The triples of (v, u, ϕ)-contraction and (q, p, ϕ)-contraction in b-metric spaces and its application

E. L. Ghasab ${ }^{\mathrm{a}, *}$, H. A. Ebadizadeh ${ }^{\text {a }}$, J. Sharafi ${ }^{\text {a }}$
${ }^{\text {a }}$ Mathmatics Group, Faculty of Basic Sciences, Emam Ali University, Tehran, Iran.

Received 1 February 2022; Revised 4 March 2022; Accepted 9 March 2022.
Communicated by Ghasem Soleimani Rad

Abstract

The aim of this work is to introduce the concepts of (v, u, ϕ)-contraction and (q, p, ϕ)-contraction, and to obtain new results in fixed point theory for four mappings in b-metric spaces. Finally, we have developed an example and an application for a system of integral equations that protects the main theorems.

Keywords: b-metric space, ϕ-function, (v, u, ϕ)-contraction, (q, p, ϕ)-contraction.
2010 AMS Subject Classification: 54E50, 54A20, 47H10.

1. Introduction and preliminaries

We start this research with the definition of a b-metric on a non-empty set \mathcal{X}, which is introduced by Bakhtin [8] and Czerwik [7].

Definition 1.1 [7$]$ A mapping $d: \mathcal{X} \times \mathcal{X} \rightarrow[0,+\infty)$ is named a b-metric with a parameter $s \geqslant 1$ if, for all $x, y, z \in \mathcal{X}$, the following conditions are held:
(b1) $d(x, y)=0$ if and only if $x=y$;
(b2) $d(x, y)=d(y, x)$;
(b3) $d(x, z) \leqslant s[d(x, y)+d(y, z)]$.
In this case, (\mathcal{X}, d) is called a b-metric space.
Each metric space is a b-metric space with coefficient $s=1$. Therefore, the class of b-metric spaces is larger than the class of metric spaces.

[^0]Example 1.2 [T] For $p \in(0,1)$, take $X=l_{p}(\mathbb{R})=\left\{x=\left\{x_{n}\right\} \subset \mathbb{R}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty\right\}$. Define $d(x, y)=\left(\sum_{n=1}^{\infty}\left|x_{n}-y n\right|^{p}\right)^{\frac{1}{p}}$. Then (X, d) is a b-metric space with $s=2^{\frac{1}{p}}$.

Some of other definitions of convergent and Cauchy sequences, completeness, examples, applications and extensions of fixed point theory in this space are considered in [II, 3[5, [1, [4, [15] and references therein.
Definition 1.3 [0] Consider a b-metric space (\mathcal{X}, d) with a coefficient $s \geqslant 1$ and two selfmappings f and g on \mathcal{X}. Also, suppose that $\left\{x_{n}\right\}$ is a sequence in \mathcal{X} such that $\lim _{n \rightarrow \infty} f x_{n}=$ $\lim _{n \rightarrow \infty} g x_{n}=t$ for some $t \in \mathcal{X}$. The pair $\{f, g\}$ is called compatible iff $\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=$ 0 .

In this paper, we prove two new common fixed point theorems in b-metric spaces. Also, we support both main theorems with an example and an application of existence of a common solution for two systems of an integral equation.

2. Main results

Definition 2.1 The function $\phi:[0, \infty) \rightarrow[0, \infty)$ is named a ϕ-function if the following properties are held:
i) $\phi(t)=0 \Leftrightarrow t=0$;
ii) $\phi(t)<t$ for each $t \geqslant 0$.

The collection of all ϕ-functions will be denoted by Φ.
Example 2.2 Define a function $\phi:[0, \infty) \rightarrow[0, \infty)$ by $\phi(t)=\frac{t}{2}$ if $t \in[0, \infty)$. Then it is clear that ϕ is a ϕ-function.

First, we define the concept of a (v, u, ϕ)-contraction.
Definition 2.3 Consider a b-metric space (\mathcal{X}, d) with a parameter $s \geqslant 1$ and four selfmappings f, g, A and B on \mathcal{X}. If there exist a function $\phi \in \Phi$ and two constants $v \in\left(0, \frac{1}{s}\right)$ and $u \geqslant 0$ such that

$$
\begin{align*}
d(f x, g y) \leqslant & v \max \{\phi(d(f x, A x)), \phi(d(g y, B y)), \phi(d(A x, B y))\} \tag{1}\\
& +u \min \{d(f y, g y), d(f x, g x)\}
\end{align*}
$$

for each $x, y \in \mathcal{X}$, then (f, g, A, B) is called a (v, u, ϕ)-contraction.
Let $x_{0} \in \mathcal{X}$ be an optional point and f, g, A and B be four self-mappings so that $f(\mathcal{X}) \subseteq B(\mathcal{X}), g(\mathcal{X}) \subseteq A(\mathcal{X})$. Choose $x_{1} \in \mathcal{X}$ so that $f x_{0}=B x_{1}$ and $x_{2} \in \mathcal{X}$ so that $g x_{1}=A x_{2}$. This can be accomplished as $f(\mathcal{X}) \subseteq B(\mathcal{X})$ and $g(\mathcal{X}) \subseteq A(\mathcal{X})$. By continuing this process, we obtain a sequence $\left\{z_{n}\right\}$ introduced by $z_{2 n}=f x_{2 n}=B x_{2 n+1}$ and $z_{2 n+1}=g x_{2 n+1}=A x_{2 n+2}$ for all $n \geqslant 0$. The sequence $\left\{z_{n}\right\}$ is named a Jungck type iterative sequence with initial guess x_{0}.

Theorem 2.4 Assume that f, g, A and B are four self-mappings on a complete b-metric space \mathcal{X} with a parameter $s \geqslant 1$ provided that the pairs $\{f, A\}$ and $\{g, B\}$ are compatible, $f(\mathcal{X}) \subset B(\mathcal{X})$ and $g(\mathcal{X}) \subset A(\mathcal{X})$. If (f, g, A, B) is a (v, u, ϕ)-contraction, then f, g, A and B have a common fixed point in \mathcal{X} so that A and B are continuous.

Proof. Suppose x_{0} is an arbitrary point of \mathcal{X}. Construct Jungck type iterative sequence $\left\{z_{n}\right\}$ in \mathcal{X} with initial guess x_{0}. Now, we show that $\left\{z_{n}\right\}$ is a Cauchy sequence. From (四), we have

$$
\begin{align*}
d\left(z_{2 n}, z_{2 n+1}\right)= & \phi\left(d\left(f x_{2 n}, g x_{2 n+1}\right)\right) \tag{2}\\
\leqslant & v \max \left\{\phi\left(d\left(f x_{2 n}, A x_{2 n}\right)\right), \phi\left(d\left(g x_{2 n+1}, B x_{2 n+1}\right)\right), \phi\left(d\left(A x_{2 n}, B x_{2 n+1}\right)\right)\right\} \\
& +u \min \left\{d\left(f x_{2 n+1}, g x_{2 n+1}\right), d\left(f x_{2 n}, g x_{2 n}\right)\right\} \\
= & v \max \left\{\phi\left(d\left(z_{2 n}, z_{2 n-1}\right)\right), \phi\left(d\left(z_{2 n+1}, z_{2 n}\right)\right), \phi\left(d\left(z_{2 n-1}, z_{2 n}\right)\right)\right\} \\
& +u \min \left\{d\left(z_{2 n+1}, z_{2 n+1}\right), d\left(z_{2 n}, z_{2 n}\right)\right\} \\
= & v \max \left\{\phi\left(d\left(z_{2 n}, z_{2 n-1}\right)\right), \phi\left(d\left(z_{2 n+1}, z_{2 n}\right)\right)\right\} .
\end{align*}
$$

Now, let $\phi\left(d\left(z_{2 n}, z_{2 n+1}\right)\right)>\phi\left(d\left(z_{2 n-1}, z_{2 n}\right)\right)$. Then, by (Z $\left.\mathbb{Z}\right)$, we have $d\left(z_{2 n}, z_{2 n+1}\right)<$ $v \phi\left(d\left(z_{2 n}, z_{2 n+1}\right)\right)$, which is a contradiction. Hence, $\phi\left(d\left(z_{2 n}, z_{2 n+1}\right)\right) \leqslant \phi\left(d\left(z_{2 n-1}, z_{2 n}\right)\right)$, which implies by ((\mathbb{Z}) that

$$
\begin{equation*}
d\left(z_{2 n}, z_{2 n+1}\right) \leqslant v \phi\left(d\left(z_{2 n-1}, z_{2 n}\right)\right)<v d\left(z_{2 n-1}, z_{2 n}\right) \tag{3}
\end{equation*}
$$

By a similar argument, we have

$$
\begin{equation*}
d\left(z_{2 n-1}, z_{2 n}\right) \leqslant v \phi\left(d\left(z_{2 n-2}, z_{2 n-1}\right)\right)<v d\left(z_{2 n-2}, z_{2 n-1}\right) \tag{4}
\end{equation*}
$$

Now, from (3) and (\$), we get

$$
\left.d\left(z_{n}, z_{n-1}\right)\right) \leqslant v \phi\left(d\left(z_{n-1}, z_{n-2}\right)\right)<v d\left(z_{n-1}, z_{n-2}\right)
$$

for $n \geqslant 2$, where $0<v<\frac{1}{s}$. By induction, we have

$$
\begin{equation*}
d\left(z_{n}, z_{n-1}\right) \leqslant v^{n-1} d\left(z_{1}, z_{0}\right) \tag{5}
\end{equation*}
$$

for all $n \geqslant 2$. Now, we prove that $\left\{z_{n}\right\}$ is a Cauchy sequence. First we show that $\lim _{m, n \rightarrow \infty} d\left(z_{m}, z_{n}\right)=0$ for each $m, n \in \mathbb{N}$ with $m>n>1$. Then, by (b3), we get

$$
\begin{aligned}
d\left(z_{n}, z_{m}\right) \leqslant & s d\left(z_{n}, z_{n+1}\right)+s d\left(z_{n+1}, z_{m}\right) \\
\leqslant & s d\left(z_{n}, z_{n+1}\right)+s^{2} d\left(z_{n+1}, z_{n+2}\right)+s^{2} d\left(z_{n+2}, z_{m}\right) \\
\leqslant & s d\left(z_{n}, z_{n+1}\right)+s^{2} d\left(z_{n+1}, z_{n+2}\right)+\ldots+s^{m-n} d\left(z_{m-1}, z_{m}\right) \\
& \vdots \\
\leqslant & s v^{n}\left(1+s v+\ldots+s^{m-n-1} v^{m-n-1}\right) d\left(z_{0}, z_{1}\right) \quad(v s<1) \\
< & \frac{s v^{n}}{1-s v} d\left(z_{0}, z_{1}\right)
\end{aligned}
$$

which implies that $\lim _{m, n \rightarrow \infty} d\left(z_{n}, z_{m}\right)=0$. Hence, $\left\{z_{n}\right\}$ is a Cauchy sequence. Due to the completeness of the b-metric space, there exists $z \in \mathcal{X}$ so that $z_{n} \rightarrow z$ as $n \rightarrow \infty$. Thus,

$$
\lim _{n \rightarrow \infty} f x_{2 n}=\lim _{n \rightarrow \infty} B x_{2 n+1}=\lim _{n \rightarrow \infty} g x_{2 n+1}=\lim _{n \rightarrow \infty} A x_{2 n+2}=z
$$

Now we demonstrate that z is a common fixed point of f, g, A and B. Since A is continuous, we have $\lim _{n \rightarrow \infty} A^{2} x_{2 n+2}=A z$ and $\lim _{n \rightarrow \infty} A f x_{2 n}=A z$. Since f and A are compatible,

$$
\lim _{n \rightarrow \infty} d\left(f A x_{2 n}, A f x_{2 n}\right)=0
$$

Thus, we have $\lim _{n \rightarrow \infty} f A x_{2 n}=A z$. Consider $x=A x_{2 n}$ and $y=x_{2 n+1}$ in ((\mathbb{T}). Then, we get

$$
\begin{aligned}
d\left(f A x_{2 n}, g x_{2 n+1}\right) \leqslant & v \max \left\{\phi\left(d\left(f A x_{2 n}, A^{2} x_{2 n}\right)\right), \phi\left(d\left(g x_{2 n+1}, B x_{2 n+1}\right)\right), \phi\left(d\left(A^{2} x_{2 n}, B x_{2 n+1}\right)\right)\right\} \\
& +u \min \left\{d\left(f x_{2 n+1}, g x_{2 n+1}\right), d\left(f A x_{2 n}, g A x_{2 n}\right)\right\} \\
< & v \max \left\{d\left(f A x_{2 n}, A^{2} x_{2 n}\right), d\left(g x_{2 n+1}, B x_{2 n+1}\right), d\left(A^{2} x_{2 n}, B x_{2 n+1}\right)\right\} \\
& +u \min \left\{d\left(f x_{2 n+1}, g x_{2 n+1}\right), d\left(f A x_{2 n}, g A x_{2 n}\right)\right\} .
\end{aligned}
$$

Now, we have

$$
\lim _{n \rightarrow \infty} d\left(A f x_{2 n}, g x_{2 n+1}\right)=d(A z, z) \leqslant v \max \{\phi((A z, z)), 0,0\} .
$$

Consequently, $d(A z, z) \leqslant v d(A z, z)$ with $0<v<\frac{1}{s}$. Hence, $A z=z$. Similarly, since B is continuous and B and g are compatible, we get $B z=z$. Also, by (\mathbb{D}), we obtain

$$
\begin{aligned}
d\left(f z, g x_{2 n+1}\right) \leqslant & v \max \left\{\phi(d(f z, A z)), \phi\left(d\left(g x_{2 n+1}, B x_{2 n+1}\right)\right), \phi\left(d\left(A z, B x_{2 n+1}\right)\right)\right\} \\
& +u \min \left\{d\left(f x_{2 n+1}, g x_{2 n+1}\right), d(f z, g z)\right\} .
\end{aligned}
$$

By taking $n \rightarrow \infty$ and since $A z=B z=z$, we have

$$
d(f z, z) \leqslant v \max \{\phi(d(f z, z)), \phi(d(z, z))\}
$$

which induces that $f z=z$ (by $0<v<\frac{1}{s}$). Similarly $g z=z$. Thus, $A z=B z=f z=$ $g z=z$ and the proof ends.
Example 2.5 Consider a b-metric by $d(x, y)=|x-y|^{2}$ for all $x, y, \in \mathcal{X}=[0,1]$ with the parameter $s=2$. Define the mappings f, g, A and B on \mathcal{X} by $f(x)=x, g(x)=2 x$, $A(x)=4 x$ and $B(x)=8 x$. Clearly, $f(\mathcal{X}) \subset B(\mathcal{X})$ and $g(\mathcal{X}) \subset A(\mathcal{X})$. Also, two pairs $\{f, A\}$, and $\{g, B\}$ are compatible. Further, for $\phi(t)=\frac{t}{2}$ and for all $x, y \in \mathcal{X}$, we get

$$
\begin{aligned}
\phi(d(f x, g y))=|x-2 y|^{2}= & \frac{1}{16}\left(|4 x-8 y|^{2}\right) \\
= & \frac{1}{8} \phi(d(A x, B y)) \\
\leqslant & \frac{1}{8} \max \{\phi(d(f x, A x)), \phi(d(g z, B z)), \phi(d(A x, B y))\} \\
& +u \min \{d(f y, g y), d(f x, g x)\} .
\end{aligned}
$$

Hence, all conditions of Theorem [2.4 are held with $v=\frac{1}{8}$ and $u=0$. Obviously, f, g, A and B have a common fixed point at $x=0$.

Now, we define a new notion of contractions which is named a (q, p, ϕ)-contraction.
Definition 2.6 Consider a b-metric space (\mathcal{X}, d) with a parameter $s \geqslant 1$ and two mappings $f, g: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X}$ and two self-mappings T and R on \mathcal{X}. If there exist a ϕ-function
ϕ and two constants $q \in\left(0, \frac{1}{s}\right)$ and $p \geqslant 0$ so that

$$
\begin{align*}
d(f(x, y), g(w, z)) \leqslant & q \max \left\{\frac{1}{2}(\phi(d(R x, T w))-\phi(d(R y, T z)))\right. \\
& \frac{1}{2}(\phi(d(g(w, z), T w))-\phi(d(g(z, w), T z))) \\
& \left.\frac{1}{2}(\phi(d(f(x, y), R x))-\phi(d(f(y, x), R y)))\right\} \tag{6}\\
& +p \min \left\{\frac{1}{2}(d(f(w, z), g(w, z))+d(f(z, w), g(z, w)))\right. \\
& \left.\frac{1}{2}(d(f(x, y), g(x, y))+d(f(y, x), g(y, x)))\right\}
\end{align*}
$$

for each $x, y, z, w \in \mathcal{X}$, then (f, g, R, T) is named a (q, p, ϕ)-contraction.
In 2006, Bhaskar and Lakshmikantham [6] defined the concept of a coupled fixed point and proved some fixed point results for a mixed monotone mapping. For more details on coupled, tripled and n-tuple fixed point theorems, we refer to [8, 9, 13, 16, 17$]$ and references therein. The second result of this article is related to the existence of common coupled fixed point for four mappings.

Definition 2.7 [[2] Consider a nonempty set \mathcal{X} and mappings $F: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X}$ and $g: \mathcal{X} \rightarrow \mathcal{X} . F$ and g is said to be commutative if $F(g x, g y)=g(F(x, y))$ for each $x, y \in \mathcal{X}$.

In the sequel, denote $\mathcal{X} \times \cdots \times \mathcal{X}$ by \mathcal{X}^{n}, where \mathcal{X} is a non-empty set and $n \in \mathbb{N}$.
Lemma $2.8[8]$ Let (\mathcal{X}, d) be a b-metric space with a parameter $s \geqslant 1$. Then the following assertions hold:

1. $\left(\mathcal{X}^{n}, D\right)$ is a b-metric space with

$$
D\left(\left(x_{1}, \cdots, x_{n}\right),\left(y_{1}, \cdots, y_{n}\right)\right)=\max \left[d\left(x_{1}, y_{1}\right), d\left(x_{2}, y_{2}\right), \cdots, d\left(x_{n}, y_{n}\right)\right]
$$

2. The mappings $f: \mathcal{X}^{n} \rightarrow \mathcal{X}, g: \mathcal{X}^{n} \rightarrow \mathcal{X}, T: \mathcal{X} \rightarrow \mathcal{X}$ and $R: \mathcal{X} \rightarrow \mathcal{X}$ have a n-tuple common fixed point if and only if the mappings $F: \mathcal{X}^{n} \rightarrow \mathcal{X}^{n}$, $G: \mathcal{X}^{n} \rightarrow \mathcal{X}^{n}, \mathcal{T}: \mathcal{X}^{n} \rightarrow \mathcal{X}^{n}$ and $\mathcal{R}: \mathcal{X}^{n} \rightarrow \mathcal{X}^{n}$ defined by
$F\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(f\left(x_{1}, x_{2}, \cdots, x_{n}\right), f\left(x_{2}, \cdots, x_{n}, x_{1}\right), \cdots, f\left(x_{n}, x_{1}, \cdots, x_{n-1}\right)\right)$,
$G\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(g\left(x_{1}, x_{2}, \cdots, x_{n}\right), g\left(x_{2}, \cdots, x_{n}, x_{1}\right), \cdots, g\left(x_{n}, x_{1}, \cdots, x_{n-1}\right)\right)$,
$\mathcal{T}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(T x_{1}, T x_{2}, \cdots, T x_{n}\right), \mathcal{R}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(R x_{1}, R x_{2}, \cdots, R x_{n}\right)$
have a common fixed point in \mathcal{X}^{n}.
3 . (\mathcal{X}, d) is complete if and only if $\left(\mathcal{X}^{n}, D\right)$ is complete.
Note that the Lemma [2.8] is a two-way relationship. Thus, we can obtain n-tuple fixed point results from fixed point theorems and conversely.

The second result of this work is the following theorem.
Theorem 2.9 Assume that T and R are two mappings on a complete b-metric space \mathcal{X} with a parameter $s \geqslant 1$ and f and g are two mappings on $\mathcal{X} \times \mathcal{X}$ and provided that the pairs $\{f, R\}$ and $\{g, T\}$ are commutative and $f(\mathcal{X} \times \mathcal{X}) \subset T(\mathcal{X})$ and $g(\mathcal{X} \times \mathcal{X}) \subset R(\mathcal{X})$. If (f, g, R, T) is a (q, p, ϕ)-contraction, then f, g, R and T have a common coupled fixed point so that R and T are continuous.

Proof. Let us define $D: \mathcal{X}^{2} \times \mathcal{X}^{2} \rightarrow[0, \infty)$ by $D\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=$ $\max \left[d\left(x_{1}, y_{1}\right), d\left(x_{2}, y_{2}\right)\right], F, G: \mathcal{X}^{2} \rightarrow \mathcal{X}^{2}$ by $F(x, y)=(f(x, y), f(y, x))$ and $G(x, y)=$ $(g(x, y), g(y, x))$, and $\mathcal{T}, \mathcal{R}: \mathcal{X}^{2} \rightarrow \mathcal{X}^{2}$ by $\mathcal{T}(x, y)=(T x, T y)$ and $\mathcal{R}(x, y)=(R x, R y)$. Using Lemma [2.8, $\left(\mathcal{X}^{2}, D\right)$ is a complete b-metric space. Also, $(x, y) \in \mathcal{X}^{2}$ is a common coupled fixed point of f, g and T, R if and only if it is a common fixed point of F, G and \mathcal{T}, \mathcal{R}. On the other hands, from ($\boldsymbol{\sigma}^{2}$), we have either

$$
\begin{aligned}
D(F(x, y), G(w, z))= & D((f(x, y), f(y, x)),(g(w, z), g(z, w))) \\
= & \max [d(f(x, y), g(w, z)), d(f(y, x), g(z, w))] \\
= & d(f(x, y), g(w, z)) \\
\leqslant & q \max \left\{\frac{1}{2}(\phi(d(R x, T w))-\phi(d(R y, T z)))\right. \\
& \frac{1}{2}(\phi(d(g(w, z), T w))-\phi(d(g(z, w), T z))) \\
& \left.\frac{1}{2}(\phi(d(f(x, y), R x))-\phi(d(f(y, x), R y)))\right\} \\
& +p \min \left\{\frac{1}{2}(d(f(w, z), g(w, z))+d(f(z, w), g(z, w)))\right. \\
& \left.\frac{1}{2}(d(f(x, y), g(x, y))+d(f(y, x), g(y, x)))\right\} \\
\leqslant & q \max \{\phi(D(\mathcal{R}(x, y), \mathcal{T}(w, z))), \phi(D(G(x, y), \mathcal{T}(w, z))), \\
& \phi(D(F(x, y), \mathcal{R}(w, z)))\} \\
& +p \min \{D(F(w, z), G(w, z)), D(F(x, y), G(x, y))\}
\end{aligned}
$$

or

$$
\begin{aligned}
D(F(x, y), G(w, z))= & D((f(x, y), f(y, x)),(g(w, z), g(z, w))) \\
= & \max [d(f(x, y), g(w, z)), d(f(y, x), g(z, w))] \\
= & d(f(y, x), g(z, w)) \\
\leqslant & q \max \left\{\frac{1}{2}(\phi(d(R y, T z))-\phi(d(R x, T w)))\right. \\
& \frac{1}{2}(\phi(d(g(z, w), T z))-\phi(d(g(w, z), T w))) \\
& \left.\frac{1}{2}(\phi(d(f(y, x), R y))-\phi(d(f(x, y), R x)))\right\} \\
& +p \min \left\{\frac{1}{2}(d(f(z, w), g(z, w))+d(f(w, z), g(w, z)))\right. \\
& \left.\frac{1}{2}(d(f(y, x), g(y, x))+d(f(x, y), g(x, y)))\right\} \\
\leqslant & q \max \{\phi(D(\mathcal{R}(y, x), \mathcal{T}(z, w))), \phi(D(G(y, x), \mathcal{T}(z, w))), \\
& \phi(D(F(y, x), \mathcal{R}(z, w)))\} \\
& +p \min \{D(F(z, w), G(z, w)), D(F(y, x), G(y, x))\}
\end{aligned}
$$

Now, by Theorem [2.4, F, G, \mathcal{R} and \mathcal{T} have a common fixed point and by Lemma [2.8, f, g, R and T have a common coupled fixed point. This completes the proof.

3. Application

Assume the systems of integral equations:

$$
\left\{\begin{array}{l}
x(t)=\int_{a}^{b} M(t, s) K(s, x(s), y(s)) d s \tag{7}\\
y(t)=\int_{a}^{b} M(t, s) K(s, y(s), x(s)) d s
\end{array}\right.
$$

for all $t \in I=[a, b]$, where $M \in C(I \times I,[0, \infty))$ and $K \in C(I \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$. Also, let $C(I, \mathbb{R})$ be the Banach space of all real continuous functions considered on I with the sup norm. Consider the b-metric $d(x, y)=\|x-y\|^{2}$ for every $x, y \in C(I, \mathbb{R})$. Then the space $(C(I, \mathbb{R}), d)$ is a complete b-metric space with the parameter $s=2$.
Theorem 3.1 Let $(C(I, \mathbb{R}), d)$ be a complete b-metric space. Suppose $f: C(I, \mathbb{R}) \times$ $C(I, \mathbb{R}) \rightarrow C(I, \mathbb{R})$ is an operator such that

$$
f(x, y) t=\frac{1}{2}\left(\int_{a}^{b} M(t, s) K(s, x(s), y(s)) d s\right),
$$

where $M \in C(I \times I,[0, \infty))$ and $K \in C(I \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$ be an operator satisfying the following conditions:
(i) $\|K\|_{\infty}=\sup _{s \in I, x, y \in C(I, \mathbb{R})}|K(s, x(s), y(s))|<\infty$,
(ii) for every $x, y \in C(I, \mathbb{R})$ and all $t \in I$, we have

$$
\|K(t, x(t), y(t))-K(t, u(t), v(t))\| \leqslant \max _{t \in I}|x(t)-u(t)|^{2}-\max _{t \in I}|y(t)-v(t)|^{2}
$$

(iii) $\sup _{t \in I} \int_{a}^{b} M(t, s) d s<\frac{1}{s}$.

Then the system (\mathbb{I}) has a common solution.
Proof. Consider a complete b-metric $d(x, y)=\max _{t \in I}\left(|x(t)-y(t)|^{2}\right)$ for each $x, y \in$ $C(I, \mathbb{R})$. By a simple computation, we get

$$
\left.d(f(x, y), g(u, v)) \leqslant \frac{1}{2}[d(R x, T u))-d(R y, T v)\right]\left(\max _{s \in I} \int_{a}^{b} M(t, s) d s\right)
$$

for every $x, y, u, v \in C(I, \mathbb{R})$, where $f(x, y)=g(x, y)$ and $R x=T x=I x=x$. Let $q=\max _{s \in I} \int_{a}^{b} M(t, s) d s$ and $\phi(t)=t$. Then we conclude that

$$
\begin{aligned}
d(f(x, y), g(u, v)) \leqslant & q\left(\frac{1}{2}(\phi(d(R x, T u))-\phi(d(R y, T v))),\right. \\
& \leqslant q \max \left\{\frac{1}{2}(\phi(d(R x, T u))-\phi(d(R y, T v))),\right. \\
& \left.\frac{1}{2}(\phi(d(g(u, v), T u))-\phi(d(g(v, u), g(v, u), T v)))\right\}
\end{aligned}
$$

for every $x, y, u, v \in C(I, \mathbb{R})$. By applying Theorem 2.4 with $\phi(t)=t, p=0$ and $R x=$ $T x=I x=x$, the operators f and g have a common coupled fixed point, which is the common solution of the system ([T).

Acknowledgments

The authors wish to thank editor and referees for their helpful suggestions to improve this manuscript.

References

[1] H. Aydi, M-F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak- ϕ-contractions on b-metric spaces, Fixed Point Theory. 13 (2012), 337-346.
[2] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Ulianowsk Gos. Ped. Inst. 30 (1989), 26-37.
[3] M.-F. Bota, C. Chifu, E. Karapinar, Fixed point theorems for generalized ($\alpha-\psi$)-Ciric-type contractive multivalued operators in b-metric spaces, Abstr. Appl. Anal. (2014), 2014:246806.
[4] M-F. Bota, E. Karapinar, A note on "Some results on multi-valued weakly Jungck mappings in b-metric space", Cent. Eur. J. Math. 11 (2013), 1711-1712.
[5] M-F. Bota, E. Karapinar, O. Mlesnite, Ulam-Hyers stability results for fixed point problems via $\alpha-\psi-$ contractive mapping in b-metric space, Abstr. Appl. Anal. (2013), 2013:825293.
[6] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393.
[7] S. Czerwik, Contraction mappings in b-metric spaces, Acta. Math. Inform. Univ. Ostrav. 1 (1993), 5-11.
[8] E. L. Ghasab, H. Majani, E. Karapinar, G. Soleimani Rad, New fixed point results in F-quasi-metric spaces and an application, Adv. Math. Phys. (2020), 2020:9452350.
[9] E. L. Ghasab, H. Majani, G. Soleimani Rad, Integral type contraction and coupled fixed point theorems in ordered G-metric spaces, J. Linear. Topol. Algebra. 9 (2) (2020), 113-120.
[10] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986), 771-779.
[11] M.A. Kutbi, E. Karapinar, J. Ahmed, A. Azam, Some fixed point results for multi-valued mappings in b-metric spaces, J. Inequal. Appl. 2014, 2014:126.
[12] V. Lakshmikanthama, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), 4341-4349.
[13] H. Majani, R. Zaer Soleimani, J. Izadi, Coupled fixed point results for T-contractions on \mathcal{F}-metric spaces and an application, J. Linear. Topol. Algebra. 10 (1) (2021), 1-10.
[14] J. Rezaei Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized $(\Psi, \Phi)_{s}$-contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl. 2013, 2013:159.
[15] W. Shatanawi, A. Pitea, R. Lazović, Contraction conditions using comparison functions on b-metric spaces, Fixed Point Theory Appl. 2014, 2014:135.
[16] G. Soleimani Rad, H. Aydi, P. Kumam, H. Rahimi, Common tripled fixed point results in cone metric type spaces, Rend. Circ. Mat. Palermo. 63 (2014), 287-300.
[17] G. Soleimani Rad, S. Shukla, H. Rahimi, Some relations between n-tuple fixed point and fixed point results, RACSAM. 109 (2015), 471-481.

[^0]: *Corresponding author.
 E-mail address: e.l.ghasab@gmail.com (E. L. Ghasab); Ebadizadeh.h@gmail.com (H. A. Ebadizadeh); Javad_sharafi6@yahoo.com (J. Sharafi).

