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Abstract. Let A and U be Banach algebras, θ be a nonzero character on A and let A×θ U
be the corresponding Lau product Banach algebra. In this paper we investigate derivations
and multipliers of A×θ U and study the automatic continuity of these maps. We also study
continuity of the derivations for some special cases of U and the Banach (A×θ U)-bimodule X
and establish various results in this respect. Some of the results are devoted to find conditions
under which one can represent a derivation on A×θ U as sum of two derivations in such a
way that one of them is continuous. Some examples are also given.
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1. Introduction

Let A be a Banach algebra (over C), and X be a Banach A-bimodule. A linear map
D : A → X is said to be a derivation if D(ab) = aD(b) + D(a)b for all a, b ∈ A. For
any x ∈ X , the map adx : A → X given by adx(a) = ax− xa is a continuous derivation
called inner. For a derivation D : A → A, the corresponding generalized D-derivation is
a linear map δ : X → X satisfying δ(xa) = δ(x)a+ xD(a) for all a ∈ A and x ∈ X .

One of the most well-known problems related to theory of derivations is to find some
conditions which force them to be automatically continuous. This theory has been an
active field of research during the recent decades, studied intensively by many authors
from different points of view; (see for example, [7–13, 20, 21, 23, 25, 27]). For a full account
on the subject, the reader can refer to [6] which is a comprehensive source in this context.
A well-known result due to Johnson and Sinclair [16] asserts that every derivation on a
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semisimple Banach algebra is continuous. Ringrose [24] proved that every derivation from
a C∗-algebra A into a Banach A-bimodule X is continuous. The automatic continuity of
derivations of some special classes of Banach algebras is studied by several authors (see
[2, 5, 14, 28, 29]).

Another notion studied in the present paper is that of multiplier of Lau product
A×θ U . Recall that a multiplier on a Banach algebra A is a linear map T : A → A
satisfying aT (b) = T (a)b for all a, b ∈ A. A is said to be faithful, if for any x ∈ A,
Ax = {0} = xA implies that x = 0. It is well-known and easy to show that if A is
faithful, then every multiplier on A is continuous. The notion of multiplier was originally
introduced by Helgason [15] and then was developed by Wang [30] and Birtal [3]. One
can also refer to [17, 19].

Let A and U be two Banach algebras and θ : A → C be a nontrivial character. If we
consider the space A× U with the usual C-module structure, the multiplication

(a, u)(a′, u′) = (aa′, θ(a)u′ + θ(a′)u+ uu′), (a, a′ ∈ A, u, u′ ∈ U)

with the norm

||(a, u)|| = ||a||+ ||u||,

turn A×U into a Banach algebra called Lau product Banach algebra, which is denoted
by A×θ U .

Lau Banach algebras were firstly introduced by T. Lau in [18] for special classes of
Banach algebras that are predual of a von Neumann algebra, and subsequently developed
by S. Monfared [22] in the general case.

Let X be a Banach (A×θ U)-bimodule. Then X is a Banach A-bimodule by defining
module operations in a natural fashion;

a · x = (a, 0)x, x · a = x(a, 0), (a ∈ A, x ∈ X ).

Similarly X turns into a Banach U-bimodule via the module actions given by

u · x = (0, u)x, x · u = x(0, u) (u ∈ U , x ∈ X ).

For a linear map T : X → Y between two Banach spaces X and Y, a key notion to
study its continuity is the separating space S(T ) defined as

S(T ) := {y ∈ Y | there is {xn} ⊆ X with xn → 0, T (xn) → y}.

It is clear by the closed graph theorem that T is continuous if and only if S(T ) = {0}.
Let D : A → X be a derivation. Then the two-sided continuity ideal of D is defined

to be

I(D) = {a ∈ A : aS(D) = S(D)a = 0}.

Note that a derivation need not be continuous on I(D). But rather it is bounded as a
bilinear form. However, if I(D) has a bounded approximate identity, then the restriction
of D to its continuity ideal I(D) is continuous.
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Let A be a Banach algebra and X and Y be Banach A-bimodules. Z(A), denotes the
center of A and for S ⊆ X ,

ZS(A) = {s ∈ S : sa = as for all a ∈ A}.

Also, the annihilator of A over S, denoted by annSA is defined to be

annSA := {s ∈ S : sA = As = {0}}.

Similarly for a subset D ⊆ A we write,

annXD := {x ∈ X : xD = Dx = {0}}.

This paper is organized as follows. In section 2, we shall focus on the derivations
D : A×θ U → X and determine the general structure of them. Then, we obtain some
conditions under which these maps are automatically continuous and establish various
results in this context. Since inner derivations form an important class of automatically
continuous derivations, some of the results are devoted to investigate the inner-ness of the
derivations. Then in section 3, we apply our results to study the continuity of derivation
D : A×θ U → X for some special cases of U and X and give some examples. We would
also like to find conditions under which a derivation D : A×θ U → A×θ U can be
represented as sum of a continuous derivation and another derivation. In section 4, we
shall focus on the multipliers of Lau products and we obtain some results concerning
continuity of them.

2. The derivations of A ×θ U

In this section we study the derivations of A×θ U and investigate continuity of them.
Throughout, A,U are Banach algebras, θ is a nonzero character on A, A×θU denotes the
corresponding Lau product and X is a Banach (A ×θ U)-bimodule. We commence this
section with the following proposition characterizing the derivations from Lau Banach
algebras into their Banach bimodules.

Proposition 2.1 Let D : A ×θ U → X be a linear map. The following statements are
equivalent.

(1) D is a derivation.
(2) There are linear maps δ1 : A → X and δ2 : U → X with

D(a, u) = δ1(a) + δ2(u) (a ∈ A, u ∈ U),

such that δ1 and δ2 are derivations satisfying the following equation

aδ2(u) + δ1(a)u = θ(a)δ2(u) = δ2(u)a+ uδ1(a) (a ∈ A, u ∈ U).

Proof. (1) =⇒ (2) Suppose that D : A×θU → X is a derivation. Define linear maps δ1
and δ2 respectively by δ1(a) = D(a, 0) and δ2(u) = D(0, u). HenceD(a, u) = δ1(a)+δ2(u).
If we apply D on both sides of (a, u)(a′, u′) = (aa′, θ(a)u′ + θ(a′)u+ uu′), then it is easy
to see that δ1, δ2 are derivations satisfying the above equation.

(2) =⇒ (1) Follows from a straightforward verification. ■
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In view of the above proposition, for any derivation D : A×θ U → X , one can write
D = δ1 + δ2 where δ1, δ2 are as in the proposition. We note that as inner derivations are
continuous by definition, if we show that a given derivation D is inner, this implies that
D is continuous. In the following result we describe inner derivations of A×θ U .

Proposition 2.2 Let D : A×θ U → X be a derivation with D = δ1 + δ2. Then

(1) If D is inner, then δ1 and δ2 are inner.
(2) If δ1 = adx0

and δ2 = ady0
, then D = adz0 for some z0 ∈ X if and only if

z0 − x0 ∈ ZX (A) and z0 − y0 ∈ ZX (U).

Proof.

(1) SinceD is inner there exists some x0 ∈ X for whichD = adx0
= (a, u)x0−x0(a, u)

for all a ∈ A and u ∈ U . If we substitute a = 0, we get δ2(u) = ux0 − x0u for all
u ∈ U . Similarly if u = 0, then we have δ1(a) = ax0 − x0a for all a ∈ A. Thus δ1
and δ2 are inner.

(2) Suppose that δ1 = adx0
and δ2 = ady0

and there exists z0 ∈ X such thatD = adz0 .
We show that z0 − y0 ∈ ZX (U). Note that

(a, u)z0 − z0(a, u) = ax0 − x0a+ uy0 − y0u.

for all a ∈ A and u ∈ U . Substituting a = 0 we have u(z0−y0) = (z0−y0)u for all
u ∈ U . Thus (z0−y0) ∈ ZX (U). Analogously one can show that z0−x0 ∈ ZX (A).
The converse is clear.

■

It is clear from the above proposition that if δ1, δ2 are inner derivations induced by
the same element x0 (i.e., δ1 = adx0

and δ2 = adx0
), then D is always inner since one

can take z0 = x0. However, it may happen that δ1 and δ2 are inner but D is not, as the
following example shows.

Example 2.3 Consider that Banach algebra A of upper triangular 3 × 3 real matrices
with 0 on the diagonal. So A3 = 0 but A2 ̸= 0. Let a0, b0 be respectively a non-central
and a central elements of A. Define δ1, δ2 : A → A respectively by δ1(a) = aa0−a0a and
δ2(a) = ab0 − b0a = 0. Then δ1, δ2 are inner but D : A×θ A → A with D(a, b) = δ1(a) +
δ2(b) is a derivation which is not inner. To show this, assume towards a contradiction
that D = adc0 for some c0 ∈ A. Then by Proposition 2.2, c0 − a0, c0 − b0 ∈ Z(A) and so
a0 ∈ Z(A), a contradiction.

It is worthwhile to mention that the above example can be extended to a general case
by considering A to be any non-commutative Banach algebra with A3 = 0.

The next result is a consequence of Proposition 2.1.

Proposition 2.4 Let A and U be Banach algebras and X be a Banach (A×θ U)-
bimodule. Then

(1) Every derivation δ : A → X with δ(A) ⊆ annXU extends to a derivation δ̃ :
A ×θ U → X . In such a case, δ̃ is continuous if and only if δ is continuous.
Moreover, if δ = adx0

for some x0 ∈ ZX (U), then so is δ̃.

(2) Every derivation D : U → X gives rise to a derivation D̃ : A ×θ U → X . D̃
is continuous if and only if D is continuous. Moreover, if D = adx0

for some

x0 ∈ ZX (A), then so is D̃.
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Proof.

(1) It is clear that by the following module actions X turns into a Banach (A×θ U)-
bimodule,

x · (a, u) = xa, (a, u) · x = ax,

for all a ∈ A, u ∈ U and x ∈ X . Define δ̃ : A ×θ U → X by δ̃(a, u) = δ(a).
Since δ(A) ⊆ annXU , we note that by Proposition 2.1 δ̃ is a derivation. If δ is
continuous, then so is δ̃. Now if δ = adx0

for some x0 ∈ ZX (U), then

δ̃(a, u) = (a, u)x0 − x0(a, u)

= adx0
(a, u) (a ∈ A, u ∈ U).

(2) Suppose that D : U → X is a derivation. Then the module actions given by

x · (a, u) = θ(a)x+ xu, (a, u) · x = θ(a)x+ ux, ((a, u) ∈ A× U , x ∈ X ),

makes X a Banach (A×θ U)-bimodule. Define D̃ : A×θ U → X by D̃(a, u) =
D(u) for all a ∈ A, u ∈ U . So

D̃((a, u))(a′, u′)) = θ(a′)D(u) +D(u)u′ + θ(a)D(u′) + uD(u′)

= D(u)(a′, u′) + (a, u)D(u′)

= D̃((a, u))(a′, u′) + (a, u)D̃((a′, u′)), (a, a′ ∈ A, u, u′ ∈ U).

implying that D̃ is a derivation. Moreover, if D = adx0
for some x0 ∈ ZX (A),

D̃(a, u) = D(u)

= (a, u)x0 − x0(a, u) = adx0
(a, u), (a ∈ A, u ∈ U).

This completes the proof. ■

Note that in the preceding proposition the inner-ness of δ̃ (resp. D̃) implies that of δ
(resp. D). This follows directly from Proposition 2.2-(1). We now investigate the rela-
tionship between the separating spaces of δ1, δ2 and apply the results to study continuity
of derivations.

Theorem 2.5 Let D : A×θ U → X be a derivation and δ1, δ2 be as in Proposition 2.1.
Then

(1) S(δ1) is an A-subbimodule of X and S(δ1) ⊆ annXU .
(2) S(δ2) is a symmetric A-subbimodule of X and S(δ2) ⊆ ZX (A). Moreover S(δ2)

is a U-subbimodule of X , too.

Proof.

(1) We only prove the given inclusion. Let x0 ∈ S(δ1). Then there exists some se-
quence an in A such that an → 0 and δ1(an) → x0. We have

δ2(u)an + uδ1(an) = θ(an)δ2(u),
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for all u ∈ U . Letting n tend to infinity, we get ux0 = 0 and similarly x0u = 0 for
all u ∈ U . Hence S(δ1) ⊆ annXU .

(2) Let y0 ∈ S(δ2). By Proposition 2.1,

δ2(un)a+ unδ1(a) = aδ2(un) + δ1(a)un,

for some sequence un in U with un → 0 and all a ∈ A. If we let n tend to infinity,
we obtain y0a = ay0 for all a ∈ A. Thus S(δ2) ⊆ ZX (A).

■

Corollary 2.6 Suppose that D : A ×θ U → X is a derivation with D = δ1 + δ2 where
δ1, δ2 are as in Proposition 2.1. Then

(1) If either annXU = {0} or U has a left (or right) bounded approximate identity
for X , then δ1 is continuous.

(2) Suppose that ZX (A) = {0}. Then δ2 : U → X is a continuous derivation. If in
addition annXU = {0}, then every derivation D : A×θ U → X is continuous.

Proof.

(1) If annXU = {0}, by Theorem 2.5,

S(δ1) ⊆ annXU = {0}

so S(δ1) = 0 and therefore δ1 is continuous.
(2) If ZX (A) = {0}, then the inclusion given in part (2) of Theorem 2.5 implies

S(δ2) = {0}. That is, δ2 is continuous.

■

If X and Y are Banach A and U-bimodules respectively, then it can be checked that
the module actions

(a, u) · x = ax , x · (a, u) = xa

and

(a, u) · y = θ(a)y + uy , y · (a, u) = θ(a)y + yu, (a ∈ A, u ∈ U , x ∈ X , y ∈ Y)

turn X and Y into Banach (A×θ U)-bimodules. Now consider M̃ = X ×Y. Observe that

M̃ becomes a Banach (A×θ U)-bimodule with the module actions given by

(a, u) · (x, y) = (ax, θ(a)y + uy) , (x, y) · (a, u) = (xa, θ(a)y + yu),

for each a ∈ A, u ∈ U , x ∈ X , y ∈ Y.

Theorem 2.7 Let X ,Y be BanachA,U-bimodules respectively and M̃ defined as above.

Then D : A×θ U → M̃ is a derivation if and only if

D(a, u) = DA(a) +DU (u), (a ∈ A, u ∈ U),

where DA : A → X and DU : U → Y are derivations. Moreover, D is inner if and only if

DA, DU are inner in such a way that if D = adz with z = (x, y) ∈ M̃, then DA = adx
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and DU = ady and vice versa.

Proof. It can be routinely verified that D is a derivation if and only if DA, DU are

derivations. For the second part, suppose that D = adz for some z = (x, y) ∈ M̃. Then,

D(a, u) = (a, u)(x, y)− (x, y)(a, u)

= (ax− xa, uy − yu)

for each (a, u) ∈ A×θ U and (x, y) ∈ M̃. It follows that DA(a) = adx(a) and DU (u) =
ady(u). The reverse direction can be done in a similar way. ■

3. Continuity of derivations D : A ×θ U → X in some special cases

Let A, U and X be as in the previous section. In this subsection we shall study the
continuity of the derivations D : A×θ U → X for some special cases of X and U and
establish various results in this regard.

X is a simple Banach A ×θ U-bimodule

In this part we assume that X is a simple Banach (A×θ U)-bimodule and obtain some
results as follows.

Theorem 3.1 Suppose that X is a simple Banach (A×θ U)-bimodule andD : A×θ U →
X with D = δ1 + δ2 is any derivation. Then either δ1 is continuous or annXU = X .

Proof. Since δ1 is a derivation, by Theorem 2.5-(1), S(δ1) is an A-subbimodule of X .
Since X is simple, we have either S(δ1) = {0} or S(δ1) = X . The former clearly implies
that δ1 is continuous. If S(δ1) = X , then by another application of the same theorem we
conclude that annXU = X . ■

As an analogous result to the preceding theorem, we state the following.

Theorem 3.2 Let X be a simple Banach (A×θ U)-bimodule and D : A×θ U → X be
a derivation with D = δ1 + δ2. Then either δ2 is continuous or X is a symmetric Banach
A-bimodule.

Proof. S(δ2) is an U-subbimodule of X . Since X is simple, so either S(δ2) = {0}
or S(δ2) = X . The former implies that δ2 is continuous. If S(δ2) = X , then since
S(δ2) ⊆ ZX (A), then ZX (A) = X or AX = XA. ■

We conclude from the above theorem that if X is a non-symmetric simple Banach
(A×θ U)-bimodule, then δ2 is automatically continuous.

As a consequence of Theorems 3.1 and 3.2, we state the following result.

Corollary 3.3 Suppose X is a simple Banach (A×θ U)-bimodule and D : A×θ U → X
is a derivation with D = δ1+δ2. Then D is continuous if either of the following conditions
holds.

(1) annXU ̸= X and ZX (A) ̸= X .
(2) annXU = {0} and ZX (A) ̸= X .

Proof.

(1) It is clear by Theorems 3.1 and 3.2 that D is continuous.
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(2) Follows from Theorem 3.2 and Corollary 2.6.

■

In this subsection we study derivations D : A×θ A → X where A is a Banach algebra
and X a Banach (A×θ A)-bimodule.

In light of Corollary 2.6, if ZX (A) = {0}, then since annXA ⊆ ZX (A), every derivation
D : A×θ A → X is continuous.

To prove the next result, we state the following lemma.

Lemma 3.4 Let D : A×θ A → X be a derivation with D = δ1 + δ2. Then I(δ1) = A.

Proof. The result immediately follows from the definition of a continuity ideal with
Theorem 2.5-(1). ■

Corollary 3.5 Let D : A ×θ A → X be a derivation with D = δ1 + δ2. Then for any
a ∈ A, the linear map da : A → X given by Da(b) = aδ1(b) is a continuous derivation.

Proof. By Theorem 3.2 of [1] the continuity ideal I(D) of every derivation D coincides
with the set {a ∈ A | Da is continuous} where Da(b) = aδ1(b). Now the result is clear
by Lemma 3.4. ■

Let A and U be two Banach algebras. Then it is easy to see that by module actions

a · u = θ(a)u, u · a = θ(a)u,

for all a ∈ A and u ∈ U , U becomes a Banach A-bimodule. Therefore in view of Propo-
sition 2.1, δ2 is a generalized δ1-derivation satisfying

δ2(ua) = δ2(u)a+ uδ1(a),

for all a ∈ A and u ∈ U . The generalized derivation δ2 appeared naturally in the decom-
position of derivations D : A ×θ U → X with D = δ1 + δ2. The next theorem connects
the continuity of δ1, δ2 for the case U = A to that of A-bimodule homomorphisms.

Theorem 3.6 Suppose that D : A×θ A → X is a derivation with D = δ1 + δ2. Then δ2
is a generalized δ1-derivation if and only if δ2− δ1 is a right A-bimodule homomorphism.

Proof. First suppose that δ2 is a generalized δ1-derivation. Then we have

(δ2 − δ1)(ab) = δ2(a)b+ aδ1(b)− δ1(a)b− aδ1(b)

= (δ2 − δ1)(a) b,

for all a, b ∈ A. Conversely, if δ2 − δ1 is a right A-bimodule homomorphism, then by an
easy calculation it can be seen that δ2 is a generalized δ1-derivation. ■

Remark 1 Let us remark that a direct application of the Cohen factorization theorem
shows that if A posseses a bounded approximate identity for X , then every A-bimodule
homomorphism ϕ : A → X is continuous. Indeed, let (an) ⊆ A be a sequence with an → 0.
Then by the Cohen factorization theorem there exist a sequence (bn) in A converging to
zero and some c ∈ A such that an = cbn, so ϕ(an) = ϕ(c)bn → 0. Thus ϕ is continuous.

Corollary 3.7 Let A be a Banach algebra with a bounded approximate identity and
D : A×θ A → X be a derivation with D = δ1 + δ2. Then δ1 is continuous if and only if
δ2 is continuous.
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Proof. If D : A ×θ A → X is a derivation given by D = δ1 + δ2, then it is clear that
δ2 satisfies δ2(ab) = δ2(a)b+ aδ2(b) and δ2(ab) = δ2(a)b+ aδ1(b) for all a, b ∈ A. So, we
have δ2(a)b = δ1(a)b for all a, b ∈ A. Hence (δ2 − δ1)(A) ⊆ annXA. ■

In the case where annXA = {0}, δ1, δ2 agree on A. For instance if A has a bounded
approximate identity for X , then annXA = {0}.

Corollary 3.8 Let D : A×θ A → X be a derivation with D = δ1 + δ2. If annXA = {0},
then δ2 = δ1. In this case any derivation D : A ×θ A → X can be written as D(a, b) =
δ1(a) + δ1(b) = δ1(a+ b).

The case X = U
As we noted before, U is an ideal in A×θ U and so U can be regarded as a Banach

(A×θ U)−bimodule as well. The following proposition is a special case of Proposition
2.1.

Proposition 3.9 Let A and U be two Banach algebras. Then D : A×θ U → U is a
derivation if and only if D = δ1+δ2 such that δ1 : A → U and δ2 : U → U are derivations
and

θ(a)δ2(u) = δ1(a)u+ aδ2(u) = uδ1(a) + δ2(u)a (a ∈ A, u ∈ U).

In the next theorem we state some results similar to those of Theorem 2.5 and Corollary
2.6. Using the results we study the continuity of the derivations D : A×θ U → U .

Theorem 3.10 Let D : A×θ U → U be a derivation with D = δ1 + δ2. Then

(1) S(δ1) is an A-subbimodule of U and S(δ2) is an ideal in U . In particular,
AS(δ2) = S(δ2)A = θ(A)S(δ2).

(2) S(δ1) annihilates U ; that is, US(δ1) = S(δ1)U = {0}.

The following corollary follows immediately from the above theorem.

Corollary 3.11 Suppose that D : A×θ U → U is a derivation with D = δ1 + δ2 and
annUU = {0}. Then δ1 is continuous. In this case D is continuous if and only if δ2 is
continuous.

Example 3.12 Let H be a separable infinite-dimensional Hilbert space, B(H) the al-
gebra of bounded operators on H and K(H) be the algebra of compact operators on H
which is a closed ideal in B(H). Then each derivation D : B(H)×θK(H) → K(H) is con-
tinuous since K(H) is a C∗-algebra (hence possessing a bounded approximate identity)
and Ringrose’s theorem [24] guarantees the continuity of δ2.

Note that any Banach algebra U with a bounded approximate identity satisfies the
hypothesis of the above corollary; since in this case annUU = {0}. In the case that U is
semisimple, a well-known result of Johnson [16] implies the continuity of δ2.

Proposition 3.13 Let A and U be Banach algebras such that U is semisimple. Then
every derivation D : A×θ U → U is continuous.

Proof. Since U is semisimple, by the Johnson theorem [16], δ2 : U → U is continuous.
On the other hand, annUU = {0}, thus by Corollary 2.6-(1), δ1 is continuous as well.
Therefore every derivation D : A×θ U → U is continuous. ■
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All C∗-algebras, semigroup algebras, measure algebras and unital simple algebras are
semisimple Banach algebras with a bounded approximate identity. Thus the classes of
Banach algebras satisfying the hypothesis of the above proposition is quite rich. Conse-
quently, we have the following result.

Corollary 3.14 Suppose that A is a Banach algebra and U is a C∗-algebra. Then every
derivation D : A×θ U → U is continuous.

The last case which will be discussed is the case where the Banach (A×θ U)-bimodule
X is A×θ U itself.

The case X = A ×θ U
Our aim in this part is to study derivations D : A×θ U → A×θ U and investigate

the automatic continuity of them. We also find conditions under which D is expressible
as sum of two derivations such that one of them is continuous. Note that as discussed
in the comments after Corollary 3.5, U can be viewed as a Banach A-bimodule. In the
following theorem we determine the structure of the derivations on A×θ U .

Theorem 3.15 Let D : A×θ U → A×θ U be a map. Then the following are equivalent:

(1) D is a derivation.
(2) D(a, u) = (δ1(a) + τ1(u), δ2(a) + τ2(u)), for all a ∈ A, u ∈ U where

(1) δ1 : A → A, δ2 : A → U are derivations such that

θ(δ1(a))u+ δ2(a)u = 0 and θ(δ1(a))u+ uδ2(a) = 0, (a ∈ A, u ∈ U).

(2) τ1 : U → A is an A-bimodule homomorphism such that τ1(uu
′) = 0 (u, u′ ∈

U).
(3) τ2 : U → U is a linear map satisfying

τ2(uu
′) = θ(τ1(u))u

′ + θ(τ1(u
′))u+ uτ2(u

′) + τ2(u)u
′, (u, u′ ∈ U).

Also D is inner if and only if τ1 = 0, δ2 = 0, δ1 and τ2 are inner.

By the above theorem, for a derivation D on A×θ U we have

δ2(A) ⊆ Z(U), θ(a)τ1(u) = aτ1(u) = τ1(u)a,

and so τ1(U) ⊆ Z(A). Also uτ1(u
′) + τ1(u)u

′ = 0 for all u, u′ ∈ U if and only if τ1(U) ⊆
Kerθ. Additionally, δ1(A) ⊆ annAU = Kerθ if and only if δ2(A) ⊆ annUU .

Corollary 3.16 Suppose that δ1 : A → A, δ2 : A → U , τ1 : U → A and τ2 : U → U are
linear maps. Then

(1) D : A×θ U → A×θ U defined by D(a, u) = (δ1(a), 0) is a derivation if and only
if δ1 is a derivation. Also, D is inner if and only if δ1 is inner.

(2) D : A×θ U → A×θ U with D(a, u) = (0, δ2(a)) is a derivation if and only if δ2 is
a derivation and δ2(A) ⊆ annUU . Moreover, if δ2 = adu0

is inner and u0 ∈ Z(U),
then D is inner.

(3) D : A×θ U → A×θ U with D(a, u) = (τ1(u), 0) is a derivation if and only if
τ1(uu

′) = 0, uτ1(u
′) + τ1(u)u

′ = 0 (u.u′ ∈ U). In this case D is inner if and only if
τ1 = 0 and Z(A) ̸= ∅.
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(4) D : A×θ U → A×θ U by D(a, u) = (0, τ2(u)) is (inner)derivation if and only if
τ2 is (inner) derivation.

If A and U are Banach algebras such that A is commutative, then by Thomas’ theorem
[26], for every derivation D on A×θ U , δ1(A) ⊆ rad(A) ⊆ Kerθ = annAU and δ2(A) ⊆
annUU (where δ1, δ2 are as in Theorem 3.15). Also, in this case D = D1 + D2 + D3

where D1(a, u) = (δ1(a), 0), D2(a, u) = (0, δ2(a)) and D3(a, u) = (τ1(u), τ2(u)) are all
derivations on A×θ U .

It is clear from Theorem 3.15 that if τ1 = 0, then τ2 becomes a derivation. Some
conditions on U that force τ1 to be the zero map are: U has a bounded approximate
identity, U is unital and annUU = {0}. For instance, if U is faithful, semisimple or any
Banach algebra having an approximate identity, then annUU = {0}. By Corollary 3.16-
(4), the continuity of derivations on A×θ U implies the continuity of the derivations on
U . Particularly, if every derivation on A×θ A is continuous, then so is every derivation
on A.

Proposition 3.17 Let A and U be semisimple Banach algebras. Then every derivation
D : A×θ U → A×θ U is continuous.

Proof. By [22], Theorem 3.1, A×θ U is semisimple if and only if both A and U are
semisimple. Now the result follows from Johnson’s theorem. ■

Corollary 3.18 Suppose that A is a C∗-algebra and U is a Banach algebra with a
bounded approximate identity. Then every derivation on A×θ U is continuous if and
only if every derivation on U is continuous.

Proof. First suppose that every derivation on U is continuous. Thus for every derivation
D : A×θ U → A×θ U we have

D(a, u) = (δ1(a) + τ1(u), δ2(a) + τ2(u)),

such that δ1, δ2 are derivations and by Ringrose’s result [24] are continuous. Since U has a
bounded approximate identity, τ1 = 0 and τ2 becomes a derivation. Thus D is continuous
if and only if τ2 is continuous. The converse is clear. ■

Remark 2 Let A be a commutative and U a semisimple Banach algebra with U having
a bounded approximate identity. Then every derivation D : A×θ U → A×θ U is of the
form D = D1 +D2 where D1(a, u) = (δ1(a), 0) and D2(a, u) = (0, τ2(u)) are derivations
on A×θ U such that D2 is continuous. In particular, in this situation if every derivation
on A is continuous, then every derivation on A×θ U is continuous.

Theorem 3.19 Let A and U be Banach algebras with bounded approximate identities.
If A is commutative, then every derivation D : A×θ U → A×θ U can be written as
D = D1 + D2 where D1(a, u) = (δ1(a), τ2(u)) and D2(a, u) = (0, δ2(a)) are derivations
on A×θ U . Moreover, D1 is continuous if one of the following conditions holds.

(1) There exists a surjective A-module homomorphism ϕ : A → U and δ1 is continu-
ous.

(2) There exists an injective A-module homomorphism ϕ : A → U and τ2 is contin-
uous.

Proof.

(1) Define ψ : A → U by ψ = τ2 ◦ ϕ− ϕ ◦ δ1. It is easy to see that ψ is a continuous
left A-module homomorphism. Similarly, ϕ ◦ δ1 is continuous and so is τ2 ◦ϕ. On
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the other hand since ϕ is surjective, S(τ2 ◦ ϕ) = S(τ2) = {0} by [6, Proposition
5.2.2]. Thus τ2 is continuous.

(2) The proof is similar to part (1).

■

Note that if δ : A → U is a continuous derivation, the condition δ(A) ⊆ annUU is not
satisfied in general, as the following example shows.

Example 3.20 Assume that G is a non-discrete abelian group. It has been shown in [4]
that there is a nonzero continuous point derivation d at a nonzero character θ on M(G).
C turns into a symmetric banach M(G)-bimodule, if it is endowed with the following
module actions:

c · µ = θ(µ)c , µ · c = θ(µ)c (c ∈ C, µ ∈M(G))

Now consider M(G)×θ C. Every derivation from M(G) into Cθ is a point derivation at
θ. It is clear that annCC = {0}. But d ∈ Z1(M(G),Cθ) is a nonzero derivation such that
d(M(G)) ̸⊆ annCC = {0}.

4. The multipliers on A ×θ U

In this section we turn our attention to the multipliers of Lau products. As before,
A,U are Banach algebras, θ ∈ ∆(A) is a nonzero character and A ×θ U denotes the
associated Lau Banach algebra.

In the following theorem we characterize the multipliers on A×θ U .

Theorem 4.1 A linear map T : A×θ U → A×θ U is a multiplier if and only if there
are some linear maps R1 : A → A, R2 : A → U , S1 : U → A and S2 : U → U with

T (a, u) = (R1(a) + S1(u), R2(a) + S2(u)), (a ∈ A, u ∈ U),

satisfying the following conditions:

(1) R1 : A → A is a multiplier.
(2) aS1(u) = S1(u)a = 0.
(3) θ(a)R2(a

′) = θ(a′)R2(a).
(4) θ(a)S2(u) = θ(R1(a))u+R2(a)u = θ(R1(a))u+ uR2(a).
(5) θ(S1(u))u

′ + S2(u)u
′ = θ(S1(u

′))u+ uS2(u
′).

for all a, a′ ∈ A and u, u′ ∈ U .

Proof. First suppose that T is a multiplier. Since T is linear, there exist some linear
maps R1 : A → A, R2 : A → U , S1 : U → A and S2 : U → U with

T ((a, u)) = (R1(a) + S1(u), R2(a) + S2(u))

for all a ∈ A and u ∈ U . By the definition, T ((a, u))(a′, u′) = (a, u)T ((a′, u′)) For all
a, a′ ∈ A and u, u′ ∈ U . If we substitute u = u′ = 0, then we deduce that R1 is a multiplier
and θ(a)R2(a

′) = θ(a′)R2(a) for all a, a′ ∈ A. Similarly, substituting a = a′ = 0 yields
(v). If we put a′ = 0, u = 0 and a = 0, u′ = 0 respectively, we obtain equalities given in
(4). Also putting a′ = u′ = 0, we conclude that aS1(u) = S1(u)a = 0 for all a ∈ A and
u ∈ U . The converse is straightforward and is left for the reader. ■
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In view of the above theorem, in the sequel we can consider any multiplier T :
A×θ U → A×θ U as

T ((a, u)) = (R1(a) + S1(u), R2(a) + S2(u)), (a ∈ A, u ∈ U),

in which the mentioned maps satisfy conditions (1)− (5). Part (4) of the above theorem
implies that R2 is a center-valued map; that is, it always maps A into the center of U
(i.e., R2(A) ⊆ Z(U)) and also if we put u = u′ in (v), we conclude that S2(u)u = uS2(u)
for all u ∈ U . Moreover by (2), S1(A) ⊆ annAA.

We now state the following theorem.

Theorem 4.2 Suppose that T : A×θ U → A×θ U is a multiplier with

T (a, u) = (R1(a) + S1(u), R2(a) + S2(u)), (a ∈ A, u ∈ U).

Then

(1) The maps R2 : A → U and S2 : U → U are automatically continuous.
(2) S(R1),S(S1) ⊆ Ker(θ).

Proof.

(1) Let s ∈ S(S2). Thus there exists some un in U for which un → 0 and S2(un) → s.
By Theorem 4.1-(4), we have

θ(a)S2(un) = θ(R1(a))un +R2(a)un

for all a ∈ A. Letting n tend to infinity, we obtain θ(a)s = 0 for all a ∈ A.
So s = 0 and hence S2 is continuous. For the continuity of R2, suppose that
s′ ∈ S(R2) and an is a sequence in A with an → 0 and R2(an) → s′. By part (2)
of the preceding theorem we have that θ(a′)R2(an) = θ(an)R2(a

′) for all a′ ∈ A.
By taking limits one obtains s′ = 0. Thus R2 is continuous.

(2) Let a0 ∈ S(R1). Then there exists an ⊆ A such that an → 0 and R1(an) → a0.
Therefore,

θ(an)S(u) = θ(R1(an))u+R2(an)u

for all y ∈ U . So θ(a0)u = 0 for all u ∈ U . Thus, a0 ∈ Kerθ. The other inclusion
is similar.

■

If A is a faithful Banach algebra, then every multiplier on A is continuous. On the
other hand, in this case S1 = 0, since by Theorem 4.1-(2), S1(A) ⊆ annAA = {0}, so
S2 : U → U is then a multiplier on U . Therefore we deduce the following result.

Theorem 4.3 Suppose that A and U are Banach algebras where A is faithful. Then
every multiplier on A×θ U is continuous.

It is well-known that in each of the following cases the Banach algebra A is faithful:

(1) A is unital.
(2) A has an approximate identity (for example, A is a C∗−algebra).
(3) A is semiprime.
(4) A is a semisimple.
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If A and U are as in the preceding theorem, an easy calculation shows that

ann(A×θU)(A×θ U) = {(0, u) : u ∈ annUU} ∼= annUU .

Therefore, if A is faithful, A×θ U is faithful if and only if U is also. If we assume that U
is not faithful, then A×θ U is not faithful as well whereas by Theorem 4.3, all multipliers
T : A×θ U → A×θ U are continuous. This result can be interesting on its own as it can
provide non-faithful Banach algebras on which every multiplier is continuous.
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