼ D(x), i.e., x ∈ Infl(x) ∩ Imp(x). With
respect to the above-discussed isolated elements, it is obvious that x is isolated if and
only if |Infl(x)| = 1 = |Imp(x)|, while there is |Imp(y)| = 1 and |Infl(y)| > 1 for
non-influential elements.

3. Topology and Biology

All biological concepts in this section is taken from the reference [9].
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3.1 Topology and alleles

Here we try to define a topology using the relationships between the alleles of a gene
and their effect on each other. Alleles can interact with each other in complex ways like

(1) Complete dominance
(2) Codominance
(3) Incomplete dominance
(4) Multiple alleles.

(1) occurs when the heterozygote phenotype is indistinguishable from that of the ho-
mozygous parent. In fact, dominance is the phenomenon of one variant (allele) of a gene
on a chromosome masking or overriding the effect of a different variant of the same gene
on the other copy of the chromosome.

Suppose a1, a2, . . . , an are alleles of a gene such that for i = 1, 2, . . . , n−1, the allele ai+1

masks the effect of alleles a1, a2, . . . , ai. Consider the set of alleles A = {a1, a2, . . . , an}
and define the following mapping d : A×A −→ R as following.

d(ai, aj) =

{
1, if there is a dominant/recessiverelationship between ai and aj ,

0, otherwise.

It can be clearly seen that d defines the discrete metric on set A. In this way we can
consider the discrete topology induced by the discrete metric on this set of alleles.

An equivalent argument can be made to justify that discrete topology is a suitable
topology for this set of alleles. Let us define the hyperoperation ◦ : A×A −→ P ∗(A) as:

ai ◦ aj = the allele is dominant, i, j ∈ {1, 2, . . . , n}.

Here, the hyperoperation ◦ is actually a function of the interaction between alleles in
a gene. In fact, both homozygous parents will have heterozygous offspring in the first
generation, in which only the dominant allele effect will be expressed. Obviously, the
hyperoperation image contains all the singletone sets in the power set A. Since we in-
tend to define a topology based on the interaction between alleles, only (and of course
the smallest) suitable topology, which includes all single-member sets, is the discrete
topology.

Example 3.1 A classic example of dominance is the inheritance of seed shape in peas.
Peas may be round, associated with allele R, or wrinkled, associated with allele r. So,

for the set {R, r}, we have τ =
{
∅, {R}, {r}, {R, r}

}
. The set {R, r} with topology τ is

a T2-space.

(2) is a relationship between two versions of a gene. Individuals receive one version
of a gene, called an allele, from each parent. In codominance, however, neither allele is
recessive and the phenotypes of both alleles are expressed. Thus codominance means
that neither allele can mask the expression of the other allele.

We now intend to provide a suitable topology for codominant alleles of a gene. For
this purpose, in the same way as we did for complete dominance, we provide a definition
of topology based on how the alleles interact.

If we want to define the hyperoperation resulting from the interaction between distinct
codominant alleles, then: if we are dealing with a diploid organism and a bi-allelic gene,
then the offspring of homozygous parents in the first generation all show the effects of
both alleles in their phenotype, even if we have an n-allelic gene with codominant alleles
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A = {A1, A2, . . . , An}, by defining the n-ary hyperoperation ◦ : Hn −→ P ∗(A), so that
the image of each member of Hn is equal to the set of all alleles that occur in the
phenotype, we can see that whenever we have n codominant alleles that for any j ̸= k,
Aij ̸= Aik , its image will be equal to set A. In fact, all alleles will show their effect in
a n-ploidy organism. Therefore, since for any n ∈ N, the image of each member of Hn,
with distinct two-by-two components in the hyperoperation ◦, is equal to the set of all
codominant alleles, we define the indiscrete topology on this set of alleles.

Example 3.2 Coat colour in short-horned cattle is an example of codominance. If a
cattle with black coat, associated with allele B, is crossed with a cattle with white coat,
associated with allele W , the F1 hybrids possess neither black nor white coat colour, but
have roan coat colour, where black and white patches appear separately. Therefore, the

appropriate topology for this example would be the indiscrete topology τ =
{
∅, {B,W}

}
.

The set {B,W} with topology τ is not a T0-space, and therefore not a T1-space and T2-
space.

(3) happens when a dominant allele, or form of a gene, does not completely mask the
effects of a recessive allele, and the organism’s resulting physical appearance shows a
blending of both alleles. It is also called semi-dominance or partial dominance.

Using the same argument we used for codominant alleles, we propose the indiscrete
topology for alleles with incomplete dominance. In fact, as a result of the interaction of
such alleles, the effects of none of these alleles are observed in the offspring, and in F1

we are faced with an empty subset of the set of alleles of homozygous parents.

Example 3.3 A child born to a parent with straight hair, associated with allele S,
and a parent with curly hair, associated with allele C, will usually have wavy hair, or
hair that is a little curled, due to the expression of both curly and straight alleles. The

topology intended here will be the indiscrete topology τ =
{
∅, {S,C}

}
. The set {S,C}

with topology τ is not a T0-space, and therefore not a T1-space and T2-space.

Now suppose we are dealing with a set of (4) between which there is a combination
of the interactions of complete dominance, codominance and incomplete dominance. For
this purpose, we draw a diagram in which the dominant-recessive alleles are located
along each other and other interactions across. Cross-linked alleles will have a indiscrete
topology. Therefore, we consider them as an allele and define the discrete topology on
the alleles that are along the diagram. In this way, we obtain a topology on the set of
existing alleles.

Remark 1 Note that in this model, the set of alleles, that are incomplete in a dominant
relationship to each other or codominant, should all be under the complete dominance of
the same set of alleles.

To illustrate the model we have proposed, we provide a hypothetical example.

Example 3.4 Suppose A = {a, b, c, d, e, f} is a set of alleles for a gene in which there is
an incomplete dominant relationship between the two members e and f . Also, allele a is
complete dominant over all alleles. On the other hand, there is a codominant relationship
between the alleles b, c and d, and also the allele c is complete dominant over the alleles
e and f . In this case, we will have Figure 1. In this diagram, three alleles b, c and d are in
a row and two alleles e and f are in a row. Therefore, we accept each of the sets {b, c, d}
and {e, f} as a member (or a phenotype in a diploid and triploid organism, respectively)
and consider a discrete topology for the three members a, {b, c, d}, and {e, f}. In this
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a

b c d

e f

Figure 1. Multiple alleles

case, with the proposed model, we will have the following topology on this allele set:

τ =
{
∅, {a}, {b, c, d}, {e, f}, {a, b, c, d}, {a, e, f}, {b, c, d, e, f}, {a, b, c, d, e, f}

}
.

The set A with topology τ is not a T0-space, and therefore not a T1-space and T2-space.
Indeed, for two elements b and c, there is no open set that contains only one of these two
elements.

Remark 2 In fact, in the case of multiple alleles, we are looking for the smallest topology
that contains the basic topologies defined for dominant alleles and incomplete dominant-
codominant alleles.

Example 3.5 In humans, blood type is determined by 3 alleles A, B, and O. But each
human can only inherit 2 alleles.

Codominant: A and B,
Recessive: O.

If we take the discrete topology on {A,B}, we have τ =
{
∅, {A,B}

}
. Now, if we use the

introduced pattern on the allele set {A,B,O}, we get τ ′ =
{
{A,B,O}, ∅, {A,B}, {O}

}
and this is clearly a topology on the set {A,B,O}. The set {A,B,O} with topology τ ′

is not a T0-space, and therefore not a T1-space and T2-space. Indeed, for two elements A
and B, there is no open set that contains only one of these two elements.

Example 3.6 Let us consider a gene that specifies coat color in rabbits, called the C
gene. The C gene comes in four common alleles: C, cch, ch, and c:

A CC rabbit has black or brown fur
A cchcch rabbit has chinchilla coloration (grayish fur).
A chch rabbit has Himalayan (color-point) patterning, with a white body and
dark ears, face, feet, and tail
A cc rabbit is albino, with a pure white coat.

Multiple alleles makes for many possible dominance relationships. In this case, the black
C allele is completely dominant to all the others; the chinchilla cch allele is completely
dominant to the Himalayan ch and albino c alleles; and the Himalayan ch allele is com-
pletely dominant to the albino c allele. So we have Dominance = C > cch > ch > c.
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As a result, we consider the following discrete topology for this biological example:

τ =
{
∅, {C}, {cch}, {ch}, {c}, {cch, c}, {cch, ch}, {ch, c}, {C, cch}, {C, ch}, {C, c},

{C, cch, ch}, {C, cch, c}, {ch, cch, c}, {C, ch, c}, {C, cch, ch, c}
}
.

The set {C, cch, ch, c} with topology τ is a T2-space.

3.2 Topology and phenotypes

In this section, we try to get a suitable idea for presenting topology on phenotypes
with the help of topologies provided for alleles.

Complete Dominance

We first consider a gene with two alleles a1 and a2 in which allele a1 dominates over
allele a2.

P : a1a1 × a2a2,

F1 : a1a2,

F1 × F1 : a1a2 × a1a2,

F2 : Â = {a1a1, a1a2}, â = {a2a2}.

Here the number of phenotypes is the same as the number of alleles, and in fact the inter-
action between the phenotypes will result in all single-member sets of them. Therefore,
the smallest topology produced by these sets will be the discrete topology. In fact, for a
n-allelic gene in which for i = 1, 2, . . . , n− 1, the allele ai+1 masks the effect of alleles a1,
a2, . . . and ai, the result of interaction between phenotypes is similar to the interaction
between alleles. Therefore, for these phenotypes, we will consider the discrete topology.

Incomplete Dominance and Codominance

In the previous section, we saw that when faced with a set of incomplete dominant
or codominant alleles, the indiscrete topology will be the smallest topology produced
by the results of the interaction between the alleles. Note that in this case the number
of phenotypes will be bigger than the number of alleles. Therefore, to determine the
topology on the resulting phenotypes, we are looking for the smallest topology that will
be produced by adding new resulting phenotypes to the indiscrete topology.

Example 3.7 Suppose A1 and A2 are two alleles of the same gene. Then we have

P : A1A1 ×A2A2

F1 : a1a2

F1 × F1 : A1A2 ×A1A2

F2 : A = {A1A1}, B = {A1A2}, C = {A2A2}.
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If we denote the topology for the set {A,B,C} by τ , then we have

τ =
〈
∅, {A,C}, {B}

〉
=

{
∅, {A,C}, {B}, {A,B,C}

}
,

where
〈
∅, {A,C}, {B}

〉
is the topology generated by ∅, {A,C}, {B}. The set {A,B,C}

with topology τ is not a T0-space, and therefore not a T1-space and T2-space. Indeed, for
two elements A and C, there is no open set that contains only one of these two elements.

Multiple alleles

We now consider the following biological example. In this example, we are dealing with
a three-allelic gene that has four phenotypes and try to construct a topology related to
its phenotypes.

Example 3.8 The ABO blood type is controlled by a single gene (the ABO gene) with
three types of alleles inferred from classical genetics: i, IA, and IB. The IA allele gives
type A, IB gives type B, and i gives type O. As both IA and IB are dominant over i,
only ii people have type O blood. Individuals with IAIA or IAi have type A blood, and
individuals with IBIB or IBi have type B. IAIB people have both phenotypes, because
A and B express codominance relationship. In Subsection 3.1 we saw that the topology

defined for the set of alleles {A,B,O} is equal to τ =
{
∅, {O}, {A,B}, {A,B,O}

}
. Now,

if we denote the topology of the set of phenotypes {A,B,O,AB} with the symbol τ ′, we

have τ ′ =
〈
τ ∪ {AB}

〉
. So it can be clearly seen that

τ ′ =
{
∅, {O}, {A,B}, {A,B,O}, {AB}, {AB,O}, {A,B,AB}, {A,B,O,AB}

}
.

The set {A,B,O,AB} with topology τ ′ is not a T0-space, and therefore not a T1-space
and T2-space. Indeed, for two elements A and B, there is no open set that contains only
one of these two elements.

4. Topological hyperstructures

In this section, we study some biological examples in the form of a topological hyper-
structures.

Remark 3 Since we have equipped a set of phenotypes of a n-allelic gene in which for
i = 1, 2, . . . , n − 1, the allele ai+1 masks the effect of alleles a1, a2, . . . and ai, with
the discrete topology; therefore, by defining any desired hyperoperation on this set of
phenotypes, we will have a topological hyperstructure.

Example 4.1 Incomplete dominance is seen when the two alleles mix together to create
an entirely different phenotype. The flowers below are an example of incomplete domi-
nance because the red, denoted by R, and white, denoted by W , alleles mix together in
certain individuals to create a pink phenotype. The pink phenotype is a mixture of both
alleles being expressed at the same time in every cell. Considering the phenotype set
H = {R,W,P}, and defining hyperoperation ◦ as the mating of the second generation,
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we will have the following table

◦ R W P
R R P R,P
W W W,P
P R,P,W

Now, considering the topology τ =
{
∅,H, {R,W}, {P}

}
on H, the triple (H, ◦, τ) is a

strongly pseudotopological Hv-semigroup. For instance,
(
R ◦ R = R

)
∩ {R,W} ̸= ∅,

and there exist {R,W}, {P} ∈ τ such that for every (u, v) ∈ {R,W} × {P} we have
u ◦ v ∩ {R,W} ̸= ∅. Indeed,

R ◦ P = {R,P} ∩ {R,W} ̸= ∅ and W ◦ P = {W,P} ∩ {R,W} ̸= ∅.

Other items can simply be shown similarly. Now, due to Theorem 2.7, the quadruple
(H, ◦, τ, τL) is a τL-topological hypergroupoid in which according to Lemma 2.6, the
following family forms a subbasis for τL on P∗(H):

F =
{
I∅, I{R,W}, I{P}, I{R,W,P}

}
,

where

I∅ = ∅,

I{R,W} =
{
{R}, {W}, {R,W}, {R,P}, {W,P}, {R,W,P}

}
,

I{P} =
{
{P}, {R,P}, {W,P}, {R,W,P}

}
,

I{R,W,P} = P∗(H).

If we add the member
{
{R,P}, {W,P}, {R,W,P}

}
to F , then we get a basis for topology

τL on P∗(H). Also, (P∗(H), τL) is not a T0-topological space (hence, is not T1 and T2)
because for the members {R} and {W}, there are no open sets such as U and V such
that {R} ∈ U and {W} /∈ U , and {W} ∈ V and {R} /∈ V . (P∗(H), τL) is not even a
T0-topological space. Indeed for two members {R} and {W}, there is no open set that
contains only one of them.

Remark 4 Not every strongly pseudotopological hypergroupoid is a pseudotopological
hypergroupoid. In Example 4.1, (H, ◦, τ) is not pseudotopological hypergroupoid. Consider
the open set {P} in τ and the members R and W of H. Then. we have R◦W = {P} ∈ τ ,
while there are no two open sets U and V such that u ◦ v ⊆ {P} for all (u, v) ∈ U × V .

Example 4.2 The ABO blood type. Considering H = {O,A,B,AB} with the following
table, the couple (H,⊗) is an Hv-semigroup.

⊗ O A B AB
O O O,A O,B A,B
A O,A A,B,O,AB A,B,AB
B O,B A,B,AB
AB A,B,AB



H. Mirabdollahi and B. Davvaz / J. Linear. Topological. Algebra. 12(04) (2023) 295-308. 305

Considering the topology defined on H = {O,A,B,AB} in Example 3.8, i.e.

τ ′ =
{
∅, {O}, {A,B}, {A,B,O}, {AB}, {AB,O}, {A,B,AB}, {A,B,O,AB}

}
,

the triple (H,⊗, τ ′) is a pseudotopologicalHv-semigroup. For instance, O⊗AB = {A,B},
and {A,B} is a subset of sets {A,B}, {A,B,O}, {A,B,AB} and H. Now, we have

{O} ⊗ {AB} = {A,B} ⊆ {A,B},

{O} ⊗ {AB} = {A,B} ⊆ {A,B,O},

{O} ⊗ {AB} = {A,B} ⊆ {A,B,AB},

{O} ⊗ {AB} = {A,B} ⊆ H.

As another instance, B ⊗O = {B,O} and {B,O} ⊆ {A,B,O},H. Now, we have

{O} ⊗ {AB} = {A,B} ⊆ {A,B,O},

{O} ⊗ {AB} = {A,B} ⊆ H.

According to the table and the proof of the above two cases, the proof of the other cases
is obvious. In the following, due to Theorem 2.7, the quadruple (H,⊗, τ ′, τ ′U ) is a τ ′U -
topological hypergroupoid, in which, according to Lemma 2.6, the following family form
a basis for τ ′U on P∗(H).

F ′ =
{
∅, {O},P∗({A,B}),P∗({A,B,O}), {AB},

P∗({AB,O}),P∗({A,B,AB}),P∗({A,B,O,AB})
}
.

(P∗(H), τ ′U ) is not a T0-topological space. Indeed for two members {A} and {B}, there is
no open set that contains only one of them. Therefore, (P∗(H), τ ′U ) is not T1-topological
space and T2-topological space either.

Remark 5 In Example 4.2, the triple (H,⊗, τ ′) is a strongly pseudotopological Hv-
semigroup. To check this, it is sufficient to consider the definition only for the open sets
{O}, {A,B} and {AB}; as other open sets include members of one of these three sets.
Each open set including O can be written U = V = {O}. Also, each open set including
A,B can be written U = {O} and V = {AB}. In addition to, each open set including
AB can be written U = V = {AB}.

5. Hypergroupoids associated with abstract dependencies

Suppose a1, a2, . . . , an are alleles of a gene such that for i = 1, 2, . . . , n−1, the allele ai+1

masks the effect of alleles a1, a2, . . . , ai. Consider the set of alleles A = {a1, a2, . . . , an}
with the cardinality n. Then there exist dependences ai ∼ D(ai+1, . . . , an) for i =
1, 2, . . . , n, which means that a1 ∼ D(a2 ∼ D(· · · ∼ D(an))). Thus, for i = 1, 2, . . . , n, we
have

Infl(ai) = {ai, ai+1, . . . , an} and Imp(ai) = {ai, ai−1, . . . , a1}.
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As a result, for any pair (i, j) where i ⩽ j, we have

ai ◦1 aj = Imp(ai) ∩ Imp(aj) = {ai, ai−1, . . . , a1},

ai ◦2 aj = Infl(ai) ∩ Infl(aj) = {aj , aj+1, . . . , an},

ai ◦3 aj = Imp(ai) ∪ Imp(aj) = {aj , aj−1, . . . , a1},

ai ◦4 aj = Infl(ai) ∪ Infl(aj) = {ai, ai+1, . . . , an}.

Obviously, for k = 1, 2, 3, 4, the hyperstructures (A, ◦k) are all commutative, extensive
hypergroups.

Remark 6 If we regard (an)
n = an ◦1 · · ·◦1an, then we get (an)

n = (an)
2 = A for n > 2.

To be more precise, the hypergroup (A, ◦1) is single-power cyclic with infinite period.
Now, if we regard (a1)

n = a1 ◦2 · · · ◦2 a1, then we get (a1)
n = (a1)

2 = A for n > 2. To
be more precise, the hypergroup (A, ◦2) is single-power cyclic with infinite period. Also,
we have (an)

n = an ◦3 · · · ◦3 an = (an)
2 = A, and (a1)

n = a1 ◦4 · · · ◦4 a1 = (a1)
2 = A for

n > 2. Therefore, the hypergroups (A, ◦3) and (A, ◦4) are single-power cyclic with infinite
period, too.

If we have an n-allelic gene with codominant alleles A = {A1, A2, . . . , An}, then all
of them show their effects, and none of the alleles affects the effect of the other allele.
Therefore, for i = 1, 2, . . . , n, Imp(Ai) = Infl(Ai) = {Ai}. As a result, each of the alleles
is isolated. So, for any pair (i, j), we have

Ai ◦3 Aj = Imp(Ai) ∪ Imp(Aj) = {Ai, Aj},

Ai ◦4 Aj = Infl(Ai) ∪ Infl(Aj) = {Ai, Aj}.

Then the hyperstructures (A, ◦3) and (A, ◦4) are commutative, extensive hypergroups.
If we have the n-allelic set B = {B1, B2, . . . , Bn} that interact with each other in-
completely dominant, then in fact both alleles are affected by each other, in other
words, Bi ∼ D(B1, B2, . . . , Bn) for i = 1, 2, . . . , n. Then, for i = 1, 2, . . . , n, we have
Imp(Bi) = Infl(Bi) = {B1, B2, . . . , Bn}, which means that each element of H depends
on all elements in the set B, which is the extreme case opposite to the case when all
elements are isolated. So, for any pair (i, j), the following relationships are established:

Bi ◦1 Bj = Imp(Bi) ∩ Imp(Bj) = B,

Bi ◦2 Bj = Infl(Bi) ∩ Infl(Bj) = B,

Bi ◦3 Bj = Imp(Bi) ∪ Imp(Bj) = B,

Bi ◦4 Bj = Infl(Bi) ∪ Infl(Bj) = B.

In fact, for k = 1, 2, 3, 4, the hypergroups (B, ◦k) are total hypergroups. It is also clear
that the hypergroups (B, ◦k) are single-power cyclic with period two. See a biological
example below.

Example 5.1 ABO blood group system. Consider the set of alleles H = {A,B,O}.
Then there exists dependence O ∼ D(A,B). Therefore, Imp(O) = {O} and Infl(O) =
{O,A,B}. So O is a non-influential element. Also Imp(A) = {O,A}, Infl(A) = {A},
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and Imp(B) = {O,B}, Infl(B) = {B}. See the tables below.

◦1 O A B
O O O O
A O O,A O
B O O O,B

◦2 O A B
O O,A,B A B
A A A {}
B B {} B

and

◦3 O A B
O O O,A O,B
A O,A O,A O,A,B
B O,B O,A,B O,B

◦4 O A B
O O,A,B O,A,B O,A,B
A O,A,B A A,B
B O,A,B A,B B

The couple (H, ◦1) is a non-cyclic commutative semihypergroup. The couple (H, ◦2) is a
partial hypergroupoid and single-power cyclic with a generator O. The couple (H, ◦3) is
a non-cyclic hypergroup, and the couple (H, ◦4) is a hypergroup and single-power cyclic
with a generator O.

Example 5.2 Consider the set of alleles in Example 3.4 and the interaction between
them. Then there exist the dependencies b ∼ D(a), d ∼ D(a), e ∼ D(c ∼ D(a)) and
f ∼ D(c ∼ D(a)). Therefore, Imp(a) = {a, b, c, d, e, f} = A and Infl(a) = {a}. So the
hypergropoid (A, ◦3) is single-power cyclic with a generator a.

6. Conclusion

If we are dealing with n genes, and each of these genes has alleles with different
interactions, it is enough to use a product topology τ = τ1 × τ2 × · · · × τn in which for
each i = 1, 2, . . . , n, the corresponding topology τi is defined according to what has been
stated so far. In this case, it is obvious that the product topology defined on the product of
n hyperstructures (H,⊗) = (H1,⊗1)×(H2,⊗2)×· · ·×(Hn,⊗n) will turn it into a strongly
pseudo topological hyperstructure. Also, according to what was discussed in Section 5,
we saw that if we are dealing with the set A = {a1, a2, . . . , an} of n alleles in which for
i = 1, 2, . . . , n − 1, the allele ai+1 masks the effect of alleles a1, a2, . . . and ai, then for
k = 1, 2, 3, 4 the commutative hypergroups (A, ◦k) are all single-power cyclic with finite
period. But if we have an n-allelic gene with codominant alleles A = {A1, A2, . . . , An},
then each of the alleles is isolated, and if the alleles of the set B = {B1, B2, . . . , Bn}
interact with each other incompletely dominant, then each element of H depends on all
elements in the set B.
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