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Abstract. In this note, we study the following functional equations:

L(L(p, r) + L(q, r) + p+ q, r) + L(L(p, r) + p, r) + L(q, r) = 0,

L(L(p, r) + p+ q + e, r) + L(p, r) = L(p+ q, r) + pL(q, r),

and L(p, q) = L(ζp, q), |ζ| < 1, without any regularity assumption for all p, q, r ∈ A, where
L : A2 → A is defined by L(p, q) := g(p+q)−g(p)−g(q) for all p, q ∈ A. Also, we find general
solutions of the above functional equations on algebras, unital algebras and real numbers,
respectively. Finally, we investigate the stability of those functional equations in algebras and
unital algebras, respectively.
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1. Introduction

The stability theory of functional equations started from a problem of Ulam [16],
concerning the stability of group homomorphisms. Hyers [7] answered Ulam’s question
on Banach spaces in 1941 about additive mappings, which was an important step towards
more solutions in this field. Rassias [14] presented a generalization of Hyers’ Theorem
which lets the Cauchy difference to be unbounded.
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The theory of stability is an main branch of the theory of differential equations. Dur-
ing the last thirty years interesting results have been investigated on different types of
functional equations (see [8, 9, 12]).

The direct method presented by Hyers [7] is the most important and useful tool to study
the stability of several functional equations. The other important method is fixed point
alternative theorem, that is, the exact solution of the functional equation is explicitly
constructed as a fixed point of some certain map (see [11]).

In the 21st century, number of works have been published on different extensions
and applications of the stability to a number of functional inequalities and mappings,
for instance, Cauchy type functional equation, differential equations and generalized
orthogonality mappings (see [1, 10]).

In recent years, the stability of different (others functional, differential and integral)
equations and other subjects has been intensively studied (see [2–6, 15]).

Assume that X and Y are vector spaces. A mapping D : X → Y is named additive if
it satisfies D(p+ q) = D(p) +D(q) for all p, q ∈ X.

Theorem 1.1 [7] Let X be a real vector space and Y be a Banach space. If a mapping
σ : X → Y satisfies

∥σ(p+ q)− σ(p)− σ(q)∥ ⩽ ϵ

for some ϵ > 0 and for all p, q ∈ X, then there exists a unique additive mapping D :
X → Y such that ∥σ(p)−D(p)∥ ⩽ ϵ for all p ∈ X.

Theorem 1.2 [5] Suppose that H is an Abelian group and X is a Banach space. In
addition, assume that ψ : H ×H → [0,∞) is a function such that

Ψ(p, q) =

∞∑
k=0

2−kψ(2kp, 2kq) <∞

for all p, q ∈ H. If a mapping σ : H → X satisfies

∥σ(p+ q)− σ(p)− σ(q)∥ ⩽ ψ(p, q)

for any p, q ∈ H, then there exists a unique additive mapping D : H → X with

∥σ(p)−D(p)∥ ⩽ 1

2
Ψ(p, q)

for all p ∈ H. Furthermore, if σ(tp) is continuous in t for any fixed p in H, then D is a
linear mapping.

The essential goal of this note is to present the general solutions of the following
functional equations

L(L(p, r) + L(q, r) + p+ q, r) + L(L(p, r) + p, r) + L(q, r) = 0, (1)

L(L(p, r) + p+ q + e, r) + L(p, r) = L(p+ q, r) + pL(q, r) (2)

and

L(p, q) = L(ζp, q), |ζ| < 1 (3)
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without any regularity assumption for all p, q, r ∈ A, where L : A2 → A is defined by

L(p, q) := g(p+ q)− g(p)− g(q)

for all p, q ∈ A. Finally, we investigate the stability of (1), (2) and (3) in algebras and
unital algebras, respectively.

2. General solution of (1), (2) and (3)

In this section, we study the general solutions of (1), (2) and (3) without any regularity
condition.

Theorem 2.1 Let A be an algebra. The mapping g : A → A satisfies the functional
equation (1) for all p, q, r ∈ A if and only if g is additive.

Proof. It is clear that additivity implies (1). Conversely, we assume that g satisfying
(1), and we shall show that g is additive. Suppose that g is any function satisfying (1).
Letting r = 0 in (1), we obtain g(0) = 0, because L(p, 0) = −g(0) for all p ∈ A.

Putting q = 0 in (1), we get

L(L(p, r) + p, r) = 0 (4)

for all p, r ∈ A. Setting p = 0 in (1), we have

L(L(q, r) + q, r) + L(q, r) = 0 (5)

for all q, r ∈ A. Replacing q by p in (5), we obtain

L(L(p, r) + p, r) + L(p, r) = 0 (6)

for all p, r ∈ A. It follows from (4) and (6) that L(p, r) = 0 for all p, q, r ∈ A. Hence
g(p+ r) = g(p) + g(r) for all p, r ∈ A. ■

Lemma 2.2 [13] Let A be complex Banach algebra and f : A → A be an additive
mapping such that f(λp) = λf(p) for all λ ∈ T1 and all p ∈ A. Then f is linear over C.

Theorem 2.3 Let A be a unital algebra and g : A→ A be a mapping. Then g is linear
if and only if

Lµ(Lµ(p, r) + Lµ(q, r) + p+ q, r) + Lµ(Lµ(p, r) + p, r) + Lλ(q, r) = 0 (7)

for all p, q, r ∈ A and all λ, µ ∈ T1, where Lλ(p, q) := g(λ(p+ q))− λg(p)− λg(q).

Proof. It is clear that linearity implies (7). Conversely, assume that g satisfies (7), we
shall show that g is linear. Setting λ = µ = 1 in (7) and by Theorem 2.1, we conclude
that g is additive. Letting µ = 1 in (7), we arrive that

L(L(p, r) + L(q, r) + p+ q, r) + L(L(p, r) + p, r) + Lλ(q, r) = 0 (8)

for all p, q, r ∈ A and all λ ∈ T1. Suppose that g is any mapping satisfying (8). Then
setting r = 0 in (8), we obtain Lλ(q, 0) = 0 for all q ∈ A and all λ ∈ T1, because g is
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additive. Therefore, g(λq) = λg(q) for all q ∈ A and all λ ∈ T1. Hence by Lemma 2.2 g
is linear. ■

Theorem 2.4 Let A be a unital algebra. The mapping g : A→ A satisfies the functional
equation (2) for all p, q, r ∈ A if and only if g is additive.

Proof. It is clear that additivity implies (2). Conversely, we assume that g satisfying
(2), and we shall show that g is additive. Suppose that g is any function satisfies (2).
Setting r = 0 (2), we obtain g(0) = 0, since L(p, 0) = −g(0) for all p ∈ A. Set q = 0 in
(2), we get

L(L(p, r) + p+ e, r) = 0 (9)

for all p, r ∈ A. Next, let p = 0 in (9), we obtain L(e, r) = 0 for all r ∈ A. On the other
hand, put p = −q = e in (2), we get

L(L(e, r) + e, r) + L(e, r) = L(−e, r)

and thus, L(−e, r) = 0 for all r ∈ A, because L(e, r) = 0. Therefore, by letting p = −e
in (2), we have

L(q − e, r) = 2L(q, r) (10)

for all r ∈ A. On the other hand, taking p = 0 and replacing q by q− e in (2), we obtain

L(q − e, r) = L(q, r) (11)

for all r ∈ A. Together, (10) and (11) yield L(q, r) = 0 for all q, r ∈ A. Thus g is additive.
■

Theorem 2.5 Let A be a unital algebra and g : A→ A be a mapping. Then g is linear
if and only if

L(L(p, r) + p+ q + e, r) + Lλ(p, r) = L(p+ q, r) + pL(q, r) (12)

for all p, q, r ∈ A and all λ ∈ T1, where Lλ(p, q) = g(λ(p+ q))− λg(p)− λg(q).

Proof. It is clear that linearity implies (12). We assume that g satisfying (12), and we
shall show that g is linear. It is clear that for λ = 1 and using Theorem 2.4 we conclude
that g is additive. Suppose that g is any function satisfying (12). Then setting p = 0 in
(12), we obtain

Lλ(q, r) = 0 (13)

for all q, r ∈ A and all λ ∈ T1. Now putting r = 0 in (13), we get g(λq) = λg(q) for all
q ∈ A and all λ ∈ T1, because g is additive. Hence by Lemma 2.2 g is linear. ■

Theorem 2.6 Let g : R → R be a continuous mapping with g(0) = 0. Then g is linear
if and only if g satisfying (3).

Proof. It is evident that linearity implies (3). Conversely, assume that there exists
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ζ(|ζ| < 1) such that L(p, q) = L(ζp, q) for all p, q ∈ R. Thus,

g(p+ q) + g(ζp) = g(p) + g(ζp+ q) (14)

for all p, q ∈ R. Claim: Let n be a natural number. Then

g(p+ q) + g(ζnp) = g(p) + g(ζnp+ q) (15)

for all p, q ∈ R.
Proof of Claim: The proof can be done by applying method induction. By (14) the

base of induction for n = 1 holds. Now, we suppose that the inequality (15) holds to
n < k + 1. So

g(p+ q) + g(ζkp) = g(p) + g(ζkp+ q) (16)

for all p, q ∈ R. By replaycing p by ζkp in (14), we get

g(ζkp+ q) + g(ζk+1p) = g(ζkp) + g(ζk+1p+ q) (17)

Upon adding (16) and (17), we obtain

g(p+ q) + g(ζk+1p) = g(p) + g(ζk+1p+ q)

for all p, q ∈ R. Thus (15) holds for all n and all p, q ∈ R. Therefore,

g(p+ q) + lim
n→∞

g(ζnp) = g(p) + lim
n→∞

g(ζnp+ q)

for all p, q ∈ R. Since g(0) = 0 and g is continuous, we have g(p+ q) = g(p)+ g(q) for all
p, q ∈ R. Hence by Theorem 1.2 g is a linear mapping. ■

3. Stability of (1), (2) and (3)

In this section, we show the Hyers-Ulam stability of equations (1) and (2).
For a given mapping g : A→ A, we define

∆g(p, q, r) := L(L(p, r) + L(q, r) + p+ q, r) + L(L(p, r), r) + L(q, r)

and for A = R and if A is a unital algebra define

Γg(p, q, r) := L(L(p, r) + p+ q + e, r) + L(p, r)− L(p+ q, r)− pL(q, r)

for all p, q, r ∈ A.

Theorem 3.1 Let A be an algebra and g : A → A be a mapping with g(0) = 0 and
satisfies {

L(L(p, r) + L(q, r) + p+ q, r)) = 0
|∆g(p, q, r)| ⩽ δ.
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Then there exists a unique additive mapping D : A→ A such that |g(p)−D(p)| ⩽ δ for
all p ∈ A.

Proof. Since L(L(p, r)+L(q, r)+p+ q, r)) = 0, g(0) = 0 and |∆g(p, q, r)| ⩽ δ, set p = 0
in |∆g(p, q, r)| ⩽ δ, we obtain L(L(0, r), r) = L(−g(0), r) = L(0, r) = −g(0) = 0 and
thus |L(q, r)| ⩽ δ for all q, r ∈ A. Thus by Hyer’s Theorem 1.1, there exists a unique
additive map D : A→ A such that |g(p)−D(p)| ⩽ δ for all p ∈ A. ■

Theorem 3.2 Let g : R → R be a mapping satisfying{
L(L(p, r) + p+ q + e, r) = 0
|Γg(p, q, r)| ⩽ δ.

Then there exist a unique additive mappingD : R → R such that |g(p)−D(p)| ⩽ δ+|g(0)|
for all p ∈ R.

Proof. Since L(L(p, r)+p+q+e, r) = 0 and |Γg(p, q, r)| ⩽ δ, set p = 0 in |Γg(p, q, r)| ⩽
δ, we obtain |L(q, r) + g(0)| ⩽ δ for all q, r ∈ R. Therefore, |L(q, r)| ⩽ δ + |g(0)|.
Thus, by Hyer’s Theorem 1.1, there exists a unique additive map D : R → R such that
|g(p)−D(p)| ⩽ δ + |g(0)| for all p ∈ R. ■

Theorem 3.3 Let ζ ∈ R with |ζ| < 1, g : R → R be a continuous mapping with g(0) = 0

and ψ : R2 → [0,∞) be a function such that Ψ(p, q) =
∞∑

j,k=0

2−kψ(ζj2kp, 2kq) <∞ and

|g(p+ q) + g(ζp)− g(p)− g(ζp+ q)| ⩽ ψ(p, q) (18)

for all p, q ∈ R. Then there exists a linear mapping D : R → R such that

|g(p)−D(p)| ⩽ 1

2
Ψ(p, p) (19)

for all p ∈ R.

Proof. Let n be a natural number. We first claim

|g(p+ q) + g(ζnp)− g(p)− g(ζnp+ q)| ⩽
n−1∑
j=0

ψ(ζjp, q) (20)

for all p, q ∈ R. We verify it by induction on n. By (18) the base of induction for n = 1
holds. Next, we suppose that the inequality (20) holds for n < k + 1. So

|g(p+ q) + g(ζkp)− g(p)− g(ζkp+ q)| ⩽
k−1∑
j=0

ψ(ζjp, q) (21)

for all p, q ∈ R. Replaycing p by ζkp in (18), we get

|g(ζkp+ q) + g(ζk+1p)− g(ζkp)− g(ζk+1p+ q)| ⩽ ψ(ζkp, q). (22)
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Upon adding (21) and (22), we obtain

|g(p+ q) + g(ζk+1p)− g(p)− g(ζk+1p+ q)| ⩽
k∑
j=0

ψ(ζjp, q) (23)

for all p, q ∈ R. Thus (20) holds for all n and all p, q ∈ R. Therefore,

lim
n→∞

|g(p+ q) + g(ζnp)− g(p)− g(ζnp+ q)| ⩽ lim
n→∞

n−1∑
j=0

ψ(ζjp, q)

for all p, q ∈ R. Since g(0) = 0 and g is continuous, we have

|g(p+ q)− g(p)− g(q)| ⩽
∞∑
j=0

ψ(ζjp, q)

for all p, q ∈ R. Thus, By Theorem 1.2 there exists a linear mapping D : R → R such
that satisfying (19). ■
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