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Abstract. The Mackey topology in the context of Hausdorff linearly topologized modules
over a complete discrete valuation ring is introduced and characterizations of this concept are
established. Moreover the interplay between the concept of Mackey topology and two special
classes of linearly topologized modules is discussed.
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1. Introduction

The notion of linearly topologized module over a discrete valuation ring plays an
important role in Algebraic Geometry [2], Commutative Algebra [1], Number Theory [10,
11] and Topological Algebra [12]. The purpose of this paper is to introduce the Mackey
topology in the context of Hausdorff linearly topologized modules over an arbitrary
complete discrete valuation ring and to obtain characterizations of this notion by means of
universal properties. Additionally it is proved that certain Hausdorff linearly topologized
modules, characterized by the validity of the Banach-Steinhaus property, are endowed
with the Mackey topology.

Let us recall that a principal ring R is a discrete valuation ring ([10], Chap. I) if the
set M of all non-invertible elements of R is a non-trivial ideal of R (in this case, M is
a maximal ideal of R). If π is a generator of M , then {πnR : n = 1, 2, . . .} constitutes a
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fundamental system of neighborhoods of 0 inR formed by ideals of R such that
∩
n⩾1

πnR =

{0}. The following important examples of discrete valuation rings may be mentioned: the
ring Zp of p-adic integers (p a prime natural number), M being pZp; the ring K [[X]] of
formal power series with coefficients in an arbitrary field K, M being XK [[X]]; for each
z0 ∈ C, the ring Hz0 of complex analytic mappings on an open ball (in C) with center
at z0, M being (z − z0)Hz0 . E is a linearly topologized R-module ([12], Chap. V) if E
is a topological R-module whose origin admits a fundamental system of neighborhoods
consisting of submodules of E.

Let R be a complete discrete valuation ring and K the field of fractions of R. Then
K is endowed with a discrete valuation under which it is complete. Since the residual
field R/M is finite, Proposition 1, p. 37 of [10] implies that R is compact. Thus R is a
linearly compact ring and Theorem 31.12 of [12] ensures that K is a linearly compact
R-module. Now, let R0 be the R-module K/R endowed with the discrete topology, under
which R0 is a linearly topologized R-module [5]. Since the canonical R-linear mapping
π : λ ∈ K 7−→ λ+ R ∈ R0 is continuous (Ker(π) = R), it follows from Theorem 31.6 of
[12] that R0 is linearly compact. Consequently, by Theorem 31.10 of [12], (R0)

I (endowed
with the product topology) is a linearly compact R-module if I is an arbitrary non-empty
set.

2. The Mackey topology

In this work R will denote an arbitrary complete discrete valuation ring.
Let (E, τ) be an arbitrary Hausdorff linearly topologized R-module, E∗ the R-module

of all continuous R-linear mappings from (E, τ) into R0, σ(E,E∗) the weak topology on
E (one has (E, σ(E,E∗))∗ = E∗) and σ(E∗, E) the weak topology on E∗ [3, 5]. Then

B =
{
L⊥ : L is a σ(E∗, E)-bounded and σ(E∗, E)-linearly compact submodule of E∗

}
is a filter base on E. In fact, if L1, L2 are σ(E∗, E)-bounded and σ(E∗, E)-linearly com-
pact submodules of E∗, L1 + L2 is a σ(E∗, E)-bounded ([12], Theorem 15.2(4)) and
σ(E∗, E)-linearly compact ([12], Theorem 31.6) submodule of E∗ such that (L1+L2)

⊥ ⊂
L⊥
1 ∩ L⊥

2 . Moreover, conditions (ATG 1), (ATG 2), (TMN 1) and (TMN 3) of Theorem
12.3 of [12] are obviously satisfied and the validity of condition (TMN 2) follows from the
fact that each L⊥ ∈ B comes from an L which is σ(E∗, E)-bounded. Thus the just men-
tioned Theorem 12.3 guarantees the existence of a unique R-module topology τ(E,E∗)
on E for which B is a fundamental system of neighborhoods of 0. And, since each element
of B is a submodule of E, τ(E,E∗) is a linear topology on E.

Definition 2.1 τ(E,E∗) is said to be the Mackey topology on E.

Proposition 2.2 If (E, τ) is an arbitrary Hausdorff linearly topologized R-module, then

σ(E,E∗) ⩽ τ ⩽ τ(E,E∗).

Proof. Since σ(E,E∗) ⩽ τ , it remains to show that τ ⩽ τ(E,E∗). Indeed, if U is a
τ -neighborhood of 0 in E which is a submodule of E, Proposition 4.12 of [5] furnishes
U = U⊥⊥ = (U⊥)⊥, U⊥ being an equicontinuous (hence σ(E∗, E)-bounded) submodule
of E∗ which is σ(E∗, E)-linearly compact in view of Theorem 1 of [7]. Therefore U ∈ B,
and τ ⩽ τ(E,E∗). ■
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Proposition 2.3 If (E, τ) is an arbitrary Hausdorff linearly topologized R-module, then
(E, τ(E,E∗))∗ = E∗.

Proof. By Proposition 2.2, it is enough to prove that (E, τ(E,E∗))∗ ⊂ E∗. In fact, if φ ∈
(E, τ(E,E∗))∗, there is a σ(E∗, E)-bounded and σ(E∗, E)-linearly compact submodule L
of E∗ so that φ(x) = 0 for all x ∈ L⊥. Now let us consider the dual system (E,E′), where
E′ is the R-module of all R-linear mappings from E into R0. Since the inclusion mapping
ξ ∈ (E∗, σ(E∗, E)) 7−→ ξ ∈ (E′, σ(E′, E)) is continuous, L is σ(E′, E)-linearly compact,
hence σ(E′, E)-closed by Theorem 31.9(1) of [12]. On the other hand, by Proposition

4.13 of [5], φ ∈ L⊥⊥ = Lσ(E′,E) = L ⊂ E∗, which concludes the proof. ■

The next result furnishes necessary and sufficient conditions for a Hausdorff linear R-
module topology to coincide with the Mackey topology. More precisely, we shall establish
the following:

Theorem 2.4 For an arbitrary Hausdorff linearly topologized R-module (E, τ), the
following conditions are equivalent:
(a) for every Hausdorff linearly topologized R-module (F, τ ′), each R-linear mapping u :
(E, τ) → (F, τ ′) such that Ψ◦u ∈ E∗ for all Ψ ∈ F ∗ is continuous (where F ∗ = ((F, τ ′))∗);
(b) every Hausdorff linear R-module topology θ on E such that ((E, θ))∗ ⊂ E∗ is coarser
than τ (in particular, if ((E, θ))∗ = E∗, then θ is coarser than τ);
(c) τ = τ(E,E∗).

Proof. (a) ⇒ (b): It suffices to take, in (a), (F, τ ′) = (E, θ) and u : (E, τ) → (F, τ ′) the
identity mapping.
(b) ⇒ (c): Since τ is coarser than τ(E,E∗) by Proposition 2.2, it remains to show
that τ(E,E∗) is coarser than τ . But, by Proposition 2.3, (E, τ(E,E∗))∗ = E∗, and
consequently τ(E,E∗) is coarser than τ by hypothesis.
(c) ⇒ (a): Let (F, τ ′), F ∗ and u be as in (a). Then the R-linear mapping

ut : Ψ ∈ (F ∗, σ(F ∗, F )) 7−→ Ψ ◦ u ∈ (E∗, σ(E∗, E))

is continuous. Let V be a neighborhood of 0 in (F, τ ′) which is a submodule of F . Since
V ⊥ is a σ(F ∗, F )-bounded and σ(F ∗, F )-linearly compact submodule of F ∗, ut(V ⊥)
is a σ(E∗, E)-bounded and σ(E∗, E)-linearly compact submodule of E∗ by Theorems
15.2(2) and 31.6 of [12]. Hence, by hypothesis, [ut(V ⊥)]⊥ is a neighborhood of 0 in
(E, τ). Moreover, the relations

x ∈ [ut(V ⊥)]⊥,Ψ ∈ V ⊥

imply Ψ(u(x)) = 0, and so

u(x) ∈ (V ⊥)⊥ = V ⊥⊥ = V for all x ∈ [ut(V ⊥)]⊥.

Thus u : (E, τ) → (F, τ ′) is continuous, as was to be shown. ■

It is known that every continuous linear mapping between two Hausdorff linearly
topologized R-modules is weakly continuous. The last result of this section ensures that,
conversely, every weakly continuous linear mapping is continuous with respect to the
Mackey topology.
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Proposition 2.5 Let E and F be Hausdorff linearly topologized R-modules. If

u : (E, σ(E,E∗)) −→ (F, σ(F, F ∗))

is a continuous R-linear mapping, then

u : (E, τ(E,E∗)) −→ (F, τ(F, F ∗))

is continuous. Consequently, by Proposition 2.2, u : (E, τ(E,E∗)) −→ F is continuous.

Proof. Let M be an arbitrary σ(F ∗, F )-bounded and σ(F ∗, F )-linearly compact sub-
module of F ∗. By the continuity of the R-linear mapping

ut : Ψ ∈ (F ∗, σ(F ∗, F )) 7−→ Ψ ◦ u ∈ (E∗, σ(E∗, E)),

the submodule ut(M) of E∗ is σ(E∗, E)-bounded and σ(E∗, E)-linearly compact. Hence[
ut(M)

]⊥
is a τ(E,E∗)-neighborhood of 0 in E such that u

([
ut(M)

]⊥) ⊂ M⊥, which

concludes the proof. ■

3. Linearly topologized R-modules with the Mackey topology

A linearly topologized R-module E is bornological [8] if every bornivorous in E is a
neighborhood of 0 in E. As we have observed in Examples 2.5 and 2.9 of the same paper,
the Hausdorff linearly topologized R-modules R0, R

n (n = 1, 2, . . .) and (the topological
direct sum) R(N) are bornological.

Our first result, motivated by Proposition 27 of [6], furnishes a sufficient condition for
a Hausdorff linearly topologized R-module to be bornological.

Proposition 3.1 If (E, τ) is a Hausdorff linearly topologized R-module such that
τ = τ(E,E∗) and every R-linear mapping from E into R0 which transforms τ -bounded
subsets of E into bounded subsets of R0 belongs to E∗, then (E, τ) is bornological.

Proof. Let B be the filter base on E consisting of all τ -bornivorous subsets of E (B ∈ B
if B is a submodule of E such that for each τ -bounded subset D of E there is an integer
m ⩾ 1 for which πmD ⊂ B). Since conditions (ATG 1), (ATG 2), (TMN 1), (TMN 2) and
(TMN 3) of Theorem 12.3 of [12] are easily verified, one may guarantee the existence
of a unique linear R-module topology τB on E for which B is a fundamental system
of τB-neighborhoods of 0 (τB is a Hausdorff topology because τ is coarser than τB). If
φ ∈ ((E, τB))

∗ is arbitrary, there is a B ∈ B so that φ(B) = {0}. If D is an arbitrary
τ -bounded subset of E, there is an integer k ⩾ 1 such that πkD ⊂ B, which implies
πkφ(D) ⊂ {0} and shows that φ(D) is a bounded subset of R0. Hence, by hypothesis,
φ ∈ E∗. Finally, by condition (b) of Theorem 2.4, τB is coarser than τ . Therefore τ = τB,
and (E, τ) is bornological. ■

A linearly topologized R-module E is barrelled [4] if every barrel in E is a neighborhood
of 0 in E. As we have observed in Examples 2.7, 2.6 and 2.10 of the same paper, the
Hausdorff linearly topologized R-modules R0, R

n (n = 1, 2, . . .) and (the topological
direct sum) R(N) are barrelled.
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Our last result, motivated by Proposition 26 of [6] and Proposition 14.4 of [9], furnishes
a necessary and sufficient condition for a Hausdorff linearly topologized R-module to be
barrelled.

Proposition 3.2 For a Hausdorff linearly topologized R-module (E, τ), the following
conditions are equivalent:
(a) (E, τ) is barrelled;
(b) τ = τ(E,E∗) and every σ(E∗, E)-closed and σ(E∗, E)-bounded submodule of E∗ is
σ(E∗, E)-linearly compact.

Proof. (a) ⇒ (b): We shall prove the validity of condition (a) of Theorem 2.4. Indeed,
let (F, τ ′) be a Hausdorff linearly topologized R-module and u : E → F an R-linear map-
ping satisfying the just mentioned condition (a). We claim that u is continuous. In fact, if
V is a τ ′-neighborhood of 0 in F which is a submodule of F , then N = V ⊥ ◦u ⊂ E∗ and
is σ(E∗, E)-bounded (note that V ⊥ is equicontinuous, hence σ(F ∗, F )-bounded, where
F ∗ = ((F, τ ′))∗). Thus, by Theorem 3.4 of [4], N is equicontinuous. Consequently, there
is a τ -neighborhood U of 0 in E such that Ψ(u(x)) = 0 for all x ∈ U and Ψ ∈ V ⊥, and
so u(x) ∈ (V ⊥)⊥ = V ⊥⊥ = V for all x ∈ U . Therefore, u is continuous, and Theorem 2.4
gives τ = τ(E,E∗). Finally, if M is a σ(E∗, E)-closed and σ(E∗, E)-bounded submodule
of E∗, M is equicontinuous. Thus, by Theorem 1 of [7], M is σ(E∗, E)-linearly compact.
(b) ⇒ (a): If T is a barrel in E, the σ(E∗, E)-closed submodule T⊥ of E∗ is σ(E∗, E)-
bounded by Proposition 3.1 of [4]; hence, by hypothesis, T⊥ is σ(E∗, E)-linearly com-
pact. Moreover, since τ = τ(E,E∗) and T = T⊥⊥ = (T⊥)⊥, it follows that T is a
τ -neighborhood of 0 in E, proving that (E, τ) is barrelled. ■

In conclusion one may guarantee that, for a given Hausdorff linearly topologized R-
module (E, τ), conditions (a) and (b) of Proposition 3.2 are also equivalent to (the
equivalent) conditions:
(α) for every Hausdorff linearly topologized R-module (F, τ ′), each τs-bounded subset
of the R-module L(E;F ) of all continuous R-linear mappings from (E, τ) into (F, τ ′) is
equicontinuous (where τs denotes the linear R-module topology of simple convergence
on L(E;F )),
(β) each σ(E∗, E)-bounded subset of E∗ is equicontinuous, which occur in Proposition
3.5 of [4].
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