Journal of Linear and Topological Algebra Vol. 08, No. 03, 2019, 203-209

2n-Weak module amenability of semigroup algebras

K. Fallahi^a, H. Ghahramani^{b,*}

^aDepartment of Mathematics, Payam Noor University of Technology, Tehran, Iran. ^bDepartment of Mathematics, University of Kurdistan, P. O. Box 416, Sanandaj, Iran.

> Received 27 January 2019; Revised 11 April 2019; Accepted 15 April 2019. Communicated by Hamidreza Rahimi

Abstract. Let S be an inverse semigroup with the set of idempotents E. We prove that the semigroup algebra $\ell^1(S)$ is always 2n-weakly module amenable as an $\ell^1(E)$ -module, for any $n \in \mathbb{N}$, where E acts on S trivially from the left and by multiplication from the right. Our proof is based on a common fixed point property for semigroups.

© 2019 IAUCTB. All rights reserved.

Keywords: 2n-weak module amenability, inverse semigroup, semigroup algebra, Banach module, module derivation.

2010 AMS Subject Classification: 43A20, 46H25, 43A10.

1. Introduction

Let \mathcal{A} be a Banach algebra, and let \mathcal{X} be a Banach \mathcal{A} -bimodule. A linear map D: $\mathcal{A} \to \mathcal{X}$ is called a derivation if D(ab) = aD(b) + D(a)b for all $a, b \in \mathcal{A}$. Each map of the form $a \to ax - xa$, where $x \in \mathcal{X}$, is a continuous derivation which will be called an inner derivation.

For any Banach \mathcal{A} -module \mathcal{X} , its dual space \mathcal{X}^* is naturally equipped with a Banach \mathcal{A} -module structure via

 $\langle x, af \rangle = \langle xa, f \rangle$, $\langle x, fa \rangle = \langle ax, f \rangle$ $(a \in \mathcal{A}, f \in \mathcal{X}^*, x \in \mathcal{X}).$

Note that the Banach algebra \mathcal{A} itself is a Banach \mathcal{A} -bimodule under the algebra multiplication. So $\mathcal{A}^{(n)}$, the *n*-th dual space of \mathcal{A} , is naturally a Banach \mathcal{A} -bimodule in the

* Corresponding author.

Print ISSN: 2252-0201 Online ISSN: 2345-5934 © 2019 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

E-mail address: fallahi1361@gmail.com (K. Fallahi); h.ghahramani@uok.ac.ir & hoger.ghahramani@yahoo.com (H. Ghahramani).

above sense for each $n \in \mathbb{N}$. The Banach algebra \mathcal{A} is called n-weakly amenable if every continuous derivation from \mathcal{A} into $\mathcal{A}^{(n)}$ is inner. If \mathcal{A} is *n*-weakly amenable for each $n \in \mathbb{N}$ then it is called permanently weakly amenable.

The concept of *n*-weakly amenability was introduced by Dales, Ghahramani and Grønbæk in [8]. Johnson showed in [13] that for any locally compact group G, the group algebra $L^1(G)$ is always 1-weakly amenable. It was shown further in [8] that $L^1(G)$ is in fact *n*-weakly amenable for all odd numbers *n*. Whether this is still true for even numbers *n* was left open in [8]. Later in [12] Johnson proved that $\ell^1(G)$ is 2*n*-weakly amenable for each $n \in \mathbb{N}$ whenever *G* is a free group. The problem has been resolved affirmatively for general locally compact group *G* in [7] and in [14] independently, using a theory established in [15]. In [21], as an application of a common fixed point property for semigroups, a short proof to 2*m*-weak amenability of $L^1(G)$ was presented. Mewomo in [16] investigate the *n*-weak amenability of semigroup algebras and showed that for a Rees matrix semigroup S, $\ell^1(S)$ is *n*-weakly amenable when *n* is odd. Also he obtained a similar result for a regular semigroup *S* with finitely many idempotents.

Let \mathcal{A} and \mathcal{U} be Banach algebras such that \mathcal{A} is a Banach \mathcal{U} -bimodule with compatible actions; that is,

$$\alpha.(ab) = (\alpha.a)b, \quad (ab).\alpha = a(b.\alpha) \ (a, b \in \mathcal{A}, \alpha \in \mathcal{U}).$$

Let \mathcal{X} be a Banach \mathcal{A} -bimodule and a Banach \mathcal{U} -bimodule with compatible actions; that is,

$$\alpha.(ax) = (\alpha.a)x, \quad a(\alpha.x) = (a.\alpha)x, \quad (\alpha.x)a = \alpha.(xa) \ (a \in \mathcal{A}, \alpha \in \mathcal{U}, x \in \mathcal{X}),$$

and similarly for the right or two-sided actions. Then \mathcal{X} is called a Banach \mathcal{A} - \mathcal{U} -module, and is called a commutative Banach \mathcal{A} - \mathcal{U} -module whenever $\alpha . x = x . \alpha$ for all $\alpha \in \mathcal{U}$ and $x \in \mathcal{X}$.

Let \mathcal{A} and \mathcal{U} be as above and \mathcal{X} be a Banach \mathcal{A} - \mathcal{U} -module. A bounded map $D : \mathcal{A} \to \mathcal{X}$ is called a module derivation if

$$D(a \pm b) = D(a) \pm D(b), \quad D(ab) = aD(b) + D(a)b \ (a, b \in \mathcal{A}),$$

and

$$D(\alpha.a) = \alpha.D(a), \quad D(a.\alpha) = D(a).\alpha \ (a \in \mathcal{A}, \alpha \in \mathcal{U}).$$

Note that D is not necessarily linear and if there exists a constant M > 0 such that $\| D(a) \| \leq M \| a \|$, for each $a \in \mathcal{A}$, then D is bounded and its boundedness implies its norm continuity. When \mathcal{X} is a commutative Banach \mathcal{A} - \mathcal{U} -module, each $x \in \mathcal{X}$ defines an \mathcal{U} -module derivation $D_x(a) = ax - xa \ (a \in \mathcal{A})$, these are called inner module derivations.

If \mathcal{X} is a (commutative) Banach \mathcal{A} - \mathcal{U} -module, then so is \mathcal{X}^* , where the actions of \mathcal{A} and \mathcal{U} on \mathcal{X}^* are naturally defined as above. So by letting $\mathcal{X}^{(0)} = \mathcal{X}$, if we define $\mathcal{X}^{(n)}$ $(n \in \mathbb{N})$ inductively by $\mathcal{X}^{(n)} = (\mathcal{X}^{(n-1)})^*$, then $\mathcal{X}^{(n)}$ is a (commutative) Banach \mathcal{A} - \mathcal{U} -module.

Note that when \mathcal{A} acts on itself by algebra multiplication, it is not in general a Banach \mathcal{A} - \mathcal{U} -module, as we have not assumed the compatibility condition $a(\alpha.b) = (a.\alpha)b$ $(a, b \in \mathcal{A}, \alpha \in \mathcal{U})$. If we consider the closed ideal J of \mathcal{A} generated by elements of the form $(a.\alpha)b - a(\alpha.b)$ for $a, b \in \mathcal{A}, \alpha \in \mathcal{U}$, then J is an \mathcal{U} -submodule of \mathcal{A} . So the quotient Banach algebra \mathcal{A}/J is a Banach \mathcal{U} -module with compatible actions and hence from definition of J, when \mathcal{A}/J acts on itself by algebra multiplication, it is a Banach (\mathcal{A}/J) - \mathcal{U} -module. Therefore, $(\mathcal{A}/J)^{(n)}$ $(n \in \mathbb{N})$ is a Banach (\mathcal{A}/J) - \mathcal{U} -module. In general \mathcal{A}/J is not a commutative \mathcal{U} -module. If \mathcal{A}/J is a commutative \mathcal{U} -module. If a commutative \mathcal{U} -module. Now it is clear when \mathcal{A} is a commutative \mathcal{U} -module, then $J = \{0\}$ and hence by multiplication of \mathcal{A} from both sides, $\mathcal{A}^{(n)}$ $(n \ge 0)$ is

a commutative Banach \mathcal{A} - \mathcal{U} -module.

Let the Banach algebra \mathcal{A} be a Banach \mathcal{U} -module with compatible actions. From the above observations, $(\mathcal{A}/J)^{(n)}$ $(n \ge 0)$ is a Banach \mathcal{A} - \mathcal{U} -module by the \mathcal{A} -module actions $a\Phi = (a + J)\Phi$ and $\Phi a = \Phi(a + J)$ for $a, b \in \mathcal{A}, \Phi \in (\mathcal{A}/J)^{(n)}$ (the \mathcal{U} -module actions are similar to actions on $(\mathcal{A}/J)^{(n)}$ as \mathcal{U} -module). Note that whenever \mathcal{A}/J is a commutative \mathcal{U} -module, then $(\mathcal{A}/J)^{(n)}$ $(n \ge 0)$ is a commutative Banach \mathcal{A} - \mathcal{U} -module by the above actions. Now we are ready to define the notion of n-weak module amenability. We say that \mathcal{A} is n-weakly module amenable $(n \in \mathbb{N})$ if $(\mathcal{A}/J)^{(n)}$ is a commutative Banach \mathcal{A} - \mathcal{U} -module, and each continuous module derivation $D : \mathcal{A} \to (\mathcal{A}/J)^{(n)}$ is inner; that is $D(a) = D_{\Phi}(a) = a\Phi - \Phi a$ for some $\Phi \in (\mathcal{A}/J)^{(n)}$ and all $a \in \mathcal{A}$. Also \mathcal{A} is called permanently weakly module amenable if \mathcal{A} is n-weakly module amenable for each $n \in \mathbb{N}$. This definition is quite natural since $(\mathcal{A}/J)^{(n)}$ $(n \ge 0)$ is always a Banach \mathcal{A} - \mathcal{U} -module.

The notion of weak module amenability of a Banach algebra \mathcal{A} which is a Banach \mathcal{U} module with compatible actions is defined in [2], and studied in [1]. The main result of [2] is that the semigroup Banach algebra $\ell^1(S)$ on an inverse semigroup S is weakly module amenable, as an $\ell^1(E)$ -module, when S is commutative. The definition of weak module amenability is modified in [1] and the above result is proved for an arbitrary inverse semigroup (with trivial left action). Then the notion of n-weak module amenability is introduced in [5] and proved that $\ell^1(S)$ is (2n+1)-weakly module amenable as an $\ell^1(E)$ module, for each $n \in \mathbb{N}$, where S is an inverse semigroup with the set of idempotents E.

In this paper, we show that the inverse semigroup algebra $\ell^1(S)$ is 2*n*-weakly module amenable as an $\ell^1(E)$ -module, for every number $n \in \mathbb{N}$, where E is the set of idempotents of S and E acts on S trivially from the left and by multiplication from the right. Our proof is based on a common fixed point property for semigroups. In fact in this article we show that a module version of the main result of [21] holds for inverse semigroups.

2. Main result

A discrete semigroup S is called an inverse semigroup if for each $s \in S$ there is a unique element $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$. An element $e \in S$ is called an idempotent if $e = e^* = e^2$. The set of idempotents of S is denoted by E. There is a natural order on E, defined by

$$e \leqslant d \Leftrightarrow ed = e \quad (e, d \in E),$$

and E is a commutative subsemigroup of S, which is also a semilattice [11, Theorem V.1.2]. Elements of the form ss^* are idempotents of S and in fact all elements of E are in this form.

The algebra $\ell^1(E)$ could be regarded as a subalgebra of $\ell^1(S)$. Hence $\ell^1(S)$ is a Banach algebra and a Banach $\ell^1(E)$ -module with compatible actions. In this article we let $\ell^1(E)$ act on $\ell^1(S)$ by multiplication from right and trivially from left; that is,

$$\delta_e \cdot \delta_s = \delta_s, \quad \delta_s \cdot \delta_e = \delta_{se} = \delta_s * \delta_e \quad (s \in S, e \in E).$$

In this case, the ideal J (see section 1) is the closed linear span of $\{\delta_{set} - \delta_{st} | s, t \in S, e \in E\}$. With the notations of the previous section $(\ell^1(S)/J)^{(n)}$ $(n \ge 0)$ is a Banach $\ell^1(S)-\ell^1(E)$ -module. Note that we show the $\ell^1(E)$ -module actions of $f \in \ell^1(E)$ on $\Phi \in (\ell^1(S)/J)^{(n)}$ by $f.\Phi$ and $\Phi.f$, and also denote the $\ell^1(S)$ module actions of $f \in \ell^1(S)$ on $\Phi \in (\ell^1(S)/J)^{(n)}$ by $f\Phi$ and Φf . In the next remark, we give some properties of these module actions.

Remark 1 With the above notation, for all $e \in E$ and $\Phi \in (\ell^1(S)/J)^{(n)}$ $(n \ge 0)$ we have the followings

(i) $\delta_e \cdot \Phi = \Phi \cdot \delta_e;$ (ii) $\delta_e \Phi = \Phi \delta_e = \Phi.$

Proof. For all $e, d \in E$, we have $\delta_e - \delta_d = \delta_{ee} - \delta_{ede} - \delta_{dd} + \delta_{ded} \in J$. So $\delta_e + J = \delta_d + J$. Now for any $s \in S$ and $e \in E$, we find

$$\delta_{es} + J = (\delta_e + J)(\delta_s + J) = (\delta_{ss^*} + J)(\delta_s + J) = \delta_s + J.$$

Similarly, we get $\delta_{se} + J = \delta_s + J$ for $e \in E$ and $s \in S$. Hence, we have

$$\delta_{e} \cdot (\delta_{s} + J) = \delta_{s} + J = \delta_{se} + J = (\delta_{s} + J) \cdot \delta_{e}$$

and

$$\delta_e(\delta_s + J) = (\delta_e + J)(\delta_s + J) = \delta_{es} + J = \delta_s + J = \delta_{se} + J = (\delta_s + J)(\delta_e + J) = (\delta_s + J)\delta_e$$

for all $e \in E$ and $s \in S$. Since $lin\{\delta_s | s \in S\}$ is dense in $\ell^1(S)$ and J is closed in $\ell^1(S)$, it follows that $\delta_e (f + J) = (f + J) \delta_e$ and $\delta_e (f + J) = f + J = (f + J) \delta_e$ for all $e \in E$ and $f \in \ell^1(S)$. So, by induction on n, we arrive at $\delta_e \Phi = \Phi \delta_e$ and $\delta_e \Phi = \Phi \delta_e = \Phi$ for all $e \in E$ and $\Phi \in (\ell^1(S)/J)^{(n)}$ $(n \ge 0)$.

In view of this remark (i), we find that $(\ell^1(S)/J)^{(n)}$ $(n \ge 0)$ is a commutative $\ell^1(E)$ -module.

For an inverse semigroup S, the quotient S/\approx is a discrete group, where \approx is an equivalence relation on S as follows:

$$s \approx t \Leftrightarrow \delta_s - \delta_t \in J \quad (s, t \in S).$$

Indeed, S/\approx is homomorphic to the maximal group homomorphic image G_S [17] of S (see [3, 18, 19]). As in [20, Theorem 3.3], we may observe that $\ell^1(S)/J \cong \ell^1(G_S)$. Also see [10]. In [4, Remark 1] it is shown that all congruences on inverse semigroup S is equivalent and the similar properties holds for another class of semigroups such as E-inversive semigroup ,E-inversive E-semigroups and eventually inverse semigroups.

Since for proof of the main result we use a common fixed point property for semigroups, now we recall some notions related to common fixed point theory. Let S be a (discrete) semigroup. The space of all bounded complex valued functions on S is denoted by $\ell^{\infty}(S)$. It is a Banach space with the uniform supremum norm. In fact $\ell^{\infty}(S) = (\ell^{1}(S))^{*}$. For each $s \in S$ and each $f \in \ell^{\infty}(S)$ let $\ell_s f$ be the left translate of f by s, that is $\ell_s f(t) = f(st)$ $(t \in S)$ (the right translate $r_s f$ is defined similarly). We recall that $f \in \ell^{\infty}(S)$ is weakly almost periodic if its left orbit $\mathcal{LO}(f) = \{\ell_s f \mid s \in S\}$ is relatively compact in the weak topology of $\ell^{\infty}(S)$. We denote by WAP(S) the space of all weakly almost periodic functions on S, which is a closed subspace of $\ell^{\infty}(S)$ containing the constant function and invariant under the left and right translations. A linear functional $m \in WAP(S)^*$ is a mean on WAP(S) if ||m|| = m(1) = 1. A mean m on WAP(S) is a left invariant mean (abbreviated LIM) if $m(\ell_s f) = m(f)$ for all $s \in S$, and all $f \in WAP(S)$. If S is an inverse semigroup, it is well known that WAP(S) always has a LIM [9, Proposition 2]. Let C be a subset of a Banach space \mathcal{X} . We say that $\Gamma = \{T_s \mid s \in S\}$ is a representation of S on C if for each $s \in S$, T_s is a mapping from C into C and $T_{st}(x) = T_s(T_t(x))$ $(s, t \in S, x \in C)$. We say that $x \in C$ is a common fixed point for (the representation of) S if $T_s(x) = x$ for all $s \in S$.

Let \mathcal{X} be a Banach space and C a nonempty subset of \mathcal{X} . A mapping $T : C \to C$ is called nonexpansive if $|| T(x) - T(y) || \leq || x - y ||$ for all $x, y \in C$. The mapping T is called affine if C is convex and $T(\gamma x + \eta y) = \gamma T(x) + \eta T(y)$ for all constants $\gamma, \eta \geq 0$ with

 $\gamma + \eta = 1$ and $x, y \in C$. A representation Γ of a semigroup S on C acts as nonexpansive affine mappings, if each T_s $(s \in S)$ is nonexpansive and affine.

A Banach space \mathcal{X} is called *L*-embedded if there is a closed subspace $\mathcal{X}_0 \subseteq \mathcal{X}^{**}$ such that $\mathcal{X}^{**} = \mathcal{X} \oplus_{\ell^1} \mathcal{X}_0$. The class of *L*-embedded Banach spaces includes all $L^1(\Sigma, \mu)$ (the space of of all absolutely integrable functions on a measure space (Σ, μ)), preduals of von Neumann algebras, dual spaces of *M*-embedded Banach spaces and the Hardy space H_1 . In particular, given a locally compact group *G*, the space $L^1(G)$ is *L*-embedded. So are its even duals $L^1(G)^{(2n)}$ ($n \ge 0$). For more details, we refer the reader to [21] and the references therein. The next lemma is the common fixed point theorem for semigroups, which will be used in our proof to the main result.

Lemma 2.1 ([21, Theorem 2]) Let S be a discrete semigroup and Γ a representation of S on an L-embedded Banach space \mathcal{X} as nonexpansive affine mappings. Suppose that WAP(S) has a LIM and suppose that there is a nonempty bounded set $B \subset \mathcal{X}$ such that $B \subseteq \overline{T_s(B)}$ for all $s \in S$, then \mathcal{X} contains a common fixed point for S.

We now can prove the main result of the paper.

Theorem 2.2 Let S be an inverse semigroup with the set of idempotents E. Consider $\ell^1(S)$ as a Banach module over $\ell^1(E)$ with the trivial left action and natural right action. Then the semigroup algebra $\ell^1(S)$ is 2n-weakly module amenable as an $\ell^1(E)$ -module for each $n \in \mathbb{N}$.

Proof. Let $D: \ell^1(S) \to (\ell^1(S)/J)^{(2n)}$ be a continuous module derivation. Since $ss^* \in E$ for all $s \in S$, from Remark 1(ii), we have

$$D(\delta_{ss^*}) = D(\delta_{ss^*ss^*}) = D(\delta_{ss^*} * \delta_{ss^*}) = \delta_{ss^*}D(\delta_{ss^*}) + D(\delta_{ss^*})\delta_{ss^*} = 2D(\delta_{ss^*}).$$

Hence, $D(\delta_{ss^*}) = 0$ for all $s \in S$. Define $\phi : S \to (\ell^1(S)/J)^{(2n)}$ by $\phi(s) = D(\delta_s)\delta_{s^*}$ for $s \in S$. We see that

$$\phi(st) = D(\delta_s * \delta_t)\delta_{(st)^*} = (\delta_s D(\delta_t))\delta_{t^*} * \delta_{s^*} + (D(\delta_s)\delta_t)\delta_{t^*} * \delta_{s^*}$$

$$= \delta_s (D(\delta_t)\delta_{t^*})\delta_{s^*} + (D(\delta_s)\delta_{tt^*})\delta_{s^*}$$

$$= \delta_s (D(\delta_t)\delta_{t^*})\delta_{s^*} + D(\delta_s)\delta_{s^*}$$

$$= \delta_s \phi(t)\delta_{s^*} + \phi(s),$$
(1)

for all $s, t \in S$. Let $B = \phi(S)$. Then B is a nonempty bounded subset of $(\ell^1(S)/J)^{(2n)}$. For any $s \in S$ define the mapping $T_s : (\ell^1(S)/J)^{(2n)} \to (\ell^1(S)/J)^{(2n)}$ by

$$T_s(\Phi) = \delta_s \Phi \delta_{s^*} + \phi(s) \quad (\Phi \in (\ell^1(S)/J)^{(2n)})$$

Clearly, each T_s $(s \in S)$ is an affine mapping and for every $\Phi, \Psi \in (\ell^1(S)/J)^{(2n)}$ and $s \in S$, we have

$$|| T_s(\Phi) - T_s(\Psi) || = || \delta_s \Phi \delta_{s^*} + \phi(s) - \delta_s \Psi \delta_{s^*} + \phi(s) || \leq || \Phi - \Psi ||.$$

So each T_s $(s \in S)$ is nonexpansive. Now by using (1) for any $s,t \in S$ and $\Phi,\Psi \in (\ell^1(S)/J)^{(2n)}$, we find

$$T_{st}(\Phi) = \delta_{st} \Phi \delta_{(st)^*} + \phi(st) = \delta_s (\delta_t \Phi \delta_{t^*}) \delta_{s^*} + \delta_s \phi(t) \delta_{s^*} + \phi(s)$$
$$= \delta_s T_t(\Phi) \delta_{s^*} + \phi(s)$$
$$= T_s(T_t(\Phi)).$$

So, $\Gamma = \{T_s \mid s \in S\}$ defines a representation of S on $(\ell^1(S)/J)^{(2n)}$ which is nonexpansive and affine. From definition of T_s and (1), for any $s, t \in S$ it follows that $T_s(\phi(t)) = \delta_s \phi(t) \delta_{s^*} + \phi(s) = \phi(st)$. Therefore $T_s(B) \subseteq B$ $(s \in S)$. Let $\Phi \in B$. Now by Remark 1(ii) and the fact that $D(\delta_{ss^*}) = 0$ $(s \in S)$, we have

$$T_s(T_{s^*}(\Phi))=T_{ss^*}(\Phi)=\delta_{ss^*}\Phi\delta_{ss^*}+\phi(ss^*)=\Phi\quad(s\in S).$$

Since $T_{s^*}(\Phi) \in B$, it follows that $T_s(B) = B$ for each $s \in S$. Here S is regarded as a discrete semigroup.

Since $\ell^1(S)/J \cong \ell^1(G_S)$, where G_S is the maximal group homomorphic image, it follows that $(\ell^1(S)/J)^{(2n)}$ is *L*-embedded. Also WAP(S) has a LIM. So by Lemma 2.1, there is $\Upsilon \in (\ell^1(S)/J)^{(2n)}$ such that $T_s(\Upsilon) = \Upsilon$ for all $s \in S$ or $\delta_s \Upsilon \delta_{s^*} + \phi(s) = \Upsilon$ for all $s \in S$. So $\delta_s \Upsilon \delta_{s^*} + D(\delta_s) \delta_{s^*} = \Upsilon$ $(s \in S)$. Hence, we have $D(\delta_s) = \Upsilon \delta_s - \delta_s \Upsilon$ for all $s \in S$. By definition of left module action of $\ell^1(E)$ on $\ell^1(S)$, we have $\delta_e \delta_s = \delta_s$ $(e \in E, s \in S)$. Since $lin\{\delta_s | s \in S\}$ is dense in $\ell^1(S)$, we find $\delta_e f = f$ for all $e \in E$ and $f \in \ell^1(S)$. Hence $\delta_e (f + J) = f + J$ $(e \in E, f \in \ell^1(S))$. Furthermore a routine inductive argument shows that for each $e \in E$ and $\Phi \in (\ell^1(S)/J)^{(2n)}$ $(n \ge 0)$, we have $\delta_e \Phi = \Phi$. From this result and the fact that D is a module mapping, for any $s \in S$ and $\lambda \in \mathbb{C}$ we have

$$D(\lambda \delta_s) = D(\lambda \delta_{ss^*} . \delta_s)$$

= $\lambda \delta_{ss^*} . D(\delta_s)$
= $\lambda \delta_{ss^*} . (\Upsilon \delta_s - \delta_s \Upsilon)$
= $\lambda \delta_{ss^*} . (\Upsilon \delta_s) - \lambda (\delta_{ss^*} . \delta_s) \Upsilon$
= $\lambda (\Upsilon \delta_s - \delta_s \Upsilon).$

Since D is additive, we get $D(f) = \Upsilon f - f \Upsilon$ for any $f \in \ell^1(S)$ of finite support. But D is continuous and functions of finite support are dense in $\ell^1(S)$. Hence, we have

$$D(f) = \Upsilon f - f\Upsilon = D_{(-\Upsilon)}(f) \quad (f \in \ell^1(S)).$$

Therefore, D is inner. The proof is complete.

In [5], it has been proved that $\ell^1(S)$ is (2n+1)-weakly module amenable as an $\ell^1(E)$ module, for each $n \in \mathbb{N}$, where S is an inverse semigroup with the set of idempotents E. From this result and above theorem we get the next corollary.

Corollary 2.3 Let S be an inverse semigroup with the set of idempotents E. Consider $\ell^1(S)$ as a Banach module over $\ell^1(E)$ with the trivial left action and natural right action. Then the semigroup algebra $\ell^1(S)$ is permanently weakly module amenable as an $\ell^1(E)$ -module.

It should be noted that a similar result with the Corollary 2.4 of this paper has been obtained in [6] by a different proof.

With the notations in previous corollary, we have the next result.

Corollary 2.4 Each continuous module derivation $D : \ell^1(S) \to (\ell^1(G_S))^{(n)} \ (n \in \mathbb{N})$ is inner.

Acknowledgments

The author like to express his sincere thanks to the referees for this paper.

References

- [1] M. Amini, A. Bodaghi, Module amenability and weak module amenability for second dual of Banach algebras, Chamchuri. J. Math. 2 (1) (2010), 57-71.
- [2] M. Amini, D. Ebrahimi Bagha, Weak module amenability for semigroup algebras, Semigroup Forum. 71 (2005), 18-26.
- [3] M. Amini, A. Bodaghi, D. Ebrahimi Bagha, Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum. 80 (2010), 302-312.
- M. Amini, H. Rahimi, Amenability of semigroups and their algebras modulo a group congruence, Acta. Math. Hungar. 144 (2) (2014), 407-415.
- [5] A. Bodaghi, M. Amini, R. Babaee, Module derivations into iterated duals of Banach algebras, Proc. Romanian. Acad. (series A). 12 (2011), 277-284.
- [6] A. Bodaghi, M. Amini, A. Jabbari, Permanent weak module amenability of semigroup algebras, Annals. Alexandru. Ioan. Cuza. Uni.-Math., DOI:10.1515/aicu-2015-0018.
- [7] Y. Choi, F. Ghahramani, Y. Zhang, Approximate and pseudo-amenability of various classes of Banach algebras, J. Funct. Anal. 256 (2009), 3158-3191.
- [8] H. G. Dales, F. Ghahramani, N. Grønbæk, Derivations into iterated duals of Banach algebras, Stud. Math. 128 (1998), 19-54.
- J. Duncan, I. Namioka, Amenability of inverse semigroups and their semigroup algebras. Proc. R. Soc. Edinb. A. 80 (1988), 309-321.
- [10] D. Ebrahimi Bagha, M. Amini, Module derivation problem for inverse semigroups, Semigroup Forum. 85 (2012), 525-532.
- [11] J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
- [12] B. E. Johnson, Permanent weak amenability of group algebras of free groups, Bull. London. Math. Soc. 31 (5) (1999), 569-573.
- [13] B. E. Johnson, Weak amenability of group algebras, Bull. London. Math. Soc. 23 (3) (1991), 281-284.
- [14] V. Losert, On derivation and crossed homomorphisms, in: Banach Algebra 2009, in: Banach Center Pub. Inst. Math. Pol. Acad. Sci. 91 (2010), 199-217.
- [15] V. Losert, The derivation problem for group algebras, Ann. Math. 168 (2008), 221-246.
- [16] O. T. Mewomo, On n-weak amenability of Rees semigroup algebras, Proc. Indian. Math. Sci. 118 (4) (2008), 547-555.
- [17] W. D. Munn, A class of irreducible matrix representations of an arbitrary inverse semigroup, Proc. Glasgow. Math. Assoc. 5 (1961), 41-48.
- [18] H. Pourmahmood-Aghababa, A note on two equivalence relations on inverse semigroups, Semigroup Forum. 84 (2012), 200-202.
- H. Pourmahmood-Aghababa, (Super) Module amenability, module topological center and semigroup algebras, Semigroup Forum. 81 (2010), 344-356.
- [20] R. Rezavand, M. Amini, M. H. Sattari, D. Ebrahimi Bagha, Module Arens regularity for semigroup algebras, Semigroup Forum. 77 (2008), 300-305.
- [21] Y. Zhang, 2m-weak amenability of group algebras, J. Math. Anal. Appl. 396 (2012), 412-416.