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Abstract. An analytical fuzzy solution is achieved by means of the fuzzy d’Alembert for-
mula for the fuzzy one-dimensional homogeneous wave equation in a half-line considering
the generalized Hukuhara partial differentiability of the solution. In the current article, the
exclusive solution and the stability of the homogeneous fuzzy wave equations are brought
into existence. Eventually, given the various instances represented, the efficacy and accuracy
of the method are scrutinized.

Keywords: Generalized Hukuhara differentiability, fuzzy partial differential equation,
fuzzy wave equation, Leibniz rule.

2010 AMS Subject Classification: 26E50, 35R13, 35L05.

1. Introduction

It is well known that there are many phenomena in including fluid flow, electrical net-
works, fractals theory, control theory, optics, biology, chemistry and other sciences can
be described by models that use mathematical tools of partial differential equations. The
concept of the fuzzy partial differential equations (FPDEs) was extended in [6], and ac-
cording to this definition, different method are obtained an approximation fuzzy solution
for partial differential equations [1, 3]. In addition, Oberguggenberger described fuzzy
weak solutions for the FPDEs [15], and Chen et al. presented a new inference method
with applications to the FPDEs [7]. A substantial amount of research work has to find an
approximation solution for the FPDEs, convert the FPDEs to two crisp corresponding
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problems, then find the approximate solutions of crisp problems and hence obtain an
approximation of fuzzy solutions, see [1, 3, 5]. To overcome this shortcoming, generalized
Hukuhara partial derivative based on gH-difference is introduced and the existence and
uniqueness of the solution of the fuzzy heat equation based on this concept are inves-
tigated by Allahviranloo et al. [2] and after that Gouyandeh et al. [8] introduced the
fuzzy Fourier transform and obtained an analytical solution for the fuzzy heat equation.
The fuzzy Poisson and fuzzy Laplace equations are solved in [12], and also some useful
research papers for solving fuzzy partial differential equations are [11, 13, 14]. Recently,
Rahimi Chermahini et al. [16] studied the existence and uniqueness of the solution of
the fuzzy wave equation based on generalized Hukuhara partial derivative and obtained
their d’Alembert solutions on infinite interval.

The aim of the present paper is to obtain the d’Alembert solution of a fuzzy wave
equation on a half-line. Using the properties of generalized Hukuhara partial derivative,
the d’Alembert’s formulas for fuzzy Dirichlet problem on the half-line is obtained without
embedding them to crisp equations.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce
the basic notations and preliminaries and prove some new theorems and lemmas to be
used in the main part of the paper. In Section 3, the canonical form of a solution of a fuzzy
wave equation is showed and the fuzzy d’Alembert’s formulas for a fuzzy homogeneous
wave equation based on the type of [gH − p]−differentiability are showed. In Section 4,
the fuzzy d’Alembert’s formulas for the fuzzy Dirichlet problem on the half-line based
on the type of [gH − p]−differentiability are showed. Moreover, some examples are given
to clarify the details and efficiency of the method in Section 5 and conclusions are given
in Section 6.

2. Basic preliminaries

In this section, we present some definitions and introduce the necessary notations,
which will be used throughout the paper. Denote

RF =
{
u : Rn → [0, 1] | u satisfies (i)-(iv) below

}
,

where

(i) u is fuzzy convex;
(ii) u is normal, i.e., there exists an x0 ∈ Rn such that u(x0) = 1;
(iii) u is upper semi-continuous;
(iv) closure of {x ∈ Rn | u(x) > 0} is compact.

Then RF is called the space of fuzzy numbers. For 0 < α ⩽ 1 denote

[u]α =

{
x ∈ Rn

∣∣∣u(x) ⩾ α

}
= [u−(α), u+(α)].

Then from (i) to (iv), it follows that the α-level set [u]α is a closed interval for all
α ∈ [0, 1]. A triangular fuzzy number is defined as a fuzzy set in RF , that is specified by
an ordered triple u = (a, b, c) ∈ R3 with a ⩽ b ⩽ c such that u−(α) = a + (b − a)α and
u+(α) = c− (c− b)α are the endpoints of α-level sets for all α ∈ [0, 1].

The Hausdorff distance between fuzzy numbers is given by D : RF ×RF −→ R+ ∪{0}
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as in [10],

D(u, v) = sup
α∈[0, 1]

d
(
[u]α , [v]α

)
= sup

α∈[0, 1]
max

{
|u−(α)− v−(α)|, |u+(α)− v+(α)|

}
,

where d is the Hausdorff metric. The metric space (RF , D) is complete, separable and
locally compact and the following properties from [10] for metric D are valid:

1. D(u⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ RF ;
2. D(λu, λv) = |λ|D(u, v), ∀λ ∈ R, u, v ∈ RF ;
3. D(u⊕ v, w ⊕ z) ⩽ D(u, w) +D(v, z), ∀u, v, w, z ∈ RF ;
4. D(u ⊖ v, w ⊖ z) ⩽ D(u, w) + D(v, z), as long as u ⊖ v and w ⊖ z exist, where

u, v, w, z ∈ RF ,

where ⊖ is the Hukuhara difference(H-difference), it means that w⊖ v = u if and only if
u⊕ v = w.

Definition 2.1 [4] The generalized Hukuhara difference of two fuzzy numbers u, v ∈ RF
is defined as follows:

u⊖gH v = w ⇔ u = v + w, or v = u+ (−1)w.

In terms of α-levels we have

[u⊖gH v]α = [min{u−(α)− v−(α), u+(α)− v+(α)} , max{u−(α)− v−(α), u+(α)− v+(α)}],

and if the H-difference exists, then u ⊖ v = u ⊖gH v; the conditions for the existence of
w = u⊖gH v ∈ RF are

case(i)

{
w−(α) = u−(α)− v−(α) and w+(α) = u+(α)− v+(α), ∀α ∈ [0, 1],
with w−(α) increasing, w+(α) decreasing, w−(α) ⩽ w+(α),

case(ii)

{
w−(α) = u+(α)− v+(α) and w+(α) = u−(α)− v−(α), ∀α ∈ [0, 1].
with w−(α) increasing, w+(α) decreasing, w−(α) ⩽ w+(α).

It is easy to show that (i) and (ii) are both valid if and only if w is a crisp number.

Remark 1 Throughout the rest of this paper, we assume that u⊖gH v ∈ RF .

2.1 Generalized Hukuhara Derivative

In this section, we present some definitions and theorems for a fuzzy-valued function
f : [a, b] ⊆ R → RF . The α−level representation of fuzzy-valued function f given by
f(x;α) = [f−(x;α) , f+(x;α)], for all x ∈ [a, b] and α ∈ [0, 1].

Definition 2.2 [9] A fuzzy valued function f : [a, b] → RF is said to be continuous at
t0 ∈ [a, b] if for each ϵ > 0 there is δ > 0 such that D(f(t), f(t0)) < ϵ, whenever t ∈ [a, b]
and |t − t0| < δ. We say that f is fuzzy continuous on [a, b] if f is continuous at each
t0 ∈ [a, b].
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Definition 2.3 [4] The generalized Hukuhara derivative of a fuzzy-valued function f :
(a, b) → RF at x0 ∈ (a, b) is defined as

f ′
gH(x0) = lim

h→0

f(x0 + h)⊖gH f(x0)

h
. (1)

If f ′
gH(x0) ∈ RF satisfying (1) exists, we say that f is generalized Hukuhara differen-

tiable (gH-differentiable for short) at x0.

Definition 2.4 [4] Let f : [a, b] → RF and x0 ∈ (a, b) with f−(x;α) and f+(x;α) both
differentiable at x0. Also, we say that

• f is [(i)− gH]-differentiable at x0 if

f ′
i.gH(x0;α) = [(f−)′(x0;α) , (f+)′(x0;α)], 0 ⩽ α ⩽ 1, (2)

• f is [(ii)− gH]-differentiable at x0 if

f ′
ii.gH(x0;α) = [(f+)′(x0;α) , (f−)′(x0;α)], 0 ⩽ α ⩽ 1. (3)

Definition 2.5 [17] We say that a point x0 ∈ (a, b) is a switching point for the differ-
entiability of f if in any neighborhood V of x0 there exist points x1 < x0 < x2 such
that

(1) type(I) at x1 (2) holds while (3) does not hold and at x2 (3) holds and (2) does
not hold, or

(2) type(II) at x1 (3) holds while (2) does not hold and at x2 (2) holds and (3) does
not hold.

Definition 2.6 [2] Let f : (a, b) → RF . We say that f(x) is gH-differentiable of the
2th− order at x0 ∈ (a, b) whenever the function f(t) is gH-differentiable of the order
i, i = 0, 1, at x0, ((f (i)(x0))gH ∈ RF ), moreover there isn’t any switching point on
(a, b). Then there exist f ′′

gH(x0) ∈ RF such that

f ′′
gH(x0) = lim

h→0

f ′
gH(x0 + h)⊖gH f ′

gH(x0)

h
,

if f ′
gH(x0 + h)⊖gH f ′

gH(x0) ∈ RF .

Definition 2.7 [2] Let f : [a, b] → RF and f ′
gH(x) be gH-differentiable at x0 ∈ (a, b),

moreover there isn’t any switching point on (a, b) and (f−)′(x;α) and (f+)′(x;α) both
differentiable at x0. We say that

• f ′
gH(x) is [(i) − gH]-differentiable whenever the type of gH-differentiability f(x) and

f ′
gH(x) are the same:

f ′′
i.gH(x0;α) = [(f−)′′(x0;α) , (f+)′′(x0;α)], 0 ⩽ α ⩽ 1,

• f ′
gH(x) is [(ii) − gH]-differentiable if the type of gH-differentiability f(x) and f ′

gH(x)
are the different :

f ′′
ii.gH(x0;α) = [(f+)′′(x0;α) , (f−)′′(x0;α)], 0 ⩽ α ⩽ 1.
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In this paper, we assume that the notations Ck([a, b],RF ), k = 0, 1, 2 for the set of
fuzzy valued function f which are defined on [a, b] and it’s first k gH-derivative are fuzzy
continuous.

Theorem 2.8 [4] If f is gH-differentiable with no switching point in the interval [a, b],
then we have ∫ b

a
f ′
gH(x)dx = f(b)⊖gH f(a).

Theorem 2.9 [16] Consider g : [a, b] → J is real and differentiable function at x and
f : J → RF is gH-differentiable at the point g(x). Then we observe that

1. If f(x) is a [(i)− gH]−differentiable fuzzy function at the point g(x), then

(
f(g(x))

)′

i.gH
=


g′(x)� f ′

i.gH(g(x)), If g′(x) > 0

⊖(−1)g′(x)� f ′
i.gH(g(x)), If g′(x) < 0.

(4)

2. If f(x) is a [(ii)− gH]−differentiable fuzzy function at the point g(x) , then

(
f(g(x))

)′

ii.gH
=


g′(x)� f ′

ii.gH(g(x)), If g′(x) > 0.

⊖(−1)g′(x)� f ′
ii.gH(g(x)), If g′(x) < 0.

(5)

Remark 2 [16] By attention to Theorem 2.9, we conclude that

(
f(g(x))

)′

gH
=


g′(x)� f ′

gH(g(x)), If g′(x) > 0;

⊖(−1)g′(x)� f ′
gH(g(x)), If g′(x) < 0.

(6)

2.2 Generalized Hukuhara partial differentiation

In this section, some preliminary results related to the fuzzy generalized Hukuhara
partial derivatives are presented. The parametric representation of the fuzzy value func-
tion f : D → RF is expressed by f(x, t;α) = [f−(x, t;α), f+(x, t;α)], for all (x, t) ∈ D
and α ∈ [0, 1].

Definition 2.10 [2] Let (x0, t0) ∈ D, then the first generalized Hukuhara partial deriva-
tive ( [gH-p]-derivative for short) of a fuzzy value function f(x, t) : D → RF at (x0, t0)
with respect to variables x, t are the functions fxgH

(x0, t0) and ftgH (x0, t0) given by

fxgH
(x0, t0) = lim

h→0

f(x0 + h, t0)⊖gH f(x0, t0)

h
,

ftgH (x0, t0) = lim
k→0

f(x0, t0 + k)⊖gH f(x0, t0)

k
,

provided that fxgH
(x0, t0) and ftgH (x0, t0) ∈ RF .
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Definition 2.11 [2] Let f(x, t) : D → RF , (x0, t0) ∈ D. Also, assume f−(x, t;α) and
f+(x, t;α) are two real valued differentiable w.r.t. x. We say that

• f(x, t) is [(i)− p]-differentiable w.r.t. x at (x0, t0) if

fxi.gH
(x0, t0;α) = [f−

x (x0, t0;α) , f+
x (x0, t0;α)]. (7)

• f(x, t) is [(ii)− p]-differentiable w.r.t. x at (x0, t0) if

fxii.gH
(x0, t0;α) = [f+

x (x0, t0;α) , f−
x (x0, t0;α)]. (8)

Definition 2.12 [2] For any fixed ξ0, we say that (ξ0, t) ∈ D is a switching points for
the differentiability of f(x, t) with respect to x if in any neighborhood V of (ξ0, t) there
exist points (x1, t) < (ξ0, t) < (x2, t) such that

type I. at (x1, t) (7) holds while (8) does not hold and at (x2, t) (8) holds and (7) does
not hold for all t, or

type II. at (x1, t) (8) holds while (7) does not hold and at (x2, t) (7) holds and (8) does
not hold for all t.

Definition 2.13 [2] Let f(x, t) : D → RF , and ∂xf(x, t) is a [gH-p]-differentiable at
(x0, t0) ∈ D with respect to x. Moreover, there is not any switching point on D. We say
that

• fxgH
(x, t) is [(i)− p]-differentiable w.r.t x if the type of [gH-p]-differentiability of both

f(x, t) and fxgH
(x, t) are the same:

fxxi.gH
(x0, t0;α) = [f−

xx(x0, t0;α) f+
xx(x0, t0;α)].

• fxgH
(x, t) is [(ii)− p]-differentiable w.r.t x if the type of [gH-p]-differentiability f(x, t)

and fxgH
(x, t) are different:

fxxii.gH
(x0, t0;α) = [f+

xx(x0, t0;α) f−
xx(x0, t0;α)].

Lemma 2.14 [2] Consider f : D → RF as a fuzzy continuous function. Assume that f
is [gH-p]-differentiable with respect to t, with no switching point in the interval [a, t] and
fuzzy continuous, then we have∫ t

a
fsgH (x, s)ds = f(x, t)⊖gH f(x, a).

3. The fuzzy homogeneous wave equation in infinite interval

Consider the following fuzzy Cauchy one-dimensional homogeneous wave equation in
infinite intervaluttgH (x, t)⊖gH c2 � uxxgH

(x, t) = 0, (x, t) ∈ R× (0,∞),
u(x, 0) = f(x),
utgH (x, 0) = g(x),

(9)
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where 0 denotes the crisp set {0} and c ∈ R is called the wave speed. The functions f(x)
and g(x) are fuzzy functions and f ∈ C2(R,RF ), g ∈ C1(R,RF ).

The canonical form of the solution of (9) is u(x, t) = F (x+ ct)⊕G(x− ct), where F
and G can be any two twice generalized Hukuhara differentiable functions [16].

Based on the type of [gH−p]−differentiability with respect to t, we have the following
statements [16].

Case 1. If u(x, t) is [(i)− p]−differentiable with respect to t, the d’Alambert’s solution of
(9) is equal

u(x, t) =
1

2

(
f(x+ ct)⊕ f(x− ct)

)
⊕ 1

2c

∫ x+ct

x−ct
g(s)ds. (10)

Case 2. If u(x, t) is [(ii) − p]−differentiable with respect to t, therefore the d’Alambert
fuzzy solution of (9) is

u(x, t) =
1

2

(
f(x+ ct)⊕ f(x− ct)

)
⊖ (−1)

2c

∫ x+ct

x−ct
g(s)ds. (11)

Theorem 3.1 [16] Let T > 0 be a fixed constant. The homogeneous wave equation (9)
in the domain −∞ < x < ∞, 0 ⩽ t ⩽ T is well-posed for f ∈ C2(R,RF ), g ∈∈ C1(R,RF ).

4. The fuzzy wave equation on the half-line

Consider the following fuzzy Dirichlet problem on the half-line
uttgH (x, t)⊖gH c2 � uxxgH

(x, t) = 0, x > 0, t > 0,

u(x, 0) = f(x), utgH (x, 0) = g(x), x ⩾ 0,

u(0, t) = 0, t > 0.

(12)

For the vibrating string, the boundary condition of (12) means that the end of the string
at x = 0 is held fixed. We reduce the Dirichlet problem (12) to the whole line R by odd
reflection. Namely, we set

f̃(x) =


f(x), for x > 0,

0, for x = 0,

(−1)f(−x), for x < 0.

g̃(x) =


g(x), for x > 0,

0, for x = 0,

(−1)g(−x), for x < 0.

(13)

Then f̃ and g̃ are odd fuzzy function. Now, we have the following fuzzy wave equation
on the whole line with the extended initial data

ũttgH (x, t)⊖gH c2 � ũxxgH
(x, t) = 0, x ∈ R, t > 0,

ũ(x, 0) = f̃(x), ũtgH (x, 0) = g̃(x), x ⩾ 0,
(14)
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For x > 0, we have

ũ(x, 0) = f̃(x) = f(x), ũt(x, 0) = g̃(x) = g(x).

It remains to show that ũ(0, t) = 0. For this it suffices to show that u(x, t) is an odd
fuzzy function for all t > 0. Indeed, set v(x, t) = (−1)ũ(−x, t), hence by Remark 2 we
have

vx(x, t) = (−1)⊖ ũx(−x, t), vxx(x, t) = (−1)ũxx(−x, t),

vt(x, t) = (−1)ũt(−x, t), vtt(x, t) = (−1)ũtt(−x, t).

Hence,

vtt(x, t)⊖gH c2vxx(x, t) = (−1)
(
ũtt(−x, t)⊖gH c2ũxx(−x, t)

)
= 0

and

v(x, 0) = (−1)ũ(−x, 0) = (−1)f̃(−x) = f̃(x).

Also,

vt(x, 0) = (−1)ũt(−x, 0) = (−1)g̃(−x) = g̃(x).

So by (14), we can write v(x, t) = ũ(x, t), so ũ(x, t) = (−1)ũ(−x, t). We show that ũ(x, t)
is an odd fuzzy function in the variable x, and hence ũ(0, t) = 0 for t > 0.

Then defining the restriction of ũ(x, t) to the positive half-line x ⩾ 0,

u(x, t) = ũ(x, t)|x⩾0. (15)

We automatically have that u(0, t) = ũ(0, t) = 0. So, the boundary condition of the
Dirichlet problem (12) is satisfied for u. Obviously the initial conditions are satisfied as
well, since the restrictions of f̃(x) and g̃(x) to the positive half-line are f(x) and g(x)
respectively. Finally, u(x, t) solves the fuzzy wave equation for x > 0, since ũ(x, t) satisfies
the fuzzy wave equation for all x ∈ R, and in particular for x > 0. Thus, ũ(x, t) defined
by (15) is a solution of the Dirichlet problem (12).

Now we investigate the solution for different type of [gH − p]-differentiability.

Case 1. Consider u(x, t) is [(i) − p]−differentiable with respect to t so the d’Alambert’s
solution of (14) by (10) is equal

ũ(x, t) =
1

2

(
f̃(x+ ct)⊕ f̃(x− ct)

)
⊕ 1

2c

∫ x+ct

x−ct
g̃(s)ds.

Then, for x ⩾ 0 and t > 0, we have x+ ct > 0 , and f̃(x+ ct) = f(x+ ct).
a) If t > 0 and x − ct > 0 , then f̃(x − ct) = f(x − ct), and over the interval

s ∈ [x− ct, x+ ct], g̃(s) = g(s). Thus, for x > ct, we have

u(x, t) =
1

2

(
f(x+ ct)⊕ f(x− ct)

)
⊕ 1

2c

∫ x+ct

x−ct
g(s)ds.
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b) If t > 0 and x− ct < 0, then by (13) we observe that

f̃(x− ct) = (−1)f(−(x− ct)) = (−1)f(ct− x)

and g̃(s) = (−1)g(−s) for s < 0. So,

u(x, t) =
1

2

(
f(x+ ct)⊕ (−1)f(ct− x)

)
⊕ 1

2c

[ ∫ 0

x−ct
−g(−s)ds⊕

∫ x+ct

0
g(s)ds

]
.

Making the change of variables s 7→ −s in the first integral on the right, we
get

u(x, t) =
1

2

(
f(x+ ct)⊕ (−1)f(ct− x)

)
⊕ 1

2c

[ ∫ 0

ct−x
g(s)ds⊕

∫ x+ct

0
g(s)ds

]
=

1

2

(
f(x+ ct)⊕ (−1)f(ct− x)

)
⊕ 1

2c

∫ x+ct

ct−x
g(s)ds.

Combining the two expression for u(x, t) over the two regions, we arrive at the
[(i)− p]−differentiable solution

u(x, t) =


1
2

(
f(x+ ct)⊕ f(x− ct)

)
⊕ 1

2c

∫ x+ct
x−ct g(s)ds, for x > ct,

1
2

(
f(x+ ct)⊕ (−1)f(ct− x)

)
⊕ 1

2c

∫ x+ct
ct−x g(s)ds, for 0 < x < ct.

(16)

Case 2. If u(x, t) is a [(ii)− p]−differentiable with respect to t. According to the process
described in Case 1, we obtain the following [(ii)− p]−differentiable solution

u(x, t) =


1
2

(
f(x+ ct)⊕ f(x− ct)

)
⊖ (−1) 1

2c

∫ x+ct
x−ct g(s)ds, for x > ct,

1
2

(
f(x+ ct)⊕ (−1)f(ct− x)

)
⊖ (−1) 1

2c

∫ x+ct
ct−x g(s)ds, for 0 < x < ct.

(17)

5. Examples

In this section, we will use the above proposed method to solve different examples. The
computations associated with the examples are performed using Mathematica software.

Example 5.1 Consider the following fuzzy wave equation

uttgH (x, t)⊖gH 9� uxxgH
(x, t) = 0, x > 0, t > 0,

u(x, 0) = (1, 3, 4)x, utgH (x, 0) = (1, 3, 4)x, x ⩾ 0,
u(0, t) = 0, t > 0.
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Figure 1. Graph of u(x, t) of Example 5.1 for x > 3t (left) and for 0 < x < 3t (right) in α = 1
2

Figure 2. Graph of u(x, t) of Example 5.1 in α = 1
2
for x ∈ R

The [(i)− p]−differentiable solution of this equation for x > 3t

u(x, t) =
1

2

(
[1 + 2α, 4− α](x+ 3t)⊕ [1 + 2α, 4− α](x− 3t)

)
⊕ 1

6

[ ∫ x+3t

x−3t
(1 + 2α)sds,

∫ x+3t

x−3t
(4− α)sds

]
= [(1 + 2α)(t+ 1)x, (4− α)(t+ 1)x]

and for 0 < x < 3t, we have

u(x, t) =
1

2

(
[1 + 2α, 4− α](x+ 3t)⊕ (−1)[1 + 2α, 4− α](3t− x)

)
⊕ 1

6

[ ∫ x+3t

3t−x
(1 + 2α)sds,

∫ x+3t

3t−x
(4− α)sds

]
=

1

2

[
9t(α− 1) + x(5 + α) + (1 + 2α)tx,−9t(α− 1) + x(5 + α) + (4− α)tx

]
.

These solutions are illustrated in Figures 1 and 2.
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Figure 3. Graph of u(x, t) of Example 5.2 for x > t (left) and for 0 < x < t (right) in α = 1
3

Example 5.2 Consider the following fuzzy Dirichlet problem on the half-lineuttgH (x, t)⊖gH �uxxgH
(x, t) = 0, x > 0, t > 0,

u(x, 0) = (0, 4, 6)x, utgH (x, 0) = (−6,−2, 0)x, x ⩾ 0,
u(0, t) = 0, t > 0.

The [(ii)− p]−differentiable solution of this equation for x > t

u(x, t) =
1

2

(
[4α, 12− 8α](x+ t)⊕ [4α, 12− 8α](x− t)

)
⊖ (−1)

1

2

[ ∫ x+t

x−t
(−6 + 4α)sds,

∫ x+t

x−t
(−2α)sds

]
= [(2α)(2− t)x, (6− 4α)(2− t)x]

and for 0 < x < t by (17), we have

u(x, t) =
1

2

(
[4α, 12− 8α](x+ t)⊕ (−1)[4α, 12− 8α](t− x)

)
⊖ (−1)

1

2

[ ∫ x+t

t−x
(−6 + 4α)sds,

∫ x+t

t−x
(−2α)sds

]
=

[
− 2x(α− 3) + 6t(α− 1)− 2txα,−2x(α− 3)− 6t(α− 1)− tx(6− 4α)

]
.

The solutions are depicted in Figures 3 and 4.

6. Conclusion

In this paper a fuzzy solution for the fuzzy wave equation on the Half-line is introduced
under different type of generalized Hukuhara partial differentiability. The d’Alembert’s
formulas for fuzzy Dirichlet problem on the half-line obtained without embedding them
to crisp equations. To illustrate the technique, some examples are solved by this method
and analytical solution for the fuzzy wave equation is obtained.
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Figure 4. Graph of u(x, t) of Example 5.2 in α = 1
3
for x ∈ R
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