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Abstract. In this paper, we define the new notion of quasi-prime ideal which generalizes
at once both prime ideal and primary ideal notions. Then a natural topology on the set of
quasi-prime ideals of a ring is introduced which admits the Zariski topology as a subspace
topology. The basic properties of the quasi-prime spectrum are studied and several interesting
results are obtained. Specially, it is proved that if the Grothendieck t-functor is applied on
the quasi-prime spectrum then the prime spectrum is deduced. It is also shown that there
are the cases that the prime spectrum and quasi-prime spectrum do not behave similarly. In
particular, natural topological spaces without closed points are obtained.
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1. Introduction

We call an ideal of a commutative ring a quasi-prime ideal if its radical is a prime
ideal. We obtained this definition independently and without awareness of the previous
work [4]. We were informed that this notion was already introduced and studied in [4]
under the name of quasi-primary ideal. Then we took a look through this former work.
But luckily, except quasi-prime notion, there is no overlapping between our work and [4].
The quasi-prime notion generalizes both prime ideal and primary ideal notions. So in a
given ring, we have the following inclusions:

Prime ideals ⊆ Primary ideals ⊆ Quasi− prime ideals.

∗Corresponding author.
E-mail address: aghajani14@gmail.com (M. Aghajani); ebulfez1978@gmail.com (A. Tarizadeh).

Print ISSN: 2252-0201 c⃝ 2020 IAUCTB. All rights reserved.
Online ISSN: 2345-5934 http://jlta.iauctb.ac.ir



232 M. Aghajani and A. Tarizadeh / J. Linear. Topological. Algebra. 09(03) (2020) 231-236.

Note that there are quasi-prime ideals which are not primary ideals, see Example 2.2.
We denote the set of quasi-prime ideals of A by Sq(A). Then we equip this set with

a natural topology whose basis opens are of the form Uf = {q ∈ Sq(A) : f /∈ √
q}

where f ∈ A. The space Sq(A) is called the quasi-prime spectrum of A. It is shown
that the quasi-prime spectrum satisfies in all of the conditions of a spectral space except
the uniqueness of generic point, see Theorems 2.4 and 2.11. This topology is a natural
generalization of the Zariski topology, i.e. the prime spectrum Spec(A) is a dense subspace
of Sq(A). It is worth mentioning that in [1, 3, 5, 7, 8] various algebraic and topological
aspects of the spectral topologies (Zariski and flat topologies) are investigated and several
deep results are obtained. For the definition of spectral space see e.g. [5].

In some cases, the topology on quasi-prime spectrum behaves quite different from the
Zariski topology. For instance, Sq(Z) has no closed points. By contrast, all of the points
of Spec(Z) except the zero ideal are closed points. This gives us natural topological spaces
without closed point. It may be of interest to the readers that in [6], after some effort a
scheme is built that whose underlying space has no closed points.

One of the motivations of this generalization (quasi-prime ideal notion) was to find
topological spaces without closed points. Maybe the ideas of [3] was another motivation
to introduce the quasi-prime notion. Because in the paper [3], the radical ideals of a
given ring are studied from algebraic and topological aspects and various interesting
results are obtained, the radical ideal notion (I =

√
I) also generalizes the prime ideal

notion. If Rd(A) is the set of proper radical ideals of a ring A then it is easy to see
that Spec(A) = Sq(A) ∩ Rd(A). Note that Rd(A) is a spectral space endowed with a
topology whose subbasis opens are of the form {I ∈ Rd(A) : f /∈ I} with f ∈ A, for more
information see [3].

In the present paper, we study the basic properties of the quasi-prime spectrum. In-
deed, Theorem 2.4, Proposition 2.6, Theorem 2.8, Theorem 2.11, Theorem 3.2, Theorem
3.6 and Theorem 4.1 are the main results of this paper. In Theorem 3.6, the connected
components of the quasi-prime spectrum are characterized. In Theorem 4.1, it is shown
that the prime spectrum can be canonically recovered from the quasi-prime spectrum by
applying the Grothendieck t-functor.

2. Quasi-prime spectrum

Definition 2.1 An ideal q of a ring A is called a quasi-prime ideal of A if
√
q is a prime

ideal of A.

Recall that a proper ideal q of a ring A is called a primary ideal of A if fg ∈ q and
f /∈ q for some f, g ∈ A, then g ∈ √

q. This is equivalent to the statement that if fg ∈ q
and f /∈ √

q then g ∈ q. Note that if q is a primary ideal of A and we have fg ∈ q, f /∈ q
and g /∈ q then f, g ∈ √

q.

Example 2.2 Every primary ideal is quasi-prime, but the converse is not necessarily
true. As a specific example, let A be the polynomial ring k[x, y, z] modulo I = (xy− z2)
where k is a field. Then p = (x+I, z+I) is a prime ideal of A since A/p ≃ k[y], but q = p2

is a quasi-prime ideal which is not a primary ideal, because (x+ I)(y+ I) = (z+ I)2 ∈ q
but x+ I /∈ q and y + I /∈ √

q.

Example 2.3 If q is a quasi-prime ideal of a ring A then qn is a quasi-prime ideal of A for
all n ⩾ 1. There are also non-primary quasi-prime ideals which are not as the power of a
prime ideal. As an example, let A be the polynomial ring k[x, y, z, t] modulo I = (xy−z2)
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where k is a domain. Then p = (z + I, t + I) is a prime of A since A/p ≃ k[x, y], but
q = (z + I, t2 + I) is a non-primary quasi-prime of A which is not also as a power of a
prime ideal.

Let φ : X → Y be a function where X is a set and Y is a topological space. Let B be
a basis for the opens of Y . Then there exists a unique topology over X such that the set
{φ−1(B) : B ∈ B} forms a basis for its opens.
By applying the above basic fact to the map γ : Sq(A) → Spec(A) given by q ⇝ √

q,
then we get a unique topology over Sq(A) such that the collection of Uf = {q ∈ Sq(A) :
f /∈ √

q} with f ∈ A forms a basis for its opens. The set Sq(A) equipped with this
topology is called the quasi-prime spectrum (or, the space of quasi-primes) of A. Clearly
Uf ∩ Spec(A) = D(f) for all f ∈ A. Hence, Spec(A) is a dense subspace of Sq(A). Recall
that D(f) = {p ∈ Spec(A) : f /∈ p}.

Theorem 2.4 Every basis open Uf is quasi-compact. In particular, Sq(A) is quasi-
compact.

Proof. It suffices to show that every open covering of Uf by the basis opens has a finite

refinement. Hence let Uf =
∪
i∈I

Ugi where gi ∈ A for all i. It follows that f ∈
√

(gi : i ∈ I).

Thus there exists a finite subset J of I such that f ∈
√

(gi : i ∈ J). We show that
Uf =

∪
i∈J

Ugi . If q ∈ Uf then there exists some i ∈ J such that gi /∈ √
q. It follows that

q ∈ Ugi . ■

The proof of Theorem 2.4 also shows that D(f) is quasi-compact for all f ∈ A.

Corollary 2.5 If X is a subspace of Sq(A) such that Max(A) ⊆ X, then X is quasi-
compact. In particular, the primary spectrum (space of primary ideals) of A is quasi-
compact.

Proof. If U is an open of Sq(A) such that X ⊆ U , then U = Sq(A). Because if q is a
quasi-prime ideal of A, then there exist a maximal ideal m of A and an element f ∈ A
such that q ⊆ m and m ∈ Uf ⊆ U . It follows that q ∈ Uf . Thus by Theorem 2.4, X is
quasi-compact. ■

Proposition 2.6 If either every prime ideal of A is a maximal ideal or A is a domain
with Krull dimension one, then every quasi-prime ideal of A is a primary ideal.

Proof. If q is a quasi-prime ideal of A, then
√
q is either the zero ideal or a maximal ideal

of A. Therefore q is a primary ideal of A, since if J is an ideal of a ring R such that
√
J is

a maximal ideal of R then J is a primary ideal of R. Because let f, g ∈ R such that fg ∈ J
and f /∈

√
J . Then f + J is an invertible element of R/J since Spec(R/J) = {

√
J/J}. It

follows that Rf+J = R. Thus there are a ∈ R and b ∈ J such that 1 = af+b. Therefore
g = afg + bg ∈ J . □ ■

It seems that the converse of Proposition 2.6 also holds, though we have no idea that
how to prove it. But, in outside of such rings the assertion is not true. As an example,
the ring A/p2 has Krull dimension one but its zero ideal is a quasi-prime ideal which is
not a primary ideal, for A and p see Example 2.2.

Corollary 2.7 If A is a PID, then the quasi-prime ideals of A are precisely of the form
pn, where p ∈ Spec(A) and n ⩾ 1 a natural number.

Theorem 2.8 If q is a quasi-prime ideal of A, then {q} = {p ∈ Sq(A) : q ⊆ √
p}.
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Proof. Let p ∈ {q} and f ∈ q. If f /∈ √
p then p ∈ Uf . It follows that q ∈ Uf , a

contradiction. Conversely, assume that q ⊆ √
p. If p /∈ {q} then there exists some f ∈ A

such that p ∈ Uf but q /∈ Uf . Hence there exists a natural number n ⩾ 1 such that
fn ∈ q. It follows that f ∈ √

p. But this is contradiction since p ∩ Sf = ∅. ■

Unlike the prime spectrum, a maximal ideal is not necessarily a closed point of the
quasi-prime spectrum. As a specific example, if p is a prime number, then {pnZ : n ⩾ 1}
is the closure of {pZ} in Sq(Z). In fact, Sq(Z) has no closed point.

In the space Sq(A) generic points are not unique:

Corollary 2.9 If q is a quasi-prime ideal of A, then {q} = {√q}.

Corollary 2.10 Let E be a closed subset of Sq(A). If q ∈ E, then
√
q ∈ E.

It can be shown the closed subsets of Sq(A) are precisely of the form V(I) = {q ∈
Sq(A) : I ⊆ √

q}, where I is an ideal of A. Clearly V(I) ∩ Spec(A) = V (I). If f ∈ A,
then V(f) = {q ∈ Sq(A) : f ∈ √

q}. If p is a quasi-prime of A, then by Theorem 2.8,

V(p) = {p}.
Recall that a topological space is said to be an irreducible space if it is non-empty and

can not be written as the union of two proper closed subsets.

Theorem 2.11 Every irreducible and closed subset of Sq(A) has a generic point.

Proof. Let Z be an irreducible and closed subset of Sq(A). There exists an ideal J of
A such that Z = V(J). By Theorem 2.8, it suffices to show that J is a quasi-prime
of A. Clearly J ̸= A since Z is non-empty. Let f, g ∈ A such that fg ∈ J . We have
Z =

(
V(f) ∩ Z

)
∪
(
V(g) ∩ Z

)
.

It follows that either Z ⊆ V(f) or Z ⊆ V(g). Thus either f ∈
√
J or g ∈

√
J . ■

The irreducible components of Sq(A) are precisely of the form V(p), where p is a
minimal prime ideal of A. If q and q′ are quasi-prime ideals of a ring A such that√
q =

√
q′, then clearly q ∩ q′ is a quasi-prime ideal of A.

3. Connected components

A subspace Y of a topological space X is called a retraction of X if there exists a
continuous map γ : X → Y such that γ(y) = y for all y ∈ Y . Such a map γ is called a
retraction map.

Lemma 3.1 The prime spectrum of a ring is a retraction of its quasi-prime spectrum.

Proof. Let A be a ring. Then the map γ : Sq(A) → Spec(A) given by q ⇝ √
q is a

retraction map. ■

The map γ of Lemma 3.1 is also an open map, since γ(Uf ) = D(f) for all f ∈ A.

Remark 1 There is a fundamental result due to Grothendieck which states that the map
f ⇝ D(f) is a bijection from the set of idempotents of A onto the set of clopen (both
open and closed) subsets of Spec(A), see [2, Tag 00EE]. Under the light of this result we
obtain that:

Theorem 3.2 The map f ⇝ Uf is a bijection from the set of idempotents of A onto
the set of clopens of Sq(A).



M. Aghajani and A. Tarizadeh / J. Linear. Topological. Algebra. 09(03) (2020) 231-236. 235

Proof. By Remark 1, it suffices to show that the map U ⇝ γ−1(U) is a bijection from
the set of clopens of SpecA onto the set of clopens of SqA, for γ see Lemma 3.1. Assume
that γ−1(U) = γ−1(V ). If p ∈ U then p ∈ γ−1(U) and so γ(p) = p ∈ V . Hence U = V . It
remains to show that this map is surjective. If U is a clopen of SqA, then U ∩ SpecA is
a clopen of SpecA. We have U = γ−1(U ∩ SpecA). Because if q ∈ U , then by Corollary
2.10, γ(q) =

√
q ∈ U ∩SpecA. Conversely, if q ∈ γ−1(U ∩SpecA), then there exists some

f ∈ A such that
√
q ∈ Uf ⊆ U . It follows that q ∈ U . ■

Corollary 3.3 The space Sq(A) is connected if and only if A has no nontrivial idempo-
tents.

Proof. It is an immediate consequence of Theorem 3.2. ■

Proposition 3.4 If φ : A → B is a morphism of rings, then the induced map φ∗ :
Sq(B) → Sq(A) given by q⇝ φ−1(q) is continuous.

Proof. If q is a quasi-prime ideal of B, then φ−1(q) is a quasi-prime ideal of A because

φ−1(
√
q) =

√
φ−1(q). Hence φ∗ is well-defined. It is continuous since (φ∗)−1(Uf ) = Uφ(f)

for all f ∈ A. ■

Note that if S is a multiplicative subset of A, then the map π∗ : Sq(S−1A) → Sq(A)
induced by the canonical ring map A → S−1A is not injective and Imπ∗ ⊆ {q ∈ Sq(A) :
q ∩ S = ∅}. Specially Imπ∗ ⊆ Uf where π : A → Af is the canonical map.

Lemma 3.5 If I is an ideal of a ring A, then the map π : Sq(A/I) → Sq(A) induced by
the canonical ring map A → A/I is injective and Imπ = V(I).

Proof. It is an easy exercise. ■

An ideal of A is said to be a regular ideal of A if it is generated by a subset of
idempotent elements of A. Each maximal element of the set of proper regular ideals
of A (ordered by inclusion) is called a max-regular ideal of A. By the Zorn’s Lemma,
every proper regular ideal of A is contained in a max-regular ideal of A. It is well known
that a regular ideal M is a max-regular ideal of A if and only if A/M has no nontrivial
idempotents, see [7, Lemma 3.19]. It is also well known that the connected components
of SpecA are precisely of the form V (M) where M is a max-regular ideal of A, see [7,
Theorem 3.17]. We have then the following result.

Theorem 3.6 The connected components of Sq(A) are precisely of the form V(M)
where M is a max-regular ideal of A.

Proof. If N is a max-regular ideal of A, then by Corollary 3.3, SqA/N is connected.
Thus by Proposition 3.4 and Lemma 3.5, V(N) is connected. Now let C be a connected
component of Sq(A). Then γ(C) is contained in a connected component of Spec(A), for
γ see Lemma 3.1. Thus there exists a max-regular ideal M of A such that γ(C) ⊆ V (M).
It follows that C ⊆ V(M). Thus C = V(M) since V(M) is connected. Conversely, let N
be a max-regular ideal of A. Then there exists a connected component C of SqA such
that V(N) ⊆ C. We observed that there exists a max-regular ideal M of A such that
C = V(M). It follows that

√
M ⊆

√
N . Thus M ⊆ N since M is a regular ideal. This

implies that M = N because M is max-regular and N is regular ideal. ■



236 M. Aghajani and A. Tarizadeh / J. Linear. Topological. Algebra. 09(03) (2020) 231-236.

4. t-functor

There exists a covariant functor due to Grothendieck from the category of topological
spaces to itself. It is called the t-functor. This functor has geometric applications and
builds a bridge between the classical algebraic geometry and modern algebraic geometry.
In what follows we shall introduce this functor. If X is a topological space, then the
points of t(X) are the irreducible and closed subsets of X. The closed subsets of t(X) are
precisely of the form t(Y ), where Y is a closed subset of X. If f : X → X ′ is a continuous

map of topological spaces, then the function t(f) : t(X) → t(X ′) given by Z ⇝ f(Z)
is well-defined and continuous. There exists also a canonical continuous map X → t(X)

defined by x⇝ {x}. We have then the following result which states that there is a one to
one correspondence between the irreducible closed subsets of Sq(A) and the prime ideals
of A.

Theorem 4.1 The space t
(
Sq(A)

)
is canonically homeomorphic to Spec(A).

Proof. Let Z be an irreducible and closed subset of Sq(A). By Theorem 2.11, there

exists a quasi-prime q of A such that Z = {q}. We then define φ : t
(
Sq(A)

)
→ Spec(A)

as Z ⇝ √
q. We show that it is a homeomorphism. The map φ is injective, see Corollary

2.9. If p is a prime ideal of A then Z := V(p) = {p} is an irreducible and closed subset of
Sq(A) and φ(Z) = p. The map φ is continuous because φ−1

(
D(f)

)
= t

(
Sq(A)

)
\ t
(
V(f)

)
for all f ∈ A. It remains to show that φ is a closed map. Let Y = V(I) be a closed subset
of Sq(A) where I is an ideal of A. Then φ

(
t(Y )

)
= V (I). ■
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