Journal of Linear and Topological Algebra Vol. 11, No. 01, 2022, 39-46 DOR: 20.1001.1.22520201.2022.11.01.3.4 DOI: 10.30495/JLTA.2022.1951465.1463

The triples of (v, u, ϕ) -contraction and (q, p, ϕ) -contraction in *b*-metric spaces and its application

E. L. Ghasab^{a,*}, H. A. Ebadizadeh^a, J. Sharafi^a

^aMathmatics Group, Faculty of Basic Sciences, Emam Ali University, Tehran, Iran.

Received 1 February 2022; Revised 4 March 2022; Accepted 9 March 2022. Communicated by Ghasem Soleimani Rad

Abstract. The aim of this work is to introduce the concepts of (v, u, ϕ) -contraction and (q, p, ϕ) -contraction, and to obtain new results in fixed point theory for four mappings in *b*-metric spaces. Finally, we have developed an example and an application for a system of integral equations that protects the main theorems.

Keywords: *b*-metric space, ϕ -function, (v, u, ϕ) -contraction, (q, p, ϕ) -contraction. **2010 AMS Subject Classification**: 54E50, 54A20, 47H10.

1. Introduction and preliminaries

We start this research with the definition of a *b*-metric on a non-empty set \mathcal{X} , which is introduced by Bakhtin [2] and Czerwik [7].

Definition 1.1 [7] A mapping $d : \mathcal{X} \times \mathcal{X} \to [0, +\infty)$ is named a *b*-metric with a parameter $s \ge 1$ if, for all $x, y, z \in \mathcal{X}$, the following conditions are held:

- (b1) d(x, y) = 0 if and only if x = y;
- (b2) d(x,y) = d(y,x);
- (b3) $d(x,z) \leq s[d(x,y) + d(y,z)].$

In this case, (\mathcal{X}, d) is called a *b*-metric space.

Each metric space is a *b*-metric space with coefficient s = 1. Therefore, the class of *b*-metric spaces is larger than the class of metric spaces.

*Corresponding author.

© 2022 IAUCTB. http://jlta.iauctb.ac.ir

E-mail address: e.l.ghasab@gmail.com (E. L. Ghasab); Ebadizadeh.h@gmail.com (H. A. Ebadizadeh); Javad_sharafi6@yahoo.com (J. Sharafi).

Example 1.2 [1] For $p \in (0,1)$, take $X = l_p(\mathbb{R}) = \{x = \{x_n\} \subset \mathbb{R} : \sum_{n=1}^{\infty} |x_n|^p < \infty\}$. Define $d(x,y) = (\sum_{n=1}^{\infty} |x_n - yn|^p)^{\frac{1}{p}}$. Then (X,d) is a *b*-metric space with $s = 2^{\frac{1}{p}}$.

Some of other definitions of convergent and Cauchy sequences, completeness, examples, applications and extensions of fixed point theory in this space are considered in [1, 3–5, 11, 14, 15] and references therein.

Definition 1.3 [10] Consider a *b*-metric space (\mathcal{X}, d) with a coefficient $s \ge 1$ and two selfmappings f and g on \mathcal{X} . Also, suppose that $\{x_n\}$ is a sequence in \mathcal{X} such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = t$ for some $t \in \mathcal{X}$. The pair $\{f, g\}$ is called compatible iff $\lim_{n\to\infty} d(fgx_n, gfx_n) = 0$.

In this paper, we prove two new common fixed point theorems in *b*-metric spaces. Also, we support both main theorems with an example and an application of existence of a common solution for two systems of an integral equation.

2. Main results

Definition 2.1 The function $\phi : [0, \infty) \to [0, \infty)$ is named a ϕ -function if the following properties are held:

- i) $\phi(t) = 0 \Leftrightarrow t = 0;$
- ii) $\phi(t) < t$ for each $t \ge 0$.

The collection of all ϕ -functions will be denoted by Φ .

Example 2.2 Define a function $\phi : [0, \infty) \to [0, \infty)$ by $\phi(t) = \frac{t}{2}$ if $t \in [0, \infty)$. Then it is clear that ϕ is a ϕ -function.

First, we define the concept of a (v, u, ϕ) -contraction.

Definition 2.3 Consider a *b*-metric space (\mathcal{X}, d) with a parameter $s \ge 1$ and four selfmappings f, g, A and B on \mathcal{X} . If there exist a function $\phi \in \Phi$ and two constants $v \in (0, \frac{1}{s})$ and $u \ge 0$ such that

$$d(fx,gy) \leq v \max\{\phi(d(fx,Ax)), \phi(d(gy,By)), \phi(d(Ax,By))\}$$

$$+ u \min\{d(fy,gy), d(fx,gx)\}$$
(1)

for each $x, y \in \mathcal{X}$, then (f, g, A, B) is called a (v, u, ϕ) -contraction.

Let $x_0 \in \mathcal{X}$ be an optional point and f, g, A and B be four self-mappings so that $f(\mathcal{X}) \subseteq B(\mathcal{X}), g(\mathcal{X}) \subseteq A(\mathcal{X})$. Choose $x_1 \in \mathcal{X}$ so that $fx_0 = Bx_1$ and $x_2 \in \mathcal{X}$ so that $gx_1 = Ax_2$. This can be accomplished as $f(\mathcal{X}) \subseteq B(\mathcal{X})$ and $g(\mathcal{X}) \subseteq A(\mathcal{X})$. By continuing this process, we obtain a sequence $\{z_n\}$ introduced by $z_{2n} = fx_{2n} = Bx_{2n+1}$ and $z_{2n+1} = gx_{2n+1} = Ax_{2n+2}$ for all $n \ge 0$. The sequence $\{z_n\}$ is named a Jungck type iterative sequence with initial guess x_0 .

Theorem 2.4 Assume that f, g, A and B are four self-mappings on a complete *b*-metric space \mathcal{X} with a parameter $s \ge 1$ provided that the pairs $\{f, A\}$ and $\{g, B\}$ are compatible, $f(\mathcal{X}) \subset B(\mathcal{X})$ and $g(\mathcal{X}) \subset A(\mathcal{X})$. If (f, g, A, B) is a (v, u, ϕ) -contraction, then f, g, A and B have a common fixed point in \mathcal{X} so that A and B are continuous.

Proof. Suppose x_0 is an arbitrary point of \mathcal{X} . Construct Jungck type iterative sequence $\{z_n\}$ in \mathcal{X} with initial guess x_0 . Now, we show that $\{z_n\}$ is a Cauchy sequence. From (1), we have

$$d(z_{2n}, z_{2n+1}) = \phi(d(fx_{2n}, gx_{2n+1}))$$

$$\leq v \max\{\phi(d(fx_{2n}, Ax_{2n})), \phi(d(gx_{2n+1}, Bx_{2n+1})), \phi(d(Ax_{2n}, Bx_{2n+1}))\}$$

$$+ u \min\{d(fx_{2n+1}, gx_{2n+1}), d(fx_{2n}, gx_{2n})\}$$

$$= v \max\{\phi(d(z_{2n}, z_{2n-1})), \phi(d(z_{2n+1}, z_{2n})), \phi(d(z_{2n-1}, z_{2n}))\}$$

$$+ u \min\{d(z_{2n+1}, z_{2n+1}), d(z_{2n}, z_{2n})\}$$

$$= v \max\{\phi(d(z_{2n}, z_{2n-1})), \phi(d(z_{2n+1}, z_{2n}))\}.$$

$$(2)$$

Now, let $\phi(d(z_{2n}, z_{2n+1})) > \phi(d(z_{2n-1}, z_{2n}))$. Then, by (2), we have $d(z_{2n}, z_{2n+1}) < v\phi(d(z_{2n}, z_{2n+1}))$, which is a contradiction. Hence, $\phi(d(z_{2n}, z_{2n+1})) \leq \phi(d(z_{2n-1}, z_{2n}))$, which implies by (2) that

$$d(z_{2n}, z_{2n+1}) \leqslant v\phi(d(z_{2n-1}, z_{2n})) < vd(z_{2n-1}, z_{2n}).$$
(3)

By a similar argument, we have

$$d(z_{2n-1}, z_{2n}) \leqslant v\phi(d(z_{2n-2}, z_{2n-1})) < vd(z_{2n-2}, z_{2n-1}).$$
(4)

Now, from (3) and (4), we get

$$d(z_n, z_{n-1})) \leqslant v\phi(d(z_{n-1}, z_{n-2})) < vd(z_{n-1}, z_{n-2})$$

for $n \ge 2$, where $0 < v < \frac{1}{s}$. By induction, we have

$$d(z_n, z_{n-1}) \leqslant v^{n-1} d(z_1, z_0)$$
(5)

for all $n \ge 2$. Now, we prove that $\{z_n\}$ is a Cauchy sequence. First we show that $\lim_{m,n\to\infty} d(z_m, z_n) = 0$ for each $m, n \in \mathbb{N}$ with m > n > 1. Then, by (b3), we get

$$\begin{aligned} d(z_n, z_m) &\leqslant sd(z_n, z_{n+1}) + sd(z_{n+1}, z_m) \\ &\leqslant sd(z_n, z_{n+1}) + s^2 d(z_{n+1}, z_{n+2}) + s^2 d(z_{n+2}, z_m) \\ &\leqslant sd(z_n, z_{n+1}) + s^2 d(z_{n+1}, z_{n+2}) + \dots + s^{m-n} d(z_{m-1}, z_m) \\ &\vdots \\ &\leqslant sv^n (1 + sv + \dots + s^{m-n-1}v^{m-n-1}) d(z_0, z_1) \qquad (vs < 1) \\ &< \frac{sv^n}{1 - sv} d(z_0, z_1), \end{aligned}$$

which implies that $\lim_{m,n\to\infty} d(z_n, z_m) = 0$. Hence, $\{z_n\}$ is a Cauchy sequence. Due to the completeness of the *b*-metric space, there exists $z \in \mathcal{X}$ so that $z_n \to z$ as $n \to \infty$. Thus,

$$\lim_{n \to \infty} fx_{2n} = \lim_{n \to \infty} Bx_{2n+1} = \lim_{n \to \infty} gx_{2n+1} = \lim_{n \to \infty} Ax_{2n+2} = z.$$

Now we demonstrate that z is a common fixed point of f, g, A and B. Since A is continuous, we have $\lim_{n\to\infty} A^2 x_{2n+2} = Az$ and $\lim_{n\to\infty} Af x_{2n} = Az$. Since f and A are compatible,

$$\lim_{n \to \infty} d(fAx_{2n}, Afx_{2n}) = 0.$$

Thus, we have $\lim_{n\to\infty} fAx_{2n} = Az$. Consider $x = Ax_{2n}$ and $y = x_{2n+1}$ in (1). Then, we get

$$\begin{aligned} d(fAx_{2n}, gx_{2n+1}) &\leqslant v \max\{\phi(d(fAx_{2n}, A^2x_{2n})), \phi(d(gx_{2n+1}, Bx_{2n+1})), \phi(d(A^2x_{2n}, Bx_{2n+1}))\} \\ &+ u \min\{d(fx_{2n+1}, gx_{2n+1}), d(fAx_{2n}, gAx_{2n})\} \\ &< v \max\{d(fAx_{2n}, A^2x_{2n}), d(gx_{2n+1}, Bx_{2n+1}), d(A^2x_{2n}, Bx_{2n+1})\} \\ &+ u \min\{d(fx_{2n+1}, gx_{2n+1}), d(fAx_{2n}, gAx_{2n})\}. \end{aligned}$$

Now, we have

$$\lim_{n\to\infty} d(Afx_{2n},gx_{2n+1}) = d(Az,z) \leqslant v \max\{\phi((Az,z)),0,0\}$$

Consequently, $d(Az, z) \leq vd(Az, z)$ with $0 < v < \frac{1}{s}$. Hence, Az = z. Similarly, since B is continuous and B and g are compatible, we get Bz = z. Also, by (1), we obtain

$$d(fz, gx_{2n+1}) \leq v \max\{\phi(d(fz, Az)), \phi(d(gx_{2n+1}, Bx_{2n+1})), \phi(d(Az, Bx_{2n+1}))\} + u \min\{d(fx_{2n+1}, gx_{2n+1}), d(fz, gz)\}.$$

By taking $n \to \infty$ and since Az = Bz = z, we have

$$d(fz, z) \leqslant v \max\{\phi(d(fz, z)), \phi(d(z, z))\},\$$

which induces that fz = z (by $0 < v < \frac{1}{s}$). Similarly gz = z. Thus, Az = Bz = fz = gz = z and the proof ends.

Example 2.5 Consider a *b*-metric by $d(x, y) = |x - y|^2$ for all $x, y \in \mathcal{X} = [0, 1]$ with the parameter s = 2. Define the mappings f, g, A and B on \mathcal{X} by f(x) = x, g(x) = 2x, A(x) = 4x and B(x) = 8x. Clearly, $f(\mathcal{X}) \subset B(\mathcal{X})$ and $g(\mathcal{X}) \subset A(\mathcal{X})$. Also, two pairs $\{f, A\}$, and $\{g, B\}$ are compatible. Further, for $\phi(t) = \frac{t}{2}$ and for all $x, y \in \mathcal{X}$, we get

$$\begin{split} \phi(d(fx,gy)) &= |x - 2y|^2 = \frac{1}{16}(|4x - 8y|^2) \\ &= \frac{1}{8}\phi(d(Ax,By)) \\ &\leqslant \frac{1}{8}\max\{\phi(d(fx,Ax)),\phi(d(gz,Bz)),\phi(d(Ax,By))\} \\ &+ u\min\{d(fy,gy),d(fx,gx)\}. \end{split}$$

Hence, all conditions of Theorem 2.4 are held with $v = \frac{1}{8}$ and u = 0. Obviously, f, g, A and B have a common fixed point at x = 0.

Now, we define a new notion of contractions which is named a (q, p, ϕ) -contraction.

Definition 2.6 Consider a *b*-metric space (\mathcal{X}, d) with a parameter $s \ge 1$ and two mappings $f, g : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ and two self-mappings T and R on \mathcal{X} . If there exist a ϕ -function

 ϕ and two constants $q \in (0, \frac{1}{s})$ and $p \ge 0$ so that

$$d(f(x,y),g(w,z)) \leq q \max\{\frac{1}{2}(\phi(d(Rx,Tw)) - \phi(d(Ry,Tz))), \\ \frac{1}{2}(\phi(d(g(w,z),Tw)) - \phi(d(g(z,w),Tz))), \\ \frac{1}{2}(\phi(d(f(x,y),Rx)) - \phi(d(f(y,x),Ry)))\} \\ + p \min\{\frac{1}{2}(d(f(w,z),g(w,z)) + d(f(z,w),g(z,w))), \\ \frac{1}{2}(d(f(x,y),g(x,y)) + d(f(y,x),g(y,x)))\}$$

$$(6)$$

for each $x, y, z, w \in \mathcal{X}$, then (f, g, R, T) is named a (q, p, ϕ) -contraction.

In 2006, Bhaskar and Lakshmikantham [6] defined the concept of a coupled fixed point and proved some fixed point results for a mixed monotone mapping. For more details on coupled, tripled and *n*-tuple fixed point theorems, we refer to [8, 9, 13, 16, 17] and references therein. The second result of this article is related to the existence of common coupled fixed point for four mappings.

Definition 2.7 [12] Consider a nonempty set \mathcal{X} and mappings $F : \mathcal{X} \times \mathcal{X} \to \mathcal{X}$ and $g : \mathcal{X} \to \mathcal{X}$. F and g is said to be commutative if F(gx, gy) = g(F(x, y)) for each $x, y \in \mathcal{X}$.

In the sequel, denote $\mathcal{X} \times \cdots \times \mathcal{X}$ by \mathcal{X}^n , where \mathcal{X} is a non-empty set and $n \in \mathbb{N}$.

Lemma 2.8 [8] Let (\mathcal{X}, d) be a *b*-metric space with a parameter $s \ge 1$. Then the following assertions hold:

1. (\mathcal{X}^n, D) is a *b*-metric space with

$$D((x_1, \cdots, x_n), (y_1, \cdots, y_n)) = \max[d(x_1, y_1), d(x_2, y_2), \cdots, d(x_n, y_n)].$$

2. The mappings $f : \mathcal{X}^n \to \mathcal{X}, g : \mathcal{X}^n \to \mathcal{X}, T : \mathcal{X} \to \mathcal{X}$ and $R : \mathcal{X} \to \mathcal{X}$ have a *n*-tuple common fixed point if and only if the mappings $F : \mathcal{X}^n \to \mathcal{X}^n$, $G : \mathcal{X}^n \to \mathcal{X}^n, \mathcal{T} : \mathcal{X}^n \to \mathcal{X}^n$ and $\mathcal{R} : \mathcal{X}^n \to \mathcal{X}^n$ defined by

$$F(x_1, x_2, \dots, x_n) = (f(x_1, x_2, \dots, x_n), f(x_2, \dots, x_n, x_1), \dots, f(x_n, x_1, \dots, x_{n-1})),$$

$$G(x_1, x_2, \dots, x_n) = (g(x_1, x_2, \dots, x_n), g(x_2, \dots, x_n, x_1), \dots, g(x_n, x_1, \dots, x_{n-1})),$$

$$\mathcal{T}(x_1, x_2, \dots, x_n) = (Tx_1, Tx_2, \dots, Tx_n), \mathcal{R}(x_1, x_2, \dots, x_n) = (Rx_1, Rx_2, \dots, Rx_n)$$

have a common fixed point in \mathcal{X}^n .

3. (\mathcal{X}, d) is complete if and only if (\mathcal{X}^n, D) is complete.

Note that the Lemma 2.8 is a two-way relationship. Thus, we can obtain n-tuple fixed point results from fixed point theorems and conversely.

The second result of this work is the following theorem.

Theorem 2.9 Assume that T and R are two mappings on a complete *b*-metric space \mathcal{X} with a parameter $s \ge 1$ and f and g are two mappings on $\mathcal{X} \times \mathcal{X}$ and provided that the pairs $\{f, R\}$ and $\{g, T\}$ are commutative and $f(\mathcal{X} \times \mathcal{X}) \subset T(\mathcal{X})$ and $g(\mathcal{X} \times \mathcal{X}) \subset R(\mathcal{X})$. If (f, g, R, T) is a (q, p, ϕ) -contraction, then f, g, R and T have a common coupled fixed point so that R and T are continuous.

Proof. Let us define $D : \mathcal{X}^2 \times \mathcal{X}^2 \to [0,\infty)$ by $D((x_1,x_2),(y_1,y_2)) = \max[d(x_1,y_1),d(x_2,y_2)]$, $F, G: \mathcal{X}^2 \to \mathcal{X}^2$ by F(x,y) = (f(x,y),f(y,x)) and G(x,y) = (g(x,y),g(y,x)), and $\mathcal{T}, \mathcal{R}: \mathcal{X}^2 \to \mathcal{X}^2$ by $\mathcal{T}(x,y) = (Tx,Ty)$ and $\mathcal{R}(x,y) = (Rx,Ry)$. Using Lemma 2.8, (\mathcal{X}^2, D) is a complete b-metric space. Also, $(x,y) \in \mathcal{X}^2$ is a common coupled fixed point of f, g and T, \mathcal{R} if and only if it is a common fixed point of F, G and \mathcal{T}, \mathcal{R} . On the other hands, from (6), we have either

$$\begin{split} D(F(x,y),G(w,z)) &= D((f(x,y),f(y,x)),(g(w,z),g(z,w))) \\ &= \max[d(f(x,y),g(w,z)),d(f(y,x),g(z,w))] \\ &= d(f(x,y),g(w,z)) \\ &\leqslant q \max\{\frac{1}{2}(\phi(d(Rx,Tw)) - \phi(d(Ry,Tz))), \\ &\frac{1}{2}(\phi(d(g(w,z),Tw)) - \phi(d(g(z,w),Tz))), \\ &\frac{1}{2}(\phi(d(f(x,y),Rx)) - \phi(d(f(y,x),Ry)))\} \\ &+ p \min\{\frac{1}{2}(d(f(w,z),g(w,z)) + d(f(z,w),g(z,w))), \\ &\frac{1}{2}(d(f(x,y),g(x,y)) + d(f(y,x),g(y,x)))\} \\ &\leqslant q \max\{\phi(D(\mathcal{R}(x,y),\mathcal{T}(w,z))),\phi(D(G(x,y),\mathcal{T}(w,z))), \\ &\phi(D(F(x,y),\mathcal{R}(w,z)))\} \\ &+ p \min\{D(F(w,z),G(w,z)),D(F(x,y),G(x,y))\} \end{split}$$

or

$$\begin{split} D(F(x,y),G(w,z)) &= D((f(x,y),f(y,x)),(g(w,z),g(z,w))) \\ &= \max[d(f(x,y),g(w,z)),d(f(y,x),g(z,w))] \\ &= d(f(y,x),g(z,w)) \\ &\leqslant q \max\{\frac{1}{2}(\phi(d(Ry,Tz)) - \phi(d(Rx,Tw)))), \\ &\quad \frac{1}{2}(\phi(d(g(z,w),Tz)) - \phi(d(g(w,z),Tw)))), \\ &\quad \frac{1}{2}(\phi(d(f(y,x),Ry)) - \phi(d(f(x,y),Rx))))\} \\ &\quad + p \min\{\frac{1}{2}(d(f(z,w),g(z,w)) + d(f(w,z),g(w,z))), \\ &\quad \frac{1}{2}(d(f(y,x),g(y,x)) + d(f(x,y),g(x,y)))\} \\ &\leqslant q \max\{\phi(D(\mathcal{R}(y,x),\mathcal{T}(z,w))),\phi(D(G(y,x),\mathcal{T}(z,w))), \\ &\quad \phi(D(F(y,x),\mathcal{R}(z,w)))\} \\ &\quad + p \min\{D(F(z,w),G(z,w)),D(F(y,x),G(y,x)))\} \end{split}$$

Now, by Theorem 2.4, F, G, \mathcal{R} and \mathcal{T} have a common fixed point and by Lemma 2.8, f, g, R and T have a common coupled fixed point. This completes the proof.

3. Application

Assume the systems of integral equations:

$$\begin{cases} x(t) = \int_{a}^{b} M(t,s)K(s,x(s),y(s))ds, \\ y(t) = \int_{a}^{b} M(t,s)K(s,y(s),x(s))ds \end{cases}$$
(7)

for all $t \in I = [a, b]$, where $M \in C(I \times I, [0, \infty))$ and $K \in C(I \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$. Also, let $C(I,\mathbb{R})$ be the Banach space of all real continuous functions considered on I with the sup norm. Consider the \hat{b} -metric $d(x,y) = ||x-y||^2$ for every $x, y \in C(I,\mathbb{R})$. Then the space $(C(I, \mathbb{R}), d)$ is a complete *b*-metric space with the parameter s = 2.

Theorem 3.1 Let $(C(I,\mathbb{R}),d)$ be a complete *b*-metric space. Suppose $f: C(I,\mathbb{R}) \times$ $C(I,\mathbb{R}) \to C(I,\mathbb{R})$ is an operator such that

$$f(x,y)t = \frac{1}{2} (\int_{a}^{b} M(t,s)K(s,x(s),y(s))ds),$$

where $M \in C(I \times I, [0, \infty))$ and $K \in C(I \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$ be an operator satisfying the following conditions:

- $\begin{array}{ll} (\mathrm{i}) & ||K||_{\infty} = \sup_{s \in I, \ x, y \in C(I, \mathbb{R})} |K(s, x(s), y(s))| < \infty, \\ (\mathrm{ii}) & \text{for every } x, y \in C(I, \mathbb{R}) \text{ and all } t \in I, \text{ we have } \end{array}$

$$||K(t, x(t), y(t)) - K(t, u(t), v(t))|| \leq \max_{t \in I} |x(t) - u(t)|^2 - \max_{t \in I} |y(t) - v(t)|^2,$$

(iii) $\sup_{t\in I}\int_a^b M(t,s)ds < \frac{1}{s}.$

Then the system (7) has a common solution.

Proof. Consider a complete b-metric $d(x,y) = \max_{t \in I} (|x(t) - y(t)|^2)$ for each $x, y \in I$ $C(I,\mathbb{R})$. By a simple computation, we get

$$d(f(x,y),g(u,v)) \leqslant \frac{1}{2} [d(Rx,Tu)) - d(Ry,Tv)](\max_{s \in I} \int_a^b M(t,s)ds)$$

for every $x, y, u, v \in C(I, \mathbb{R})$, where f(x, y) = g(x, y) and Rx = Tx = Ix = x. Let $q = \max_{s \in I} \int_a^b M(t,s) ds$ and $\phi(t) = t$. Then we conclude that

$$\begin{split} d(f(x,y),g(u,v)) &\leqslant q(\frac{1}{2}(\phi(d(Rx,Tu)) - \phi(d(Ry,Tv)))), \\ &\leqslant q \max\{\frac{1}{2}(\phi(d(Rx,Tu)) - \phi(d(Ry,Tv)))), \\ &\frac{1}{2}(\phi(d(g(u,v),Tu)) - \phi(d(g(v,u),g(v,u),Tv))))\} \end{split}$$

for every $x, y, u, v \in C(I, \mathbb{R})$. By applying Theorem 2.9 with $\phi(t) = t, p = 0$ and Rx = 0Tx = Ix = x, the operators f and g have a common coupled fixed point, which is the common solution of the system (7).

Acknowledgments

The authors wish to thank editor and referees for their helpful suggestions to improve this manuscript.

References

- [1] H. Aydi, M-F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak- ϕ -contractions on b-metric spaces, Fixed Point Theory. 13 (2012), 337-346.
- [2] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Ulianowsk Gos. Ped. Inst. 30 (1989), 26-37.
- [3] M.-F. Bota, C. Chifu, E. Karapinar, Fixed point theorems for generalized $(\alpha \psi)$ -Ciric-type contractive multivalued operators in b-metric spaces, Abstr. Appl. Anal. (2014), 2014:246806.
- [4] M-F. Bota, E. Karapinar, A note on "Some results on multi-valued weakly Jungck mappings in b-metric space", Cent. Eur. J. Math. 11 (2013), 1711-1712.
- [5] M-F. Bota, E. Karapinar, O. Mesnite, Ulam-Hyers stability results for fixed point problems via $\alpha \psi$ contractive mapping in b-metric space, Abstr. Appl. Anal. (2013), 2013:825293.
- [6] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393.
- S. Czerwik, Contraction mappings in b-metric spaces, Acta. Math. Inform. Univ. Ostrav. 1 (1993), 5-11.
- E. L. Ghasab, H. Majani, E. Karapinar, G. Soleimani Rad, New fixed point results in F-quasi-metric spaces and an application, Adv. Math. Phys. (2020), 2020:9452350.
- [9] E. L. Ghasab, H. Majani, G. Soleimani Rad, Integral type contraction and coupled fixed point theorems in ordered G-metric spaces, J. Linear. Topol. Algebra. 9 (2) (2020), 113-120.
- [10] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986), 771-779.
- [11] M.A. Kutbi, E. Karapinar, J. Ahmed, A. Azam, Some fixed point results for multi-valued mappings in b-metric spaces, J. Inequal. Appl. 2014, 2014:126.
- [12] V. Lakshmikanthama, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), 4341-4349.
- [13] H. Majani, R. Zaer Soleimani, J. Izadi, Coupled fixed point results for T-contractions on F-metric spaces and an application, J. Linear. Topol. Algebra. 10 (1) (2021), 1-10.
- [14] J. Rezaei Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized $(\Psi, \Phi)_s$ -contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl. 2013, 2013:159.
- [15] W. Shatanawi, A. Pitea, R. Lazović, Contraction conditions using comparison functions on b-metric spaces, Fixed Point Theory Appl. 2014, 2014:135.
- [16] G. Soleimani Rad, H. Aydi, P. Kumam, H. Rahimi, Common tripled fixed point results in cone metric type spaces, Rend. Circ. Mat. Palermo. 63 (2014), 287-300.
- [17] G. Soleimani Rad, S. Shukla, H. Rahimi, Some relations between n-tuple fixed point and fixed point results, RACSAM. 109 (2015), 471-481.