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Abstract. Let F be an field of zero characteristic and Noo(F) be the algebra of infinite
strictly upper triangular matrices with entries in F, and f : Noo(F) — Noo(F) be a non-
additive Lie centralizer of N (F); that is, a map satisfying that f([X,Y]) = [f(X),Y] for
all X,Y € Noo(F). We prove that f(X) = AX, where X € F.
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1. Introduction and preliminaries

Consider a ring R. An additive mapping 7' : R — R is called a left (respectively right)
centralizer if T'(ab) = T'(a)b (respectively T'(ab) = aT'(b)) for all a,b € R. The mapping
T is called a centralizer if it is a left and a right centralizer. The characterization of
centralizers on algebras or rings has been a widely discussed subject in various areas of
mathematics.

In [11], Zalar proved the following interesting result: if R is a 2-torsion free semiprime
ring and 7' is an additive mapping such that T'(a?) = T'(a)a (or T(a?) = aT(a)), then
T is a centralizer. Vukman [10] considered additive maps satisfying similar condition,
namely 27'(a?) = T'(a)a + aT(a) for any a € R, and showed that if R is a 2-torsion free
semiprime ring, then 7' is also a centralizer. Since then centralizers have been intensively
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investigated by many mathematicians, let us name only [2-5, 7] and references included
in these works.

An additive map f : R — R, where R is a ring, is called a Lie centralizer of R if
f([z,y]) = [f(x),y] for all x,y € R, where [z, y] is the Lie product of z and y.

Recently, Ghomanjani and Bahmani [8] dealt with the structure of Lie centralizers
of trivial extension algebras, whereas Fosner and Jing [6] studied Lie centralizers of
triangular rings.

Comes from the inspiration of this paper articles [1, 4, 6] in which the authors deal
with triangular algebras and rings and various maps connected to commutativity. In this
note we will consider non-additive Lie centralizers on strictly infinite upper triangular
matrices over an field of zero characteristic.

Let us recall one basic fact. Let F be an field of zero characteristic. Also, let Noo(F),
Do (F) and Too (F) denote the algebra of strictly infinite N x N upper triangular matrices
over F, the algebra of all infinite N x N diagonal matrices over F and the algebra of all
infinite N x N upper triangular matrices over F, respectively

Throughout this article, J will represent the matrix J = ZEz i+1 and I, = ZEH
( )and
f(X),Y]
Noo(F).

By Cn_ (7)(X), we will denote the centralizer of the element X in the ring N,

[ Noo(F) = Noo(F) will denote a non-additive map satisfying : f([X,Y]) = |

for all X,Y € Noo(F). We will say that f is a non-additive Lie centralizer of

Notice that it is easy to check that the Noo(F) has a trivial center Z (Noo(F)).
The main result in this paper is the following:

Theorem 1.1 Let F be an field of zero characteristic. If f : Noo(F) — Noo(F) is
a non-additive Lie centralizer then there exists A € F such that f(X) =
X € Noo(F).

Notice that the converse is trivially true: every map f(X) = AX is a (non-additive)
Lie centralizer.

2. Proof of the main result

Let’s start with some properties of Lie centralizers.

Lemma 2.1 [6] Let f be a non-additive Lie centralizer of N (F). Then

(1) f(0)=0,
(2) For every X,Y € Noo(F) we have f([X,Y]) = [X, f(Y)],
(3) f is a commuting map, i.e. f(X)X = X f(X) for all X € Noo(F).

Proof. (1) It suffices to notice that f(0) = f([0,0]) = [f(0),0] = 0.

(2) Observe that if f([X,Y]) = [f(X),Y], then we have f( XY -Y X) = f(X)Y =Y f(X).
Interchanging X and Y in the above identity, we have f(YX — XY) = f(Y)X - X f(Y).
Replacing X with —X, we arrive at f(XY —YX) = Xf(Y) — f(Y)X which can be
written as f([X,Y]) = [X, f(Y)].

(3) From (1), one also gets [f(X), X]| = f([X, X]) = f(0) = 0. [ |

Remark 1 Let f be a non-additive Lie centralizer of Noo(F) and X € Cn_(5)(Y). Then
f(X) € Oy _(m)(Y). Indeed, if X € Cn_5)(Y), then [X,Y] =0 and

0=£(0) = f(IX,Y]) = [f(X),Y].
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Lemma 2.2 Let f be a non-additive Lie centralizer of Noo(F). Then

(1) if A € Too(F), then [Dg, A] = Aif and only if A = > a;E; ;41;
i=1
(2) f(zlaiEi,iH) = ZlbiEi,Hl;
(3) if A= )"a;E;;1 for some a; € A, then [Jo, A] = 0 if and only if A = aJ for
i=1
some a € F;
(4) there exists A € F such that f(J) = A\J.

Proof. Let Dy = > (—k) Ej .
k=1
(1) Consider A =3, . a;;E;j € Too(F). Then [DO,A] = Aif and only if (p — n) app =

anp for all 1 <n < p €N, and consequently A = Zaz i1 iq1.

(2) Hence, if A= ;aiE@iH, [Do,A] = A. Thus f([Do, ]) = [Do,f(A)] = f(A) .
Thus, f(A) = ibiEi,HL
=1

(3) Asin (1), consider A = ) a;E; ;41 for some a; € F. Then [J, A] = 0 if and only if
i=1
A:anorsomeae]:

Indeed, f(J) = Eaz ii+1 by (1). Thus, 0 = f(0) = f([J,J]) = [J, f (J)]. Hence, there
exists A € F such that f(J)=MJ. [ |

Lemma 2.3 [9] Suppose that F is an arbitrary field. If G, H € UT(F) are such that
Gii+1 = hiit1 # 0 for all 1 <i < n—1, then G and H are conjugated in UToo(F).

Here UToo(F) is the multiplicative group of infinite N x N upper triangular matrices
with only 1’s in the main diagonal. From the lemma above we obtain the following
corollary.

Corollary 2.4 Let F be a field. For every A = Zigg‘ a;jE;;, where a; ;41 # 0, there
exists B € Too(F) such that B71AB = J.

Proof. Let A be a matrix in Ny (F) of the mentioned form. Then I+ A is a unitriangu-
lar matrix, let’s notice first that there exists By € Duoo(F) such that (By'ABy); 41 = 1
for all i € N. We can construct By € Do (F) recursively by:

(B1)11 =1, (B)is1i41 = (B1)ii - (Agig1) ™" fori>1.

Consider matrix B; 'AB and I,,+B; ' AB € UTx(F). The unitriangular matrices Io.+.J
and I, + By 'AB fulﬁll the condition in Lemma 2.3. Hence, there exists By € UTx(F)
such that Ioo +J = By (I« + B{*AB;)By. Then, J = By (B;'AB;)B,. Takin B =
B1By € To(F), we obtain J = B LAB as wanted. [ |

Lemma 2.5 Let A =3, . a;;E;j, be amatrix in Noo(F) with a; ;41 # 0 for every i > 1.
Then there exists Ay € F such that f(A) = A4 A.

Proof. If A = Zi<j a;jEij, where a;;41 # 0, there exists T € To(F) such that
TAT~! = J, by the previous corollary. Define h : Ny(F) — Noo(F) by h(X) =
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Tf(T-1XT)T~!. Then h is a non-additive Lie centralizer. Indeed,

f(T*ATYT'B — BT f(T *AT)T!
= [Tf(T'AT)T, B]
= [h(4), B]

for all A, B € Noo(F). Hence, h(J) = AaJ by Lemma 2.2. Then
THAT ' =THT N TATHT)T™! = h(J) = AaJ = MaTAT L

Multiplying the left and right sides by 7! and T respectively yields f(A) = AaA. ®

Now, we wish to extend Lemma 2.5 to all elements of N (F). In order to do it, let’s
introduce the set that we will denote by S = {B = (b;j) € Noo(F) : biit1 #0 Vi > 1}.
This set has an important property that is established below.

Lemma 2.6 Let F be a field. Every element of Ny (F) can be written as a sum of at
most two elements of S.

Proof. If a; ;41 # 0 for all i > 1, then A belongs in S, so there is nothing to prove. If A
is not in S, then we can define By and By as follows:

a1 —b; fj=i+1 by fj=i+1
(B1)ij = vt J ; (Ba)ij =1} J )
a;; ifj>i+1, 0 otherwise,

where b; is a nonzero different elements of F from a; ;1. It is easy to see that B; and
By are in S, and A = By + Bs, so we wanted. [ |

Lemma 2.7 Let F be a field. Then f(A+ B) = f(A) + f(B) for arbitrary elements
A, B € Nyo(F).

Proof. For any A, B, X of Ny (F), we have

[f (A+B),X] = f([A+ B, X])
=[A+ B, f(X)]
=[A, F (X)) +[B, f(X)]
= [/ (A4), X]+[f(B),X]
=[f(A)+f(B),X],
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which implies that f(A+B)—f(A)—f(B) € Z (Noo(F)). Thus, f(A+B) = f(A)+ f(B).
n

Proof of Theorem 1.1: Let A, B € § be two non-commuting elements. By lemma
2.5, f(A) = AaA, f(B) = AgpB, Aa, A\p € F. Since f is non-additive Lie centralizer, we
have

f([A,Bl) = [f (A), B] = Aa[A, B]
= [A, f(B)] = \5[A,B

Then, [A, B] # 0 implies that Ay = Ap. If A,B € S commute, then we take C' € S
that does not commute neither with A nor with B. As we have just seen, Ay = A¢ and
A = A¢. Given X € Ny (F). We know by lemma 2.6 that there exist A, B € S such
that X = A+ B (we can assume that X ¢ S). Then f(X) = f(A)+ f(B) by lemma 2.7.
Thus, f(X) — AaA —ApB = f(X) — AX for A € F such that f(A) = A\A for all A € S;
that is, f(X) = AX, and Theorem 1.1 is proved.
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