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Abstract. In this paper, by using the relations and properties of some classes of two generator
2-groups of nilpotency class two, we find the order of automorphism group of these groups.
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1. Introduction and preliminaries

Most of the authors that have been interested in studying automorphism groups, have
considered the automorphism groups of p-groups. For example, Jamali in [3] considered
some nonabelian 2-groups with abelian automorphism groups. Bidwell and Curran in
[1] found the order, structure and presentation for the automorphism group of a split
metacyclic p-group. Here, we calculate the order of automorphism groups of some classes
of 2-groups. In [2], Hashemi found the order of automorphism groups of some classes of
2-generator nilpotent groups of nilpotncy class two.
Suppose that N ◁ G and there is a subgroup H such that G = NH and H ∩ N = {e},
then G is said to be the semidirect product of N and H; in symbols G = N ⋊H. Each
element of G has a unique expression of the form ab where a ∈ N and b ∈ H. Now, by
using this notation, we state the following classification theorem without proof.

Theorem 1.1 [4] Let G be a finite nonabelian 2-generator 2-group of nilpotency class
two. Then G is isomorphic to exactly one group of the following four types:

(1) G ∼= (⟨c⟩ × ⟨a⟩) ⋊ ⟨b⟩, where [a, b] = c, [a, c] = [b, c] = 1, |a| = 2α, |b| = 2β,
|c| = 2γ , α, β, γ ∈ N, α ⩾ β ⩾ γ;
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(2) G ∼= ⟨a⟩ ⋊ ⟨b⟩, where [a, b] = a2
α−γ

, |a| = 2α, |b| = 2β, |[a, b]| = 2γ , α, β, γ ∈ N,
α ⩾ 2γ, β ⩾ γ, α+ β > 3;

(3) G ∼= (⟨c⟩ × ⟨a⟩) ⋊ ⟨b⟩, where [a, b] = a2
α−γ

c, [c, b] = a−22(α−γ)

c−2α−γ

, |a| = 2α,
|b| = 2β, |c| = 2σ, |[a, b]| = 2γ , α, β, γ, σ ∈ N, β ⩾ γ > σ, α+ σ ⩾ 2γ;

(4) G ∼= (⟨c⟩ × ⟨a⟩)⟨b⟩, where |a| = |b| = 2γ+1, |[a, b]| = 2γ , |c| = 2γ−1, [a, b] = a2c,
[c, b] = a−4c−2, a2

γ

= b2
γ

, γ ∈ N.

The following lemma establishes some properties of groups of nilpotency class two.

Lemma 1.2 If G is a group and G′ ⊆ Z(G), then the following hold for every integer k
and u, v, w ∈ G:

(i) [uv,w] = [u,w][v, w] and [u, vw] = [u, v][u,w];
(ii) [uk, v] = [u, vk] = [u, v]k ;
(iii) (uv)k = ukvk[v, u]k(k−1)/2 .

2. Main Results

In this section, we consider some classes of 2-generator 2-groups of class 2 and find
the order of their automorphism groups. Also, we check the results by Group Algorithm
Programming(GAP)[5].

Theorem 2.1 Let G ∼= (⟨c⟩ × ⟨a⟩) ⋊ ⟨b⟩, where [a, b] = c, [a, c] = [b, c] = 1, |a| = 2α,
|b| = 2β, |c| = 2γ , α, β, γ ∈ N, α ⩾ β ⩾ γ. Then

|Aut(G)| =

2α+3β+2γ−2 α > β ⩾ γ
3× 24α+2γ−3 α = β > γ
26α−3 α = β = γ.

Proof. Let f ∈ Aut(G). Also let f(a) = cr1as1bt1 , f(b) = cr2as2bt2 , f(c) = cr3as3bt3 ,
where 0 ⩽ s1, s2, s3 < 2α, 0 ⩽ t1, t2, t3 < 2β and 0 ⩽ r1, r2, r3 < 2γ . Then |f(a)| = |a| =
2α. So we have(f(a))2

α

= (cr1as1bt1)2
α

= a2
αs1b2

αt1c2
αr1−2α−1(2α−1)t1s1 = 1. Therefore the

below equations hold. 
2αs1 ≡ 0 (mod 2α)
2αt1 ≡ 0 (mod 2β)
2αr1 − 2α−1(2α − 1)t1s1 ≡ 0 (mod 2γ).

Similarly, (f(b))2
β

= 1 and (f(c))2
γ

= 1, which imply the equations2βs2 ≡ 0 (mod 2α)
2βt2 ≡ 0 (mod 2β)
2βr2 − 2β−1(2β − 1)t2s2 ≡ 0 (mod 2γ)

and
2γs3 ≡ 0 (mod 2α)
2γt3 ≡ 0 (mod 2β)
2γr3 − 2γ−1(2γ − 1)s3t3 ≡ 0 (mod 2γ).

Now, by defining the relation [a, b] = c, we have [f(a), f(b)] = f(c). It yields that
cs1t2−s2t1 = cr3as3bt3 . Thus s3 ≡ 0 (mod 2α)

t3 ≡ 0 (mod 2β)
s1t2 − s2t1 ≡ r3 (mod 2γ).
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Now, we claim that r3 can not be even. Suppose the contrary. So there exists t ∈ N such
that r3 = 2t. It follows that (f(c))2

γ−1

= a2
γ−1s3b2

γ−1t3c2
γ−1r3−2γ−2(2γ−1−1)t3s3 = 1, which

is contradiction. So r3 must be odd. This, together with all of the above systems yield

2α−1(2α − 1)t1s1 ≡ 0 (mod 2γ)
2βs2 ≡ 0 (mod 2α)
2β−1(2β − 1)t2s2 ≡ 0 (mod 2γ)
2γ−1(2γ − 1)t3s3 ≡ 0 (mod 2γ) (∗)
s3 ≡ 0 (mod 2α)
t3 ≡ 0 (mod 2β)
s1t2 − s2t1 ≡ r3 (mod 2γ)
(r3, 2) = 1.

Now, for solving the above system, we consider the following four cases:

(1) α > β > γ;
(2) α > β = γ;
(3) α = β > γ;
(4) α = β = γ.

First, let α > β > γ. Then, the system reduces to the following system
2βs2 ≡ 0 (mod 2α)
s1t2 − s2t1 ≡ r3 (mod 2γ)
s3 ≡ 0 (mod 2α)
t3 ≡ 0 (mod 2β)
(r3, 2) = 1.

Since 2βs2 ≡ 0 (mod 2α) and 0 ⩽ s2 < 2α, we can choose s2 in 2β ways. Also we have
s3 ≡ 0 (mod 2α) and 0 ⩽ s3 < 2α. Thus s3 = 0. Similarly, from t3 ≡ 0 (mod 2β)
and 0 ⩽ t3 < 2β, we get t3 = 0. Now, since s1t2 − s2t1 ≡ r3 (mod 2γ), (r3, 2) = 1
and 2α−β|s2t1, we conclude that s1t2 must be odd. This implies that s1 and t2 are odd.
Therefore we can choose s1 and t2 in 2α−1 and 2β−1 ways, respectively. By calculating
s1,s2,t1 and t2, the parameter r3 can be only chosen in one way. Now, since t1 is arbitrary
and 0 ⩽ t1 < 2β, so can be chosen in 2β ways. In this system r1 and r2 are free, so each of
them can be chosen in 2γ ways. Consequently, the number of the solutions of this system
will be 2α+3β+2γ−2. Each of the three other cases can be solved similarly. ■

In the following, we check the number of the solutions of the system(*), for some values
of α, β and γ, by GAP.

α β γ The number of solutions
3 2 1 29

4 3 1 213

3 2 2 211

4 1 1 27

4 3 3 217

2 2 1 3× 27

4 4 3 3× 219

1 1 1 23

2 2 2 29

3 3 3 215
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Theorem 2.2 Let G ∼= ⟨a⟩ ⋊ ⟨b⟩, where [a, b] = a2
α−γ

, |a| = 2α, |b| = 2β, |[a, b]| = 2γ ,
α, β, γ ∈ N, α ⩾ 2γ, β ⩾ γ, α+ β > 3. Then

|Aut(G)| =


2α+3β−γ−1 if α > β ⩾ γ, α ⩾ 2γ, α− γ ⩾ β;
22α+2β−2γ−1 if α > β ⩾ γ, α ⩾ 2γ, α− γ < β;
24α−2γ−1 if α = β ⩾ 2γ;
23α+β−2γ−1 if β > α ⩾ 2γ.

Proof. Let f ∈ Aut(G). Also let f(a) = ar1bs1 , f(b) = ar2bs2 , where 0 ⩽ r1, r2 < 2α,
and 0 ⩽ s1, s2 < 2β. Similar to the proof of the last theorem, |f(a)|2α

= 1 yields:{
2αr1 − 22α−γ−1(2α − 1)r1s1 ≡ 0 (mod 2α)
2αs1 ≡ 0 (mod 2β)

and |f(b)|2β

= 1 implies:{
2βr2 − 2α+β−γ−1(2β − 1)r2s2 ≡ 0 (mod 2α)
2βs2 ≡ 0 (mod 2β).

Moreover, we have [f(a), f(b)] = f(a)2
α−γ

, which yields{
2α−γs1 ≡ 0 (mod 2β)
2α−γ(r1s2 − r2s1) ≡ 2α−γ(r1 − 2α−γ−1(2α−γ − 1)r1s1) (mod 2α).

Consequently, we have
2αs1 ≡ 0 (mod2β)
2βr2 − 2α+β−γ−1(2β − 1)r2s2 ≡ 0 (mod 2α)
2α−γs1 ≡ 0 (mod 2β)
2α−γ(r1s2 − r2s1) ≡ 2α−γ(r1 − 2α−γ−1(2α−γ − 1)r1s1) ≡ 0 (mod 2α).

Now, we consider the following three different cases:
(i) α > β; (ii) α = β; (iii) β > α.
First, we consider α > β. In this case, if r1 is even we get that (f(a))2

α−1

= 1 which is
contradiction. Consequently r1 must be odd. So we have

(r1, 2) = 1
2βr2 ≡ 0 (mod 2α)
2α−γs1 ≡ 0 (mod 2β)
r1s2 − r2s1 ≡ r1 − 2α−γ−1(2α−γ − 1)r1s1 ≡ 0 (mod 2γ).

Now, we have two subcases β > γ and β = γ. Let β > γ, then the above system will be
reduced again and we encounter two subcases α > 2γ and α = 2γ. If α > 2γ, then we
get the following congruence system

(r1, 2) = 1
2βr2 ≡ 0 (mod 2α)
2α−γs1 ≡ 0 (mod 2β)
r1s2 − r2s1 ≡ r1 (mod 2γ).
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Since r1 is odd and r2 is even, s2 must be odd. Now, subcases α − γ ⩾ β or α − γ < β
occur. Let α− γ ⩾ β. Then the system will be reduced to the following system

 (r1, 2) = 1
2βr2 ≡ 0 (mod 2α) (∗∗)
r1(s2 − 1) ≡ 0 (mod 2γ).

For solving the system, it is sufficient to find the number of solutions for r1, r2, s1 and s2.
Since r1 is odd and 0 ⩽ r1 < 2α, it can be chosen in 2α−1 ways. Also since 2α−β divides r2,
we can choose it in 2β ways. Furthermore, by solving r1(s2−1) ≡ 0 (mod 2γ), we get that
s2 can be chosen in 2β−γ ways and finally since s1 is free, the number of its values is 2β.
Consequently, when α > β > γ, α > 2γ and α − γ ⩾ β we have |Aut(G)| = 2α+3β−γ−1.
So, when α > β we get the following cases:


β > γ

α > 2γ

{
α− γ ⩾ β
α− γ < β

α = 2γ

β = γ

{
α > 2γ
α = 2γ

Similarly we can solve the systems in other subcases. The proof of parts (ii) and (iii) are
similar. ■

The following table shows some of the results that have been obtained by GAP.

α β γ The number of solutions
3 2 1 27

7 5 3 217

6 4 3 213

5 2 2 28

6 3 3 211

5 5 2 215

5 7 2 217

Theorem 2.3 Let G ∼= (⟨c⟩ × ⟨a⟩) ⋊ ⟨b⟩, where [a, b] = a2
α−γ

c, [c, b] = a−22(α−γ)

c−2α−γ

,
|a| = 2α, |b| = 2β, |c| = 2σ, |[a, b]| = 2γ , α, β, γ, σ ∈ N, β ⩾ γ > σ, α + σ ⩾ 2γ. Then
|Aut(G)| = 2α+β+σ−γ−1, where α− γ > β > γ.

Proof. Let f ∈ Aut(G). Also let f(a) = cr1as1bt1 , f(b) = cr2as2bt2 , f(c) = cr3as3bt3 ,
where 0 ⩽ s1, s2, s3 < 2α, 0 ⩽ t1, t2, t3 < 2β and 0 ⩽ r1, r2, r3 < 2σ. Then since f is an
automorphism, we obtain


|f(a)| = 2α;
|f(b)| = 2β;
|f(c)| = 2σ;

f(a)−1f(b)−1f(a)f(b) = f(a)2
α−γ

f(c);

f(c)−1f(b)−1f(c)f(b) = f(a)−22(α−γ)

f(c)−2α−γ ·
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These equations give the following congruence system:

(1) 2αs1 + 23α−2γ−1(2α − 1)t1r1 − 22α−γ−1(2α − 1)t1s1 ≡ 0 (mod 2α)
(2) 2αt1 ≡ 0 (mod 2β)
(3) 2αr1 + 22α−γ−1(2α − 1)t1r1 − 2α−1(2α − 1)t1s1 ≡ 0 (mod 2σ)
(4) 2βs2 + 22α+β−2γ−1(2β − 1)t2r2 − 2α+β−γ−1(2β − 1)t2s2 ≡ 0 (mod 2α)
(5) 2βt2 ≡ 0 (mod 2β)
(6) 2βr2 + 2α+β−γ−1(2β − 1)t2r2 − 2β−1(2β − 1)t2s2 ≡ 0 (mod 2σ)
(7) 2σs3 + 22α+σ−2γ−1(2σ − 1)t3r3 − 2α+σ−γ−1(2σ − 1)t3s3 ≡ 0 (mod 2α)
(8) 2σt3 ≡ 0 (mod 2β)
(9) 2σr3 + 2α+σ−γ−1(2σ − 1)t3r3 − 2σ−1(2σ − 1)t3s3 ≡ 0 (mod 2σ)
(10) (s1t2 − t1s2)− 2α−γ(r1t2 − r2t1) ≡ 2α−γr1 + 22α−2γ−1(2α−γ − 1)t1r1−

2α−γ−1(2α−γ − 1)t1s1 + r3 + 22(α−γ)t1r3 − 2α−γt1s3 (mod 2σ)

(11) 2α−γ(s1t2 − t1s2)− 22(α−γ)(r1t2 − r2t1) ≡ 2α−γs1 + 23α−3γ−1(2α−γ − 1)t1r1−
22α−2γ−1(2α−γ − 1)t1s1 + s3 + 23(α−γ)t1r3 − 22(α−γ)t1s3 (mod 2α)

(12) 2α−γt1 + t3 ≡ 0 (mod 2β)
(13) (s2t3 − t2s3)− 2α−γ(r3t2 − r2t3) ≡ 2α−γr3 + 22α−2γ−1(2α−γ − 1)t3r3−

2α−γ−1(2α−γ − 1)t3s3 + 22(α−γ)r1 + 23(α−γ)(22(α−γ) − 1)t1r1−
22(α−γ)−1(22(α−γ) − 1)t1s1 + 24(α−γ)r1t3 − 23(α−γ)s1t3 (mod 2σ)

(14) 2α−γ(s2t3 − t2s3) + 22(α−γ)(r3t2 − r2t3) ≡ 22(α−γ)s1 + 24(α−γ)−1(22(α−γ) − 1)t1r1−
23(α−γ)−1(22(α−γ) − 1)t1s1 − 24(α−γ)s1t3 + 2α−γs3
+23(α−γ)−1(2α−γ − 1)t3r3 − 22(α−γ)−1(2α−γ − 1)t3s3 + 25(α−γ)r1t3 (mod 2α)

(15) 22(α−γ)t1 + 2α−γt3 ≡ 0 (mod 2β).

After simplification we obtain

2αt1 ≡ 0 (mod 2β)
2βs2 ≡ 0 (mod 2α)
2σs3 − 2α+σ−γ−1(2σ − 1)t3s3 ≡ 0 (mod 2α)
2σt3 ≡ 0 (mod 2β)
(s1t2 − t1s2)− 2α−γ(r1t2 − r2t1) ≡ 2α−γr1 + 22α−2γ−1(2α−γ − 1)t1r1−

2α−γ−1(2α−γ − 1)t1s1 + r3 + 22(α−γ)t1r3 − 2α−γt1s3 (mod 2σ)

2α−γ(s1t2 − t1s2)− 22(α−γ)(r1t2 − r2t1) ≡ 2α−γs1 + 23α−3γ−1(2α−γ − 1)t1r1−
22α−2γ−1(2α−γ − 1)t1s1 + s3 + 23(α−γ)t1r3 − 22(α−γ)t1s3 (mod 2α)

2α−γt1 + t3 ≡ 0 (mod 2β)
(s2t3 − t2s3) + 2α−γ(r3t2 − r2t3) ≡ 2α−γr3 + 22α−2γ−1(2α−γ − 1)t3r3−

2α−γ−1(2α−γ − 1)t3s3 + 22(α−γ)r1 + 23(α−γ)−1(22(α−γ) − 1)t1r1−
22(α−γ)−1(22(α−γ) − 1)t1s1 + 24(α−γ)r1t3 − 23(α−γ)s1t3 (mod 2σ)

2α−γ(s2t3 − t2s3) + 22(α−γ)(r3t2 − r2t3) ≡ 22(α−γ)s1 + 24(α−γ)−1(22(α−γ) − 1)t1r1−
23(α−γ)−1(22(α−γ) − 1)t1s1 − 24(α−γ)s1t3 + 2α−γs3
+23(α−γ)−1(2α−γ − 1)t3r3 − 22(α−γ)−1(2α−γ − 1)t3s3 + 25(α−γ)r1t3 (mod 2α)

Let α − γ > β > γ. First, we claim that s1 must be odd. Suppose the contrary. Then
there exist integer s such that s1 = 2s. Thus

(f(a))2
α−1

= c2
α−1r1+22α−γ−1(2α−1)t1r1−2α−1(2α−1)t1s1

a2
α−1s1+23α−2γ−1(2α−1)t1r1−22α−γ−1(2α−1)t1s1b2

α−1t1 = a2
αs = 1
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which is a contradiction to |f(a)| = 2α. This together with condition α − γ > β > γ
reduce the above system to the following system

(s1, 2) = 1
t3 = 0
2βs2 ≡ 0 (mod 2α) (∗ ∗ ∗)
2σs3 ≡ 0 (mod 2α)
s1(t2 − 1) ≡ s3/2

α−γ (mod 2γ)
s1t2 ≡ r3 (mod 2σ).

Since s1 is odd and 0 ⩽ s1 < 2α, it can choose its values in 2α−1 ways. Also since 2α−β|s2
and 0 ⩽ s2 < 2α, the number of choices for s2 is equal to 2β. Furthermore we have
2α−σ|s3 and 0 ⩽ s3 < 2α. This implies that s3 has 2σ ways for choosing its values. Now,
by putting s1 and s3, the parameter t2 will be obtained. So, t2 has one choice when
0 ⩽ t2 < 2γ . But 0 ⩽ t2 < 2β, therefore we must multiply the number of solutions to
2β−γ . Then by putting s1 and the obtained t2, we get r3. Hence r3 can just have one
choice. Also, it is clear that t3 has one choice too. Now by multiplying the number of
choices of each parameter, we get that the number of solutions of the system(∗ ∗ ∗) is
2α+2β+σ−γ−1. All that remains to be done is to multiply the number of choices of free
parameters of this system which are t2, r1 and r2. Consequently, we have

|Aut(G)| = 2α+3β+3σ−γ−1.

■

In the following table, we bring the number of solutions of system(∗ ∗ ∗) for some
values of σ, γ, β and α.

σ γ β α The number of solutions
1 2 3 7 211

1 2 3 8 212

1 2 4 8 214

1 3 4 8 213

2 3 4 8 214

2 4 5 10 217

1 3 5 10 217
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