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Abstract. In this paper, we first define two new characteristic subgroups of a group G. Then
we identify the relationships of these subgroups with G′, S(G), Ivar(G), and some different
homomorphisms. Particularly, with one of these two subgroups, we determine the structure
of Ivar(G) and a subgroup of it that fixes Z(G) element-wise.
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1. Introduction and preliminaries

The center of a group and its subgroups have interesting properties. All kinds of
automorphisms are also of very importance, and so these groups have been studied by
many researchers. For a group G, let us denote by G′, Z(G), Ker(G), Hom(G,H),
Inn(G) and Aut(G), the commutator subgroup, the centre, the kernel, the group of
homomorphisms of G into an abelian group H, the inner automorphisms and the full
automorphism group, respectively. For g ∈ G and α ∈ Aut(G), [g, α] = g−1α(g) is the
autocommutator of g and α.

In 1965, Bachmuth [1] defined an IA-automorphism as an automorphism of a group
G that preserves all cosets of G′. In other words,

IA(G) =
{
α ∈ Aut(G)

∣∣ [g, α] ∈ G′, ∀ g ∈ G
}
.
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In 1994, Hegarty [3] introduced the absolute center L(G) and autocommutator K(G)
subgroups as follows:

L(G) =
{
g ∈ G

∣∣ [g, α] = 1, ∀ α ∈ Aut(G)
}
,

K(G) =
〈
[g, α]

∣∣ g ∈ G, α ∈ Aut(G)
〉
= [G,Aut(G)].

Also, Autc(G) =
{
α ∈ Aut(G)

∣∣ [g, α] ∈ Z(G), ∀ g ∈ G
}

is the central automorphism

group. Since Aut(G) acts on G via automorphisms, we see that CG

(
Aut(G)

)
= L(G) is

the set of fixed points of this action. Also, it is clear that L(G) ⊆ Z(G) and Inn(G) ⊆
IA(G).

On the lines of the results of Schur [4] and Hegarty [3], in 2015, Ghumde and Ghate
[2] introduced the S(G) subgroup as follows:

{g ∈ G | [g, α] = 1, α ∈ IA(G)} .

Also, we can consider S(G) by S(G) := CG

(
IA(G)

)
. Since Inn(G) ⊆ IA(G), we have

L(G) = CG

(
Aut(G)

)
⊆ S(G) = CG

(
IA(G)

)
⊆ CG

(
Inn(G)

)
= Z(G),

whence L(G)⊴ S(G)⊴ Z(G). In [2], Ghumde and Ghate showed that if G is a finite p-
group, then S(G) is non-trivial. Afterward, they introduced Ivar(G) subgroup as follows:

{α ∈ IA(G) | [g, α] ∈ S(G), ∀ g ∈ G} .

In this paper, by using these definitions, we introduce two subgroups that are related
to them. One of these new subgroups is denoted by E(G). We prove that Ivar(G) acts
trivially on E(G). Then we determine the structure of Ivar(G), where S(G) ⩽ E(G) or
S(G) and G/E(G) are torsion-free or Z(G) ⩽ E(G). Also, we determine the structure
of the group of automorphisms of Ivar(G) fixing Z(G) element-wise. However, before

providing them, we need the following results. We write H
ch
⩽ G if H is a characteristic

subgroup of G.

Proposition 1.1 Let G be a group. Then S(G) is a characteristic subgroup of G.

Proof. As we know, S(G) ⩽ G and S(G) ⩽ Z(G)
ch
⩽ G. We prove that S(G)

ch
⩽ Z(G),

then S(G)
ch
⩽ G by [5, 2.11.12]. Let β ∈ Aut

(
Z(G)

)
and s ∈ S(G). We show that β(s) ∈

S(G). By definition IA(G), [β(s), α] =
(
β(s)

)−1
α
(
β(s)

)
∈ G′ for every α ∈ IA(G). As

β(s) ∈ Z(G), so S(G) ⩽ Z(G) ⩽ G′. For abelian group Z(G), Aut
(
Z(G)

)
= Autc

(
Z(G)

)
,

therefore β ∈ Aut
(
Z(G)

)
= Autc

(
Z(G)

)
. Since β(s) ∈ Z(G) ⩽ G′ and the central

automorphisms fix G′ pointwise, so β(s) = s ∈ S(G). ■

Theorem 1.2 If G is a group, then Ivar(G) is a non-trivial normal subgroup of Aut(G).

Proof. For every arbitrary group G, the identity automorphism is an element of
Ivar(G). Therefore, Ivar(G) 6= ∅. According to the previous proposition, it is clear
that Iver(G) is a subgroup of Aut(G), so we only prove that the Iver(G) is normal in
Aut(G). Let β ∈ Aut(G) and α ∈ Ivar(G) be arbitrary. We show that β−1αβ ∈ Ivar(G).
For every g ∈ G, we have β−1(g)α

(
β(g)

)
∈ S(G). Thus, there exists s0 ∈ S(G) such that
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β−1(g)α
(
β(g)

)
= s0. Now,

g−1
(
β−1αβ(g)

)
= g−1β−1

(
αβ(g)

)
= g−1β−1

(
β(g)β−1(g)αβ(g)

)
= g−1β−1

(
β(g)s0

)
= g−1gβ−1(s0)

= β−1(s0) ∈ β−1
(
S(G)

)
.

Since S(G)
ch
⩽ G, then β−1

(
S(G)

)
= S(G). Thus, g−1

(
β−1αβ(g)

)
∈ S(G), and the proof

ends. ■

Proposition 1.3 Let G be a group. Then

Ivar(G) ∼= Hom
( G

S(G)
, S(G) ∩G′

)
.

In particular, Ivar(G) is an abelian group.

Proof. Consider the map α∗ : G/S(G) −→ S(G)∩G′ defined by α∗(gS(G)) = g−1α(g)
for all g ∈ G and each α ∈ Ivar(G). Since every automorphism in Ivar(G) acts trivially
on S(G), α∗ is a well-defined homomorphism of G/S(G) to S(G) ∩ G′. Now, it is easy
to check that ψ : Ivar(G) −→ Hom

(
G/S(G), S(G)∩G′), defined by ψ(α) = α∗ for any

α ∈ Ivar(G), is an isomorphism.
For the second part, we know that S(G) ∩ G′ ⩽ S(G) is an abelian group, so
αβ

(
gS(G)

)
= βα

(
gS(G)

)
for each α, β ∈ Hom

(
G/S(G), S(G) ∩ G′) and g ∈ G. Thus,

Hom
(
G/S(G), S(G) ∩G′) is an abelian group. Now, the result follows by the first part.

■

2. Main Results

In this section, we first introduce two new subgroups and investigate their properties
and the relations of these subgroups with G′, S(G), Ivar(G) and some different ho-
momorphisms. Then we give our main results about the behavior of Ivar(G), and its
members that fix Z(G) element-wise.

Definition 2.1 Let G be a group and

CAut(G)

(
Ivar(G)

)
= {α ∈ Aut(G) | σα = ασ, ∀ σ ∈ Ivar(G)},

CIA(G)

(
Ivar(G)

)
= {α ∈ IA(G) | σα = ασ, ∀ σ ∈ Ivar(G)},

be the centralizers of Ivar(G) in Aut(G) and IA(G), respectively. We define ξ(G) =
[G,CAut(G)

(
Ivar(G)

)
] and E(G) = [G,CIA(G)

(
Ivar(G)

)
].

It is obvious that E(G) ⩽ ξ(G) ⩽ K(G). For example, if G is an abelian group, then
ξ(G) = K(G) and E(G) = 1.

Proposition 2.2 Let G be a group. Then G′ ⩽ ξ(G)
ch
⩽ G and G′ ⩽ E(G)

ch
⩽ G.
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Proof. Clearly, ξ(G) ⩽ G. Let [g, α] ∈ ξ(G) and σ ∈ Aut(G). Then

σ([g, α]) = σ
(
g−1α(g)

)
= σ(g−1)σ

(
α(g)

)
= σ(g−1)σα

(
σ−1σ(g)

)
=

(
σ(g)

)−1
σασ−1

(
σ(g)

)
= [σ(g), σασ−1].

It will be enough to show that σασ−1 ∈ CAut(G)

(
Ivar(G)

)
. Let β ∈ Ivar(G). We must

show that (σασ−1)β = β(σασ−1). By Theorem 1.2, Ivar(G)⊴Aut(G). Hence, σ−1βσ ∈
Ivar(G). Since α ∈ CAut(G)

(
Ivar(G)

)
, we can write

(σασ−1)β = σασ−1βσσ−1 = σσ−1βσασ−1 = β(σασ−1).

Thus, σ([g, α]) = [σ(g), σασ−1] ∈ ξ(G). Now, we show that G′ ⩽ ξ(G). Given that S(G)
is contained in Z(G), Ivar(G) ⩽ Autc(G). As every automorphism in Autc(G) commutes
with each member of Inn(G), Inn(G) ⩽ CAut(G)

(
Ivar(G)

)
. Now, we have

G′ = [G, Inn(G)] ⊆ [G,CAut(G)

(
Ivar(G)

)
] = ξ(G).

The second relation G′ ⩽ E(G)
ch
⩽ G follows similarly. ■

Lemma 2.3 Let G be a group. Then Ivar(G) acts trivially on E(G).

Proof. Let α ∈ Ivar(G) be an arbitrary automorphism. Then g−1α(g) ∈ S(G) for all
g ∈ G and hence, α(g) = gs for some s ∈ S(G). Now, let β ∈ CIA(G)

(
Ivar(G)

)
be

arbitrary. Then using the property of β and [g, β] ∈ E(G), we have

α([g, β]) = α
(
g−1β(g)

)
=

(
α(g)

)−1
α
(
β(g)

)
= s−1g−1β

(
α(g)

)
= s−1g−1β(gs)

= s−1g−1β(g)β(s)

= s−1g−1β(g)s

= g−1β(g)

= [g, β]

for all g ∈ G, which gives the result. ■

The next theorem provides the properties of Ivar(G)when S(G) is torsion-free.

Theorem 2.4 Let G be a group with S(G) torsion-free. Then

(1) Ivar(G) is torsion-free.
(2) If G/E(G) is torsion, then Ivar(G) = 〈1〉.
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Proof. For part (1), it will be enough to prove by Proposition 1.3 that
Hom

(
G/S(G), S(G)∩G′) is torsion-free. Let α ∈ Hom

(
G/S(G), S(G)∩G′) be arbitrary

and non-trivial. Then α
(
gS(G)

)
6= 1 for some gS(G) ∈ G/S(G). By the assumption,

S(G) is a torsion-free group and so αn
(
gS(G)

)
6= 1 for every positive integer n. Thus,

αn 6= 1, which implies Hom
(
G/S(G), S(G)∩G′) is torsion-free, and this gives the result.

(2) We prove that α(g) = g for every α ∈ Ivar(G) and each g ∈ G. As G/E(G) is
torsion, gn ∈ E(G) for some positive integer n. By Lemma 2.3, we have α(g)n = α(gn) =
gn. Hence, g−nα(g)n = 1. Since g−1α(g) ∈ S(G), we have

(
g−1α(g)

)n
= 1. Because S(G)

is torsion-free, g−1α(g) = 1. Hence, α(g) = g for all α ∈ Ivar(G) and g ∈ G. Therefore,
Ivar(G) = 〈1〉. ■

The following theorem determines the structure of Ivar(G) while S(G) is a subgroup
of E(G).

Theorem 2.5 Let G be a group and S(G) ⩽ E(G). Then

Ivar(G) ∼= Hom
( G

E(G)
, S(G) ∩G′).

Proof. Since S(G)E(G) = E(G), we prove that

Ivar(G) ∼= Hom
( G

S(G)E(G)
, S(G) ∩G′).

We define

ψ : Ivar(G) −→Hom
( G

S(G)E(G)
, S(G) ∩G′)

α 7−→α∗,

where

α∗ :
G

S(G)E(G)
−→S(G) ∩G′

gS(G)E(G) 7−→g−1α(g), for every g ∈ G.

Obviously, α∗ is a well-defined homomorphism, because for every g1 and g2 in G, if
g1S(G)E(G) = g2S(G)E(G), then g−1

1 g2 ∈ S(G)E(G). By the definition of S(G) and
Lemma 2.3, α(g−1

1 g2) = g−1
1 g2 and so g−1

1 α(g1) = g−1
2 α(g2). Moreover, α∗ is a homomor-

phism, because

α∗(g1S(G)E(G)g2S(G)E(G)) = α∗(g1g2S(G)E(G))
= (g1g2)

−1α(g1g2)

= g−1
2 g−1

1 α(g1)α(g2)

= g−1
1 α(g1)g

−1
2 α(g2)

= α∗(g1S(G)E(G))α∗(g2S(G)E(G)).
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It is obvious that the map ψ is a well-defined monomorphism. Now, we show that ψ is
surjective. Let

β ∈ Hom
( G

S(G)E(G)
, S(G) ∩G′).

We define the map

α : G −→G

g 7−→gβ
(
gS(G)E(G)

)
.

We prove that α ∈ Ivar(G). Obviously, α is a well-defined homomorphism. Also, it is an
injective map, because if x ∈ Ker(α), then 1 = α(x) = xβ

(
xS(G)E(G)

)
. Therefore,

x−1 = β
(
xS(G)E(G)

)
∈ S(G) ⩽ S(G)E(G)

and 1 = α(x) = x, so Ker(α) = 〈1〉. To prove that α is surjective, we first show that
Im(β) ⊆ Im(α). Let s ∈ Im(β). Then β

(
gS(G)E(G)

)
= s ∈ S(G) for some g ∈ G. Since

S(G) ⩽ S(G)E(G), we have α(s) = sβ
(
sS(G)E(G)

)
= s. Hence, s ∈ Im(α). For every

g ∈ G, g = α(g)β
(
gS(G)E(G)

)−1 ∈ Im(α). Therefore, G = Im(α) and α is surjective.
Thus, α ∈ Ivar(G) and α∗ = β which means ψ is an automorphism and this completes
the proof. ■

We use notation CIvar(G)

(
Z(G)

)
for the group of automorphisms of Ivar(G) fixing

Z(G) element-wise. Thus,

CIvar(G)

(
Z(G)

)
= {α ∈ Ivar(G) | α(z) = z, ∀ z ∈ Z(G)}.

The following statements give some conditions in which Ivar(G) = CIvar(G)

(
Z(G)

)
=

〈1〉.

1) G be an abelian group,
2) S(G) = 〈1〉,
3) Z(G) ⩽ E(G).

Lastly, in the following theorem, we give the structure of the group of automorphisms of
Ivar(G) fixing Z(G) element-wise.

Theorem 2.6 Let G be a group. Then

CIvar(G)

(
Z(G)

) ∼= Hom
( G

E(G)Z(G)
, S(G) ∩G′).

Proof. We consider the map

ψ : CIvar(G)

(
Z(G)

)
−→Hom

( G

E(G)Z(G)
, S(G) ∩G′)

α 7−→σα,
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where

σα :
G

E(G)Z(G)
−→S(G) ∩G′

gE(G)Z(G) 7−→g−1α(g), ∀ g ∈ G.

By Lemma 2.3, every automorphism α ∈ Ivar(G) acts trivially on E(G). On the other
hand, by definition, α acts trivially on Z(G) which shows that σα is well-defined. The
remainder of this argument is done with the same interpretation of Theorem 2.5. ■
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