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Domination parameters of Cayley graphs of some groups
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Abstract. In this paper, we investigate domination number, γ, as well as signed domination
number, γS , of all cubic Cayley graphs of cyclic and quaternion groups. In addition, we show
that the domination and signed domination numbers of cubic graphs depend on each other.
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1. Introduction

Finding domination number and signed domination number of a graph have been
investigated by several authors. For instance, the domination number of graphs such as
zero divisor graph [15], measure graph [1] and total graph [2] are determined. Cayley
graphs are very applicable in many graph applications, but only the domination number
of a special case of Cayley graphs are calculated [3, 4, 14]. A similar concept of domination
of a graph is signed domination number of graphs which is considered by some authers
[5, 6, 8, 16].

This motivated us to calculate the domination number as well as signed domination
number of Cayley graphs. One may also think if there is any relation between domination
number and signed domination number of a graph. Up to now, no such relation is found.
But we will show, in special cases, there is some relation between these two concepts.
We recall some notations and definitions of graph theory.

By a graph Γ we mean a simple graph with vertex set V (Γ) and edge set E(Γ). A
graph is said to be connected if each pair of vertices are joined by a walk. The number
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of edges of the shortest walk joining vi and vj is called the distance between vi and vj
and denoted by d(vi, vj). A graph Γ is said to be regular of degree k or, k-regular if every
vertex has degree k. A subset P of vertices of Γ is a k−packing if d(x, y) > k for all pairs
of distinct vertices x and y of P [12].

A set D ⊆ V of vertices in a graph Γ is a dominating set if every vertex v ∈ V is an
element of D or adjacent to an element of D. The domination number γ(Γ) of a graph
Γ is the minimum cardinality of a dominating set of Γ.

The closed neighborhood N [v] of v ∈ V (Γ) is the set consisting v and all of its neigh-

bors. For a function g : V (Γ) → {−1, 1} and a subset W of V we define g(W ) =
∑
u∈W

g(u).

A signed dominating function of Γ is a function f : V (Γ) → {−1, 1} such that

f (N [v]) > 0 for all v ∈ V (Γ). The weight of a function f is ω(f) =
∑
v∈V

f(v). The

signed domination number γ
S
(Γ) is the minimum weight of a signed dominating func-

tion of Γ. A signed dominating function of weight γ
S
(Γ) is called a γ

S
(Γ)−function.

We denote f(N [v]) by f [v]. Also for A ⊆ V (Γ) and signed dominating function f , set
{v ∈ A : f(v) = −1} denoted by A−

f .

Let Γ1 and Γ2 be two graphs with vertex sets V (Γ1) and V (Γ2) and edge sets E(Γ1)
and E(Γ2), respectively. The Cartesian product of Γ1 and Γ2 denoted by Γ = Γ1□Γ2 is
a graph with vertex set V (Γ) = V (Γ1) × V (Γ2), and two vertices (u1, u2) and (v1, v2)
of Γ are adjacent if and only if either (u1 = v1 and u2v2 ∈ E(Γ2)) or (u2 = v2 and
u1v1 ∈ E(Γ1)).

For a non-trivial group G, and an inverse closed subset S of G which does not contain
the identity element of G, i.e. S = S−1 = {s−1 : s ∈ S}. The Cayley graph of G denoted
by Cay(G : S), is a graph with vertex set G and two vertices a and b are adjacent if and
only if ab−1 ∈ S.

2. Preliminary results

Let {1, . . . , n} be the vertex set of a cycle of length n, one can easily check that the
set D = {k|k ≡ 1 (mod 3)} is a dominating set for Cn and conclude the following result.

Corollary 2.1 For n ⩾ 3, γ(Cn) = ⌈n3 ⌉.

Haas et. al. in [8] found the signed domination number for complete graph Kn.

Corollary 2.2 For any positive integer n,

γ
S
(Kn) =

{
1 n is odd;
2 n is even.

For a graph Γ = (V,E), ω(g) obtains its largest value when g is the constant function
defined by g(v) = 1, for every v ∈ V , and in this case ω(g) = n. Hence γ

S
(Γ) ⩽ n. In

the literature several authors found some lower bounds for special graphs. For example
Dunbar et. al. [5] found a lower bound for k−regular graph with even k.

Corollary 2.3 For any graph Γ, if Γ is k−regular where k is even, then γ
S
(Γ) ⩾ n

k+1 .

Henning et. al. in [10] found similar result for k− regular graphs of odd k.

Corollary 2.4 For any graph Γ, if Γ is k−regular where k is odd, then γ
S
(Γ) ⩾ 2n

k+1 .
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But for domination number of a graph we have much more results for both upper and
lower bounds. Haynes et. al. in [9] proved the following result.

Corollary 2.5 For any graph Γ,
⌈

n
1+∆(Γ)

⌉
⩽ γ(Γ) ⩽ n − ∆(Γ), where ∆(Γ) is the

maximum degree of Γ.

Since in regular graphs maximum degree coincide with minimum degree and both
equal to the degree of regularity, as a consequence we can rewrite the Corollary 2.5 for
k−regular graphs as the following.

Corollary 2.6 For a k−regular graph Γ, we have
⌈

n
1+k

⌉
⩽ γ(Γ) ⩽ n− k.

In [13], the authors found the domination numbers of the Cartesian product of some
kinds of paths and cycles. We mention one of them which we will use later.

Corollary 2.7

γ(Cm□P2) =

{
⌈m2 ⌉+ 1 m ≡ 2 (mod 4);
⌈m2 ⌉ otherwise.

Haas et. al. [7] found a similar result for signed domination number.

Corollary 2.8 For m ⩾ 3,

γ
S
(Cm□P2) =

m m ≡ 0 (mod 4);
m+ 2 m ≡ 2 (mod 4);
m+ 1 m is odd.

Theorem 2.9 [17] Let Ka,b be a complete bipartite graph with b ⩽ a. Then

γ
S
(Ka,b) =



a+ 1 if b = 1;
b if 2 ⩽ b ⩽ 3 and a is even;
b+ 1 if 2 ⩽ b ⩽ 3 and a is odd ;
4 if b ⩾ 4 and a, b are both even;
6 if b ⩾ 4 and a, b are both odd;
5 if b ⩾ 4 and a, b have different parity.

Zelinka in [18] brought 2−packing equivalence assertions for the signed dominating
function of cubic graphs.

Corollary 2.10 Let Γ be a cubic graph and let A ⊆ V (Γ). The following assertions are
equivalent:

i. There exists a signed dominating function f of Γ such that f(x) = −1 for all x ∈ A,
while f(x) = 1 for all x ∈ V (Γ) \A.

ii. The distance between any two distinct vertices of A in Γ is at least 3 (A is 2− packing).

3. Cubic Cayley graphs of cyclic groups

In this section, we classify the cubic connected Cayley graphs of a cyclic group G ≃ Zn.
Since the Cayley graph Cay(Zn : S) is connected if and only if S is a generating set of
Zn, in the following Lemma, we determine such S.
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Lemma 3.1 If the cubic Cayley graph Cay(G,S) is connected, then n is even and
S = {a,−a, n2 }, where gcd(n, a) ∈ {1, 2}.

Proof. Let S = {a, b, c}. Since S = S−1, S has an element of order 2 and so n is
even. Let O(c) = 2. Thus c = n

2 . But Zn has exactly one element of order 2, and
hence, b = −a. Since S is a generating set of Zn, 1 as an element of Zn is generated
by S. Hence, gcd(n2 , a) = 1. Therefore, ra + sn2 = 1 for some integers r and s, implying
gcd(n, a) ∈ {1, 2}. ■

The Cayley graphs Cay(G : S) and Cay(G : T ) are isomorphic if for some automor-
phism σ of G, σ(S) = σ(T ) [11]. Thus in the next Theorem, up to isomorphism, we can
classify all connected cubic Cayley graphs.

Lemma 3.2 Let S1 = {1,−1, n2 } and S2 = {a,−a, n2 }, where gcd(a, n) = 1. Then
Cay(Zn : S1) ≃ Cay(Zn : S2).

Proof. Let δ : Zn → Zn be a homomorphism such that δ(1) = a. Since gcd(a, n) = 1, we
have δ is an automorphism of the group Zn. Since n is even with gcd(n, a) = 1 implies,
a is odd and hence δ(n2 ) =

an
2 = n

2 , i.e. δ(S1) = S2. Now the result follows. ■

Lemma 3.3 Let n = 2k, where k is odd and let S1 = {2,−2, k} and S2 = {a,−a, k}
such that gcd(a, n) = 2. Then Cay(Zn : S1) ≃ Cay(Zn : S2).

Proof. Consider the homomorphism δ : Zn −→ Zn such that δ(a) = 2 and δ(k) = k.
Since {2, k} is a minimal generator of Zn, δ is an automorphism of the group Zn and one
can easily verify that δ(S2) = S1 and the results reach. ■

First, we introduce the following type of cubic graph of order m which is called Type
A: A graph of order m which has a Hamiltonian cycle v1, v2, · · · , vm, v1 such that vi and
vi+m

2
are adjacent (the addition is taken modulo m).

Example 3.4 If S = {1,−1, n2 }, then Cay(Zn : S) has a Hamiltonian cycle such that i
and i + n

2 are also adjacent for every i ∈ Zn. Therefore, the Cayley graph Cay(Zn : S)
is isomorphic to graph of Type A. By Lemma 3.2, if gcd(n, a) = 1 and S′ = {a,−a, n2 },
then Cay(Zn : S′) is isomorphic to Cay(Zn : S) when S = {1,−1, n2 }.

The example of Cay(Zn : S) for S = {a,−a, n2 } can be imagined as the following
Lemma.

Lemma 3.5 If S = {a,−a, n2 } where gcd(n, a) = 2, then Cay(Zn : S) ≃ P2□Cn

2
.

Proof. By Lemma 3.3, we may suppose that a = 2. Let V = {0, 1, . . . , n − 1} and let
V = V1∪V2 such that V1 = {0, 2, . . . , n− 2} and V2 = {n

2 ,
n
2 +2, . . . , n− 1}. The induced

subgraphs on V1 and V2 are two cycles. Let Ci be the induced subgraph of Cay(Zn : S)
on Vi for i ∈ {1, 2}. Define α : V1 → V2, α(i) = i + n

2 . It is not hard to see that α is an
isomorphism. So C1 ≃ C2. Also i ∈ V1 is adjacent to j ∈ V2 in graph Cay(Zn : S) if and
only if j = α(i). Thus Cay(Zn : S) ≃ P2□Cn

2
. ■

Now we can find the domination and signed domination numbers of all cubic Cayley
graphs of cyclic groups. But for completeness of our talk we also tell about the domination
number of such Cayley graphs of valency 2 in the following Remark.

Remark 1 Let Zn = ⟨S⟩, where S is an inverse closed subset of Zn \ {0}. If |S| = 2,
then Cay(Zn : S) ≃ Cn. By Corollary 2.1, γ(Cay(Zn : S)) = ⌈n3 ⌉.
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Theorem 3.6 If n is even and S = {a,−a, n2 } where gcd(n, a) = 2, then

γ(Cay(Zn : S)) =

{
⌈n4 ⌉+ 1 n ≡ 4 (mod 8);
⌈n4 ⌉ otherwise.

Proof. The proof is straightforward by Corollary 2.7 and Lemma 3.5. ■

Theorem 3.7 If Zn = ⟨S⟩ where S = {a,−a, n2 } and gcd(n, a) = 2, then we have
γ

S
(Cay(Zn : S)) = n

2 + 1.

Proof. Since {a,−a, n2 } generates group Zn,
n
2 is odd. By Lemma 3.5 and Corollary 2.8,

γ
S
(Cay(Zn : S)) = n

2 + 1. ■

Theorem 3.8 If n is even and S = {a,−a, n2 } where gcd(n, a) = 1, then

γ(Cay(Zn : S)) =

{
k n = 4k and k is odd;
k + 1 otherwise.

Proof. Since n is even, n = 4k or 4k + 2. We consider three cases:

Case 1. Let n = 4k and k be odd. Set D = {4t : 0 ⩽ t ⩽ k − 1}. Then |D| = k and
N(D) = {4t ± 1, 4t + 2k : 0 ⩽ t ⩽ k − 1}. It is easy to check that |N(D)| = 3k and
D∩N(D) = ∅. So D is a dominating set and so γ(Cay(Zn : S)) ⩽ k. Since Cay(Zn : S)
is cubic, by Corollary 2.6, γ(Cay(Zn : S)) = k.

Case 2. Let n = 4k and k be even. Set A = {4t : 0 ⩽ t ⩽ k
2−1}, B = {2k+4s+2 : 0 ⩽ s ⩽ k

2−
1} and C = {2k−1}. LetD = A∪B∪C. We show thatD is a dominating set. Let i ∈ Zn

and i ⩽ 2k. If i ≡ 2 (mod 4), then i ∈ N(B). Otherwise i ∈ A∪N(A)∪C. Suppose that
i > 2k. If i ≡ 0 (mod 4), then i ∈ N(A). If not i ∈ B ∪N(B). Hence, Zn ⊆ D ∪N(D).
Since |D| = k + 1, γ(Cay(Zn : S)) ⩽ k + 1. Consider a subset of V (Cay(Zn : S))
of cardinality k which is a dominating set. On the contrary, let D′ be a dominating
set and |D′| = k. Since Cay(Zn : S) is cubic, |N(D′)| ⩽ 3k. On the other hand,
|D′ ∪N(D′)| = n. So D′ ∩N(D′) = ∅ and thus |N(D′)| = 3k. Hence, N(r)∩N(r′) = ∅
for r, r′ ∈ D′. Let r ∈ D′ and be fixed. Then N(r) = {r ± 1, r + 2k} ⊆ N(D′). So
r+1 ∈ N(r) and hence r+2 ∈ D′∪N(D′). If r+2 ∈ D′, then r+1 ∈ N(r)∩N(r+2).
This is impossible. Hence, r+2 ∈ N(D′). Also N(r+2) = {r+1, r+2, r+2+2k}. If
r + 3 ∈ D′, then N(r + 3) ⊂ N(D′). Thus r + 3 + 2k ∈ N(D′). Since r + 2k + 1 ̸∈ D′,
r+2k+1 ∈ N(D′). Since N(r+2k+1) = {r+2k+2, r+2k, r+1} and r+1, r+2 ∈ N(r),
r + 2k + 2 ∈ D′. Hence, r + 2k + 3 ∈ N(r + 2k + 2) ∩N(r + 3). This is not true. So
r+3 ̸∈ D′. Hence, for every r ∈ D′, r+2, r+3 ∈ N(D′). Since r+1, r+3 ∈ N(r+2)\D′,
r + 2 + 2k ∈ D′. Thus r + 3 + 2k ∈ N(D′). Also r + 3 + 2k, r + 2 ∈ N(r + 3) \D′. So
r+4 ∈ D′. By induction r+4(n8 ) = r+2k ∈ D′. This is contradiction by r+2k ∈ N(D′).
Therefore, γ(Cay(Zn : S)) = k + 1.

Case 3. Let n = 4k+2. Let A′ = {4t : 0 ⩽ t ⩽ ⌊k2⌋}, B
′ = {2k+4s+3 : 0 ⩽ s ⩽ ⌊k2⌋− 1} and

C ′ = {2k− 1}. If k is odd, then let D1 = A′ ∪B′ ∪C ′. Otherwise let D2 = A′ ∪B′. For
i = 1, 2, |Di| = k + 1. Likewise Case 2, Di is a dominating set. So by Corollary 2.6,
γ(Cay(Zn : S)) = k + 1.

■

Corollary 3.9 For any connected cubic graph Γ of Type A and order n we have:

γ(Γ) =

{
k n = 4k and k is odd;
k + 1 otherwise.

Depending on the usage of graphs in industry, some kinds of domination number
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defined, but among all of them, domination and signed domination number is connected
more frequency. One can be doubted if there is any relation between such dominations.
In the next Theorem we will show in some special case some relation appears.

Theorem 3.10 Let Γ be a connected cubic graph on n vertices. Then γ(Γ) = n
4 if and

only if γS(Γ) =
n
2 .

Proof. Let γ(Γ) = n
4 . Then n = 4k for positive integer k and there is a dominating

set D with cardinality k. Since graph Γ is cubic and D is the minimum dominating set,
every x ∈ D dominates exactly 3 members of V (Γ). Hence, V (Γ) = D ∪ N(D), where
D ∩ N(D) = ∅. Also N [x] ∩ N [y] = ∅ for every x ̸= y ∈ D. So d(x, y) ⩾ 3. Now define
f : V (Γ) −→ {−1, 1} such that f(v) = −1 if and only if v ∈ D. By Corollary 2.10 and
since D is a 2−packing subset of V (Γ), f is a signed dominating function by Corollary
2.10. Thus γ

S
(Γ) ⩽ ω(f) = n

2 . On the other hand, by Corollary 2.4, γ
S
(Γ) ⩾ n

2 .
Conversely, let γ

S
(Γ) = n

2 . If g is a γ
S
−function, then |V −

g | = n
4 . So n = 4k. Since Γ is

cubic, N(v) ∩ V −
g = ∅ and N [v] ∩N [u] = ∅ for every v, u ∈ V −

g . Thus |N(V −
g )| = 3k. So

V −
g is a dominating set of Γ and γ(Γ) ⩽ k. Corollary 2.6 completes the proof. ■

Theorem 3.11 If Zn = ⟨S⟩ where S = {a,−a, n2 } and gcd(n, a) = 1, then

γ
S
(Cay(Zn : S)) =


n
2 n = 4k and k is odd;
n
2 + 1 n = 4k + 2;
n
2 + 2 n = 4k and k is even.

Proof. Since n is even, we consider two cases:

Case I. Let n = 4k + 2. By Corollary 2.4, γ
S
(Cay(Zn : S)) ⩾ n

2 . Since n is even, γ
S
(Cay(Zn :

S)) is also even. Thus γ
S
(Cay(Zn : S)) ⩾ n

2 + 1. Let k be odd. Define g : V (Cay(Zn :
S)) → {−1, 1} such that f(x) = −1 if and only if x ∈ A∪B, where A = {4t : 0 ⩽ t ⩽
⌊k2⌋} and B = {n

2 + 4s + 2 : 0 ⩽ s ⩽ ⌊k2⌋ − 1}. It is easily seen that N(A) ∩ B and

A∩N(B) are empty. Also since 0 ⩽ s, t ⩽ ⌊k2⌋, N(A)∩N(B) = ∅. So V −
g is a 2−packing

and so g is a signed dominating function. Hence, γ
S
(Cay(Zn : S)) ⩽ ω(g) = n

2 + 1.

Now let k be even. Define g′ such that V −
g′ = A′ ∪B′ where A′ = {4t : 0 ⩽ t ⩽ k

2 − 1}
and B′ = {n

2 + 4s + 2 : 0 ⩽ s ⩽ k
2 − 1}. Again g′ is a dominating function and the

result reaches.
Case 2. Let n = 4k. If k is an odd integer, then we reach the result by Theorems 3.8 and 3.10.

Let k be even. We claim that if f is a function of Cay(Zn : S) and |V −
f | = k, then f is

not a signed domination function. On the contrary, suppose that |V −
f | = k and f is a

signed dominating function. By Corollary 2.10, V −
f ∩N(V −

f ) = ∅. Let r ∈ V −
f . Then

r+1, r+2 ̸∈ V −
f . If r+3 ∈ V −

f , then r+3+ n
2 , r+2+ n

2 ∈ N(V −
f ). Thus N(r+1+ n

2 ) =

{r+1, r+2+ n
2 , r+

n
2 }∩V −

f = ∅. This is impossible. So r+3 ∈ N(V −
f ). But we show

that r+4 ∈ V −
f . Since r ∈ V −

f , N [r+2]∩V −
f = r+2+ n

2 . So r+1+ n
2 , r+3+ n

2 ̸∈ V −
f .

Hence, N [r + 3] ∩ V −
f = {r + 4}. Therefore, r ∈ V −

f if and only if r + 4 ∈ V −
f . Since k

is even, if r ∈ V −
f , then r + n

2 ∈ V −
f i.e. r + n

2 ∈ V −
f ∩N(V −

f ). This is not true. Thus

|V −
f | < k and γ

S
(Cay(Zn : S)) ⩾ n

2 + 2. Now we define f : V (Cay(Zn : S)) → {−1, 1}
such that V −

f = {4t : 0 ⩽ t ⩽ k
2 − 1} ∪ {2 + n

2 + 4s : 0 ⩽ s ⩽ k
2 − 2}. By Lemma 3.2,

N(x) = {x± 1, x+ n
2 } for every x ∈ Zn. If x, y are two distinct elements of V −

f , then

x−y ̸∈ S. Also N(x)∩N(y) = ∅. Thus V −
f is a 2-packing and by Corollary 2.10, f is a

signed dominating function. Also |V −
f | = k−1. Hence, γ

S
(Cay(Zn : S)) ⩽ ω(f) = n

2+2.
This completes the proof.
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Corollary 3.12 For any connected cubic graph Γ of Type A and order n we have:

γ
S
(Γ) =


n
2 n = 4k and k is odd;
n
2 + 1 n = 4k + 2;
n
2 + 2 n = 4k and k is even.

4. Cubic Cayley graphs of quaternion groups

In this section we consider the cubic Cayley graphs of quaternion groups which is
defined by Q4n = ⟨a, b; an = b2, a2n = 1, b−1ab = a−1⟩. Since S = S−1 and |S| = 3, S is
not a generating set of Q4n and so Cay(Q4n : S) has some isomorphic components.

Theorem 4.1 If S = S−1, then cubic Cayley graph Cay(Q4n : S) ≃ rΓ, where Γ is
complete graph K4, Cm

2
□P2 or a graph of Type A.

Proof. Since S = S−1 and an is the only element of order 2, an ∈ S. Hence, there
are two cases, S = {an, ai, a−i} or {an, aib, aib−1}, where 1 ≤ i < n. In the first case,
⟨S⟩ is a cyclic group of order 2n. Likewise the argument for connected cubic Cayley
graph, Cay(Q4n : S) ≃ 2Γ, where Γ is isomorphism to a graph of Type A or Cn□P2. Let
S = {an, aib, aib−1}. Then ⟨S⟩ is isomorphic to Z4. So Cay(Q4n : S) ≃ nK4. ■

Theorem 4.2 If S = S−1, then for cubic Cayley graph Cay(Q4n : S),

n ≤ γ(Cay(Q4n : S)) ≤ n+ 1.

Proof. By Theorem 4.1, Cay(Q4n : S) ≃ nK4, 2Cn□P2 or 2Γ, where Γ is a graph of
Type A. In the first case, γ(Cay(Q4n : S)) = nγ(K4) = n. In the second case and by
Theorem 2.8, γ(Cay(Q4n : S)) = 2γ(Cn□P2) ∈ {n, n + 1}. If Cay(Q4n : S) ≃ 2Γ and Γ
is a graph of Type A, then Corollary 3.9 completes the proof. ■

Theorem 4.3 If S = S−1, then for cubic Cayley graph Cay(Q4n : S),

γ
S
(Cay(Q4n : S)) ∈ {2n, 2n+ 2, 2n+ 4}.

Proof. The proof is straightforward by 2.2, 2.8, 3.12 and 4.1. ■
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