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Abstract. The present paper is devoted to the existence and uniqueness result of the frac-
tional evolution equation Dq

cu(t) = g(t, u(t)) = Au(t) + f(t) for the real q ∈ (0, 1) with the

initial value u(0) = u0 ∈ R̃, where R̃ is the set of all generalized real numbers and A is an
operator defined from G into itself. Here the Caputo fractional derivative Dq

c is used instead
of the usual derivative. The introduction of locally convex spaces is to use their topology
in order to define generalized semigroups and generalized fixed points, then to show our re-
quested result.
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1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to
arbitrary non integer order. Moreover fractional processes have been increased many de-
velopments in the last decade. For instance, they are suitable for describing the long
memory properties of many time series. A strong motivation for investigating fractional
differential equations comes from physics. Fractional diffusion equations describe anoma-
lous diffusion on fractals (physical objects of fractional dimension, like some amorphous
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semiconductors or strongly porous materials; see [5, 9]. Colombeau algebras (usually de-
noted by the letter G) are differential (quotient) algebras with unit, and were introduced
by Colombeau [2, 3]. This algebra plays a crucial role in order to give a sense of multi-
plication of distributions [4, 9]. As a nonlinear extension of distribution theory to deal
with nonlinearities and singularities of data and coefficients in PDE theory [9]. These
algebras contain the space of distributions D′ as a subspace with an embedding real-
ized through convolution with a suitable mollifier. Elements of these algebras are classes
of nets of smooth functions. The reason for introducing fractional derivatives was the
possibility of solving nonlinear problems with singularities and derivatives of arbitrary
real order. Fixed point theory has fascinated many researchers since 1922 with the cele-
brated Banach fixed point theorem. There exists a vast literature on the topic field and
this is very active field of research at present. Fixed point theorems are very important
tools for proving the existence and uniqueness of the solutions to various mathematical
models (integral and partial equations, variational inequalities, etc). It can be applied to
for example: variational inequalities, optimization, and approximation theory. The fixed
point theory has been continually studied by many researchers (see [3]). It is rare to find
a paper that presented the fixed point theory in Colombeau algebra. We will rely on the
work of Martin in [7] and we will used the topology of locally convex spaces in order to
give a sense of the concept of fixed point in the such algebra. In this paper, we investigate
the existence and uniqueness of solutions to the following problem.{

Dq
cu(t) = g(t, u(t)) = Au(t) + f(t), t ∈ [0, b],

u(0) = u0 ∈ R̃
(1)

where A is an operator defined from G into itself and f : [0, b] → R̃ is a continuous
function. We give a definition of generalized semigroup for study the integral solution of
a such equation.

The present paper is organized as follows: after this introduction, we will recall some
concept concerning the Colombeaus algebra and fractional calculus in section 2. The
new notion of generalized semigroup and some properties take place in section 3. In
section 4, we provided the theorem of fixed point in Colombeau algebra. Finally, the
existence-uniqueness result for a fractional differential equation is proven in section 5.

2. Preliminaries

Here we list some notations and formulas to be used later. The elements of Colombeau
algebras G are equivalence classes of regularizations, i.e., sequences of smooth functions
satisfying asymptotic conditions in the regularization parameter ϵ. Therefore, for any set
X, the family of sequences (uϵ)ϵ∈(0,1) of elements of a set X will be denoted by X(0,1),
such sequences will also be called nets and simply written as uϵ. Let n ∈ N∗, as in [4] we

define the set E(Rn) =
(
C∞ (Rn)

)(0,1)
. The set of moderate functions is given as follows:

EM (Rn) =
{
(uε)ε>0 ⊂ E(Rn)| ∀K ⊂⊂ Rn&∀α ∈ Nn

0 ∃N ∈ N s.t. sup
x∈K

|Dαuε(x)| = Oϵ→0(ε
−N )

}
.

The ideal of negligible functions is defined by

N (Rn) =
{
(uε)ε>0 ⊂ E(Rn)| ∀K ⊂⊂ Rn&∀α ∈ Nn

0&∀p ∈ N, sup
x∈K

|Dαuε(x)| = Oϵ→0(ε
p)
}
.
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The Colombeau algebra is defined as a factor set G(Rn) = EM (Rn)/N (Rn). Also, we set∣∣EM (Rn)
∣∣ = {

(|uϵ|)ϵ , uϵ ∈ EM (Rn)
}
and

∣∣N (Rn)
∣∣ = {

(|uϵ|)ϵ , uϵ ∈ N (Rn)
}
. Moreover,

the set of all generalized real numbers is defined by R̃ = E (R) /N (R), where

E(R) :=
{
(xε)ε ∈ (R)(0,1)| ∃m ∈ N, |xε| = Oϵ→0(ε

−m)
}
,

N(R) :=
{
(xε)ε ∈ (R)(0,1)| ∀m ∈ N, |xε| = Oϵ→0(ε

m)
}
.

Note that R̃ is a ring obtained by factoring moderate families of real numbers with
respect to negligible families.

Proposition 2.1 The space E(R) is an algebra and N(R) is an ideal of E(R).

In the same, we set
∣∣E(R)∣∣ = {

(|rϵ|)ϵ , rϵ ∈ E(R)
}
and

∣∣N(R)
∣∣ = {

(|rϵ|)ϵ , rϵ ∈ N(R)
}
.

A fractional integral is defined by

Jαf(t) = 1
Γ(α)

∫ t
0 (t− τ)α−1f(τ)dτ α > 0.

Fractional calculus is a branch of mathematical analysis that studies the several different
possibilities of defining real number powers or complex number powers of the differenti-
ation operator D. For example, one may ask the question of meaningfully interpreting
D

1

2 . It is known that there are many types of derivatives of non-integral order, but in
this time we will work with Caputo approach. The fractional derivative of order α > 0
in the Caputo sense is defined by

Dαf(t) = 1
Γ(m−α)

∫ t
0

f (m)(τ)dτ
(t−τ)α+1−m m− 1 < α < m.

Let (fε) is a representative of F ∈ G. Then

Dαfε(t) =
1

Γ(1−α)

∫ t
0

f
′
ε(τ)dτ
(t−τ)α 0 < α < 1.

Now, we have

sup
t∈[0,T ]

∣∣∣Dαfε(t)
∣∣∣ ⩽ 1

Γ(1− α)
sup

t∈[0,T ]

∣∣∣∫ t

0

f
′
(τ)dτ

(t− τ)α

∣∣∣
⩽ 1

Γ(1− α)
||f ′ ||L∞([0,T ]) sup

t∈[0,T ]

∫ t

0

dτ

(t− τ)α
dτ

⩽ 1

Γ(1− α)
ε−N T 1−α

1− α
⩽ Cα,T ε

−N .

In general, for m− 1 < α < m, we have

sup
t∈[0,T ]

∣∣∣Dαfε(t)
∣∣∣ ⩽ 1

Γ(m− α)
sup

t∈[0,T ]

∫ t

0

|f (m)(τ)|
(t− τ)α+1−m

dτ

⩽ 1

Γ(m− α)
||f (m)||L∞([0,T ]) sup

t∈[0,T ]

∫ t

0

1

(t− τ)α+1−m
dτ

⩽ 1

Γ(m− α)
ε−N Tm−α

m− α
⩽ Cα,T ε

−N ,
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where constant Cα,T depends on two parameters α and T . In order to prove moderateness
for higher derivatives a similar calculation is applied.

Let G1, G2 ∈ G(Rn) and G1,ε, G2,ε their representatives, respectively. We say that
G1, G2 ∈ G(Rn) are associated and write G1 ≈ G2 if

limε→0

∫
Rn(G1,ε −G2,ε)φ(x)dx = 0.

for every φ ∈ D(Rn).
We will end this preliminaries by the Grönwall’s inequality.

Lemma 2.2 Let δ, η and u be three functions defined on an interval I = (a, b) such
that η and u are continuous. Moreover, suppose that δ is locally integrable on I.

(1) If η is non-negative and u satisfies the integral inequality

u(t) ⩽ δ(t) +
∫ t
a η(s)u(s)ds

for all t ∈ I, then

u(t) ⩽ δ(t) +
∫ t
a δ(s)η(s) exp (

∫ t
s η(r)dr)ds.

(2) In addition, if the function δ is non-decreasing, then

u(t) ⩽ δ(t) exp (
∫ t
a η(s)ds), t ∈ I.

3. Generalized semigroups

The notion of a semigroup plays a crucial role in order to study an evolutionary
problem. As we have known a lot of research is devoted to the linking relationship between
semigroups of an operator and its infinitesimal generator, the famous relationship is given
by Theorem 3.1 in [10]. In this section we will benefit the classical case and the method
of building the Colombeau algebra for giving a sense of the generalized semigroups. We
will start by some properties of locally convex spaces.

3.1 Locally convex spaces

In this subsection, we recall the concept of locally convex spaces and the notion of
completeness in this type of space.

Definition 3.1 Let X be a vector space with a seminorms family (pi)i∈I . For all i ∈ I,
we denote τi the topology defined by the seminorm pi, and τ the topology generated by
the classes

∪
i∈I τi. The couple

(
X, τ

)
is called a locally convex space.

A basis of 0-neighborhood is the set of all “balls” of the seminorms (pi)i∈I is

B(i, r) =
{
x ∈ X| pi(x) < r

}
∀i ∈ I and r > 0.

Also, (xn)n ∈ N is a Cauchy sequence if and only if

∀ε > 0, ∀i ∈ I ∃n0 ∈ N s.t. ∀n, p ∈ N if n ⩾ n0 ⇒ pi(xn+p − xn) < ε.

X is sequentially complete if any Cauchy sequence converges to an element e in X.

Definition 3.2 We said that D is dense in locally convex space X if and only if
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∀x ∈ X ∃y ∈ D st. ∀ε > 0& ∀i ∈ I : pi(x− y) < ε.

3.2 Generalized semigroups

As we known the semigroup of operator is defined on Banach spaces, but so far we haven’t
this concept in algebra of Colombeau. So, in order to define this concept we needed to
exploit the previous subsection for manipulating such notion. This subsection is devoted
to defining the generalized semigroups and its properties.

Definition 3.3 Let X be a locally convex space with a seminorm family (pi)i∈I . We
define

EM (X) :=
{
(xε)ε ∈ (X)(0,1)| ∃m ∈ N,∀i ∈ I, pi(xε) = Oϵ→0(ε

−m)
}
,

N (X) :=
{
(xε)ε ∈ (X)(0,1)| ∀m ∈ N,∀i ∈ I, pi(xε) = Oϵ→0(ε

m)
}
.

Also, we define the Colombeau algebra type by X̃ = EM (X)/N s(X).
First, we are looking if it is possible to define a map A : X̃ −→ X̃ by means of a given

family (Aε)ε∈(0,1) of maps Aε : X −→ X where Aε is a linear and continuous operator.
The general requirement is given in the following lemma

Lemma 3.4 Let (Aε)ε∈(0,1) be a given family of maps Aε : X −→ X. For each (xε)ε ∈
EM (X) and (yε)ε ∈ N (X), suppose that

(1)
(
Aεxε

)
ε
∈ EM (X),

(2)
(
Aε(xε + yε)

)
ε
−
(
Aεxε

)
ε
∈ N (X).

Then

A :

{
X̃ −→ X̃

x =
[
xε

]
7−→ Ax =

[
Aεxε

]
,

is well defined.

Proof. From the first property we see that the class
[
(Aεxε)ε

]
∈ X̃. Let xε + yε be

another representative of x = [xε]. From the second property, we have
(
Aε(xε + yε)

)
ε
−(

Aεxε

)
ε
∈ N (X) and

[(
Aε(xε + yε)

)
ε

]
=

[(
Aεxε)

)
ε

]
∈ X̃. Thus, A is well defined. ■

Now, we will give the definition of generalized semigroups on the Colombeau’s algebra.

Definition 3.5 We define SEM

(
R+ : Lc(X)

)
as the space of all nets

(
Sε

)
ε
of strongly

continuous mappings Sε : R+ −→ Lc(X), ε ∈ (0, 1), with the property that, for every
T > 0, there is a ∈ R such that

sup
t∈[0,T )

pi (Sε(t)) = Oϵ→0(ε
a) (2)

for all i ∈ I and SN (R+ : Lc(X)) is the space of nets (Nε)ε of strongly continuous
mappings Nε : R+ −→ Lc(X), ε ∈ (0, 1) with the properties:



76 M. Elomar et al. / J. Linear. Topological. Algebra. 08(01) (2019) 71-84.

For every b ∈ R and T > 0

sup
t∈[0,T )

pi (Nε(t)) = Oϵ→0(ε
b). (3)

There exist t0 > 0 and a ∈ R such that

sup
t<t0

pi

(
Nε(t)

t

)
= Oϵ→0(ε

a) (4)

for all i ∈ I.
There exists a net

(
Hε

)
ε
in Lc(X) and ε0 ∈ (0, 1) such that

lim
t−→0

Nε(t)

t
= Hεx, x ∈ X. (5)

For all b > 0 and i ∈ I,

pi (Hε) = Oϵ→0(ε
b). (6)

Remark 1 Let us remark that, because of (4), it is enough that (5) holds for all x ∈ D
where D is a dense subspace of X.

The following proposition show that the previous notion is in type Colombeau’s alge-
bra. Namely this concept take place in our context.

Proposition 3.6 SEM

(
R+ : Lc(X)

)
is algebra with respect to composition and

SN
(
R+ : Lc(X)

)
is an ideal of SEM

(
R+ : Lc(X)

)
.

Proof. Let
(
Sε(t)

)
ε
∈ SEM

(
R+ : Lc(X)

)
and

(
Nε(t)

)
ε
∈ SNM

(
R+ : Lc(X)

)
. We will

prove only the second assertion, i.e., that(
Sε(t)Nε(t)

)
ε
,
(
Nε(t)Sε(t)

)
ε
∈ SNM

(
R+ : Lc(X)

)
,

where Sε(t)Nε(t) denotes the composition. Let ε ∈ (0, 1). By the properties (2) and (5)
of the Definition 3.5, for some a ∈ R and every b ∈ R, we have

pi (Sε(t)Nε(t)) ⩽ pi (Sε(t)) pi (Nε(t)) = Oϵ→0(ε
a+b)

for all i ∈ I. The same holds for pi (Nε(t)Sε(t)) for all i ∈ I. Further, the properties (2)
and (5) of the definition yield

sup
t<t0

pi

(
Sε(t)Nε(t)

t

)
⩽ sup

t<t0
pi (Sε(t)) sup

t<t0
pi (Nε(t)) = Oϵ→0(ε

a)

for some t0 > 0, a ∈ R and for all i. Also,

sup
t<t0

pi

(
Sε(t)Nε(t)

t

)
= Oϵ→0(ε

a)
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for some t0 > 0, a ∈ R and for all i. Now, let ε ∈ (0, 1) be fixed. For all i ∈ I, we have

pi

(
Sε(t)Nε(t)

t
x− Sε(0)Hεx

)
= pi

(
Sε(t)

Nε(t)

t
x− Sε(t)Hεx+ Sε(t)Hεx− Sε(0)Hεx

)
⩽ pi (Sε(t))

(
Nε(t)

t
x− Sε(t)Hεx

)
+ pi (Sε(t)Hεx− Sε(0)Hεx) .

By the (2) and (4) of the Definition 3.5 as well as by the continuity of t −→ Sε(t)(Hεx)
at zero, it follows that the last expression tend to zero as t 7→ 0. Similarly, we have

pi

(
Nε(t)Sε(t)

t
x−HεSε(0)x

)
=

(
Nε(t)

t
Sε(t)x− Nε(t)

t
Sε(0)x+

Nε(t)

t
Sε(0)x−HεSε(0)x

)
⩽ pi

(
Nε(t)

t

)
pi (Sε(t)x− Sε(0)x) + pi

(
Nε(t)

t
(Sε(0)x)−Hε(Sε(0)x)

)
.

Assumptions (2), (4) and (5) imply that the last expression tends to zero as t 7→ 0.
Thus, (5) is proved in both cases. ■

Now, we define Colombeau type algebra as the factor algebra

SG
(
R+ : L(X)

)
= SEM

(
R+ : L(X)

)
/SN

(
R+ : L(X)

)
.

Elements of SG
(
R+ : L(X)

)
will be denoted by S = [Sε], where (Sε)ε is a representative

of the above class.

Definition 3.7 S ∈ SG
(
R+ : L(X)

)
is a called a Colombeau C0-Semigroup if it has a

representative (Sε)ε such that for some ε0 > 0, Sε is a C0-semigroup for every ε < ε0.

In the sequel, we will use only representatives
(
Sε

)
ε
of a Colombeau C0-semigroup S

which are C0-semigroups for ε small enough.

Proposition 3.8 Let
(
Sε

)
ε
and

(
S̃ε

)
ε
be representatives of a Colombeau C0-semigroup

S with the infinitesimal generators Aε for ε < ε0 and Ãε for ε < ε̃0, respectively, where
ε0 and ε̃0 correspond (in the sense of Definition 3.7) to

(
Sε

)
ε
and

(
S̃ε

)
ε
, respectively.

Then, D
(
Aε

)
= D

(
Ãε

)
for every ε < ε̄ = min

{
ε0, ε̃0

}
and Aε − Ãε can be extended to

an element of L(X), denoted again by Aε − Ãε. Moreover, for every a ∈ R,

pi

(
Aε − Ãε

)
= Oϵ→0(ε

a), ∀i. (7)

Proof. Denote Nε(Sε − S̃ε)ε ∈ SN (R+,L(X)). Let ε < ε̄0 be fixed and x ∈ X. we have

Sε(t)x−x
t − S̃ε(t)x−x

t = Nε(t)
t x.

This implies by letting t 7→ 0, that D(Aε) = D(Ãε). Now, for x ∈ D(Aϵ), we have

(
Aε − Ãε

)
x = lim

t−→0

Sε(t)x− x

t
− lim

t−→0

S̃ε(t)x− x

t
= lim

t−→0

Nε(t)

t
x = Hεx. (8)

Since D(Aε) is dense in X, properties (4), (5) and (7) imply that for every a ∈ R,

pi

(
Aε − Ãε

)
= Oϵ→0(ε

a).

■
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Now, we define the infinitesimal generator of a Colombeau C0-semigroup S. Let A be
the set of pairs ((Aε)ε, (D(Aε))ε), where Aε is a closed linear operator on X with the
dense domain D(Aε) ⊂ X for all ε ∈ (0, 1). We introduce an equivalence relation in A((

Aε

)
ε
,
(
D(Aε)

)
ε

)
∼

((
Ãε

)
ε
,
(
D(Ãε)

)
ε

)
.

If there exist ε0 ∈ (0, 1) such that D(Aε) = D(Ãε), for every ε < ε0, and for every

a ∈ R there exist C > 0 and εa ⩽ ε0 such that, for x ∈ D(Aε), pi

(
Aε − Ãε)x

)
⩽

Cεapi (x) , ∀i x ∈ D(Aε), ε ⩽ εa. Since Aε has a dense domain in X, Rε := Aε − Ãε

ca, be extended to be an operator in Lc(X) satisfying pi

(
(Aε − Ãε)x

)
= Oϵ→0(ε

a), for

every a ∈ R. such an operator Rε is called the zero operator.
We denote by A the corresponding element of the quotient space A/ ∼. Due to Propo-

sition 3.8, the following definition makes sense.

Definition 3.9 A ∈ A/ ∼ is the infinitesimal generator of a Colombeau C0-semigroup
S if there exists a representative (Aε)ε of A such that Aε is the infinitesimal generator
of Sε, for ε small enough.

By Pazy [10], we have the following proposition.

Proposition 3.10 Let S be a Colombeau C0-semigroup with the infinitesimal generator
A. Then there exists ε0 ∈ (0, 1) such that

• Mapping t 7−→ Sε(t)x : R+ −→ X is continuous for every x ∈ X and ε < ε0;

• For ε < ε0 and x ∈ X,

lim
h−→0

∫ t+h

t
Sε(s)xds = Sε(t)x;

• For ε < ε0 and x ∈ X, ∫ t

0
Sε(s)xds ∈ D(Aε);

• For all x ∈ D(Aε) and t ⩾ 0, Sε(t)x ∈ D(Aε) and

d

dt
Sε(t)x = AεSε(t)x = Sε(t)Aεx, ε < ε0; (9)

• Let
(
Sε

)
ε
and

(
S̃ε

)
ε
be representative of Colombeau C0-semigroup S, with infinitesimal

generators Aε and Ãε, ε < ε0, respectively. Then, for all a ∈ R t ⩾ 0 and for all i,

pi

(
d

dt
Sε(t)− ÃεSε(t)

)
= Oϵ→0(ε

a). (10)

• For every x ∈ D
(
Aε

)
and every t, s ⩾ 0,

Sε(t)x− Sε(s)x =

∫ t

s
Sε(τ)Aεxdτ =

∫ t

s
AεSε(τ)xdτ.

Now, we will discuss a condition given the equality between two generalized semigroups.
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Theorem 3.11 Let S and S̃ be Colombeau C0-semigroups with infinitesimal generators
A and Ã, respectively. If A = Ã, then S = S̃.

Proof. Let ε be small enough and x ∈ D
(
Aε

)
= D

(
Ãε

)
. Proposition 3.10 implies that

for t ⩾ 0, the mapping s 7−→ S̃ε(t− s)Sε(s)x is differentiable t ⩾ s ⩾ 0 and

d
ds

(
S̃ε(t− s)Sε(s)x

)
= −ÃεS̃ε(t− s)Sε(s)x+ S̃ε(t− s)AεSε(s)x, t ⩾ s ⩾ 0.

The assumption A = Ã implies that Aε = Ãε + Rε, where Rε is a zero operator. Since
Ãε commutes with S̃ε, for every x ∈ D

(
Aε

)
and t ⩾ s ⩾ 0,

d
ds

(
S̃ε(t− s)Sε(s)x

)
= Sε(t− s)RεSε(s)x,

which implies that

S̃ε(t− s)Sε(s)x− S̃ε(t)x =

∫ s

0
S̃ε(t− u)RεSε(u)xdu. (11)

Let s = t in (11). Then, for t ⩾ 0 and x ∈ D(Aε), we obtain

Sε(t)x− S̃ε(t)x =

∫ s

0
S̃ε(t− u)RεSε(u)xdu. (12)

SinceD(Aε) is dense inX, uniform boundedness of S and S̃ on [0, t] implies that (9) holds
for every y ∈ X. Let us prove that (Nε)ε = (Sε − S̃ε)ε ∈ SN (R+ : Lc(X)). Proposition
3.10 and (10) imply that for some C > 0, a, ã ∈ R, x ∈ X and for all i,

sup
t∈[0,T )

pi (Nε(t)x) ⩽ sup
t∈[0,T )

∫ t

0
pi

(
S̃ε(t− u)

)
pi (Rε) (Sε(u)) pi (x) du ⩽ T C εa+ãpi (Rεx) .

Since pi (Rε) = Oϵ→0(ε
b) for all b ∈ R,

(
Nε(t)

)
ε
satisfies (3) in Definition 3.7. Condition

(3) follows from the boundedness of (S̃ε)ε,(Sε)ε on bounded domain [0, t), the properties
of (Rε)ε and the following expression:

pi

(
Nε(t)

t

)
= pi

(
1

t

∫ t

0
S̃ε(t− u)RεSε(u)xdu

)
⩽ pi

(
S̃ε(t)

)
pi (Rε) (Sε) ⩽ const

for some t0 > 0, x ∈ X, t ⩽ t0 and for all i. Also, for all x ∈ D
(
Aε

)
, we have

lim
t−→0

Nε(t)

t
= lim

t−→0

S̃ε(t)x− x

t
− lim

t−→0

Sε(t)x− x

t
= Rεx.

Since it is enough that (5) holds for a dense subset of X see Remark 1, this completes
the proof. ■

4. Generalized fixed points

In this section we will presented the notion of fixed point in Colombeau algebra.
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4.1 Contractions in locally convex and complete spaces

This subsection is devoted to discuss the contraction map in locally convex spaces, which
led us to define the contraction map in type Colombeau’s algebra. Through this section
X is also a locally convex space.

Definition 4.1 A map Aε : X −→ X is called a contraction if there exists ki < 1 for all
i ∈ I such that for all (xε, yε) ∈ X ×X, pi(Aεxε −Aεyε) ⩽ ki pi(xε − yε).

We have the following result.

Theorem 4.2 Any contraction Aε : X −→ X has a fixed point. If X is Hausdorff, this
fixed point is unique.

Proof. Start from x0ε ∈ X and define x(n+1)ε = Aε(xnε) by induction. It is easy to
verify that xnε is a Cauchy sequence in the complete space X and converges to some
xε ∈ X. The contraction property of the map Aε implies obviously its continuity. Then,
passing to the limit in x(n+1)ε = Aε(xnε), we obtain that xε is a fixed point of X. If X
is Hausdorff, then there exists V ∈ V (0) such that zε /∈ V for all zε ̸= 0. Hence, there
exists i (depending on zε) such that pi(zε) > 0. If xε and yε are two different fixed points
of X, then there exists j (depending on xε − yε) such that

0 < pj
(
xε − yε

)
= pj

(
Aε(xε)−Aε(yε)

)
⩽ kj pj

(
xε − yε

)
< pi

(
xε − yε

)
.

■

4.2 Contraction operator in X̃

We will give a notion of contraction map in type Colombeau algebra.

Definition 4.3 A map A : X̃ → X̃ is called a contraction if only if
a) for each (xε)ε ∈ EM (X), (Aεxε)ε ∈ EM (X).
b) each Aε is a contraction in

(
X, τε

)
endowed with the family Qε = (qε,i)i∈I and the

corresponding contraction constants are denoted by lε,i < 1,
c) for each i ∈ I and ε ∈ (0, 1] there exists aε,i, bε,i > 0 such that aε,i pi ⩽ qε,i ⩽ bε,i pi.

d) for each i ∈ I and ε ∈ (0, 1], ( bε,iaε,i
)ε, (

1
1−lε,i

)ε ∈ |EM (R)|.

The essential result given in this theorem.

Theorem 4.4 Any contraction A : X̃ −→ X̃ has a fixed point in X̃.

Proof. Consider condition (a) which is (1) in Lemma 3.4. Let (iε)ε ∈ N (X) and (xε)ε ∈
EM (X). Then we have

pi(Aε(xε + iε)−Aεxε) = pi(Aε(xε + iε − xε)) = pi(Aεiε) ⩽ C pi(iε).

Thus, (Aε(xε+iε)−Aεxε)ε ∈ N (X) and the condition (2) in Lemma 3.4 is verified. Hence,
A is well defined. From Theorem 4.2, we know that each Aε has a fixed point zε obtained
from limit of the Cauchy sequence znε defined by induction by z(n+1)ε = Aε(znε). Starting

from z0 = [z0ε] ∈ X̃, we deduce that z1 = [Aε(z0ε)] ∈ X̃ and z1 − z0 ∈ X̃. That is to say
pi(z1ε − z0ε)ε ∈ |EM (R)|. By induction we can compute

qε,i(zn+p,ε − zn,ε) ⩽ lnε,i
1−lε,i

qε,i(z1,ε − z0,ε)

for all n, p ∈ N. Then

qε,i(zp,ε − z0,ε) ⩽ 1
1−lε,i

qε,i(z1,ε − z0,ε).
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Take the limit zε of zpε in (X, τε) when p −→ +∞, we get

qε,i(zε − z0,ε) ⩽ 1
1−lε,i

qε,i(z1,ε − z0,ε).

Now, qε,i(zε) ⩽ qε,i(zε − z0,ε) + qε,i(z0,ε), which

pi(zε) ⩽
1

aε,i
qε,i(zε) ⩽

bε,i
aε,i

[
1

1− lε,i
(pi(zε − z0,ε) + pi(z0,ε))].

Then, from the hypotheses (pi(zε))ε ∈ |EM (R)|, that is to say (zε))ε ∈ EM (X). If z = [zε],
then Az = [Aεzε] = [zε] = z; that is, z is a fixed point of A. ■

5. Existence-uniqueness result

We consider the existence and uniqueness result for a fractional differential equation
given by {

Dq
cu(t) = g(t, u(t)) = Au(t) + f(t), t ∈ [0, b],

u(0) = u0 ∈ R̃
(13)

where Dq
c is the Caputo derivative of order 0 < q < 1, u0 ∈ R̃, g ∈ C

(
J× R̃; R̃

)
, J = [0, b]

and u ∈ C
(
J ; R̃

)
, Iqu ∈ D(A), f : J −→ X is continuous. In the forthcoming analysis,

we need the following hypothesis:
H1 : the linear operator Aε : D(Aε) ⊂ X −→ X (X Banach space) satisfies the Hille-

yosida condition, that is, there exist two constant ω ∈ R and M1 such that ]w,+∞[⊂
ρ(Aε) and

∥ (λI −Aε)
−k ∥L(X)⩽ M1

(λ−w)k

for all λ > ω and k ⩾ 1.
H2 : Qε(t) is continuous in the uniform operator topology for t > 0 and {Qε(t)}t⩾0

is uniformly bounded, that is, there exists M2 > 1 such that sup
t⩾0

|Qε(t)| < M2.

We need the following definition before we proceed further.

Definition 5.1 Let g ∈ R̃, We tell that g is globally Lipschitz if for all t ∈ J and ε ∈]0, 1]
there exists kε(t) > 0 such that for all (y, z) ∈ R̃× R̃, we have

| gε(t, yε)− gε(t, zε) |⩽ kε(t) | yε− zε |,

where sup
t∈J

kε(t) = MT,ε < +∞

Now, we will presented the existence and uniqueness result of our problem.

Theorem 5.2 Assume that the hypotheses H1 and H2 hold and g satisfied a global
Lipschitz, then (13) admit unique solution.

Proof. For u0 ∈ R̃, g ∈ C(J × R̃; R̃), u ∈ C(J ;X) and Iqu ∈ D(A), the problem
reduces to finding a fixed point of the map ϕ : R̃ −→ R̃ such that for all t∈ J,ϕ(x)(t) =
u0 + AIqu(t) + Iqf(t). In order to prove the result, we will check the assumptions a, b,
c and d of Definition 4.3 and apply Theorem 4.4.
a) We pose ϕε(u)(t) = uε0+AεI

quε(t)+Iqfε(t) for all t ∈ J . It is clear that ϕε is defined
from C∞(J,X) into C∞(J,X). The topology τ is given by the family of norms (pT )T∈J
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such that pT (uε) = sup
t∈[0,T ]

∣∣uε(t)∣∣ for all uε ∈ C∞(J,X). Now, let (uε)ε ∈ Es
M (J). Since

ϕε(uε)(t) = uε0 +AεI
quε(t) + Iqfε(t)

and g is Lipschitz, then
∣∣gε(2uε(t)) − gε(uε(t))

∣∣ ⩽ kε(t)
∣∣uε(t)∣∣ and

∣∣Aε(uε(t))
∣∣ ⩽

kε(t)
∣∣uε(t)∣∣. So (Aεuε(t))ε ∈ Es

M (J) and we have

Iquε(t) =
∫ t
0

(t−s)q−1

Γ(q) uε(s)ds,

which implies that

∣∣Iquε(t)∣∣ ⩽ bq

Γ(q)

∣∣uε(t)∣∣.
Hence, Iquε(t) ∈ Es

M (J). So,∣∣ϕε(uε)(t)
∣∣ ⩽ ∣∣uε0∣∣+ ∣∣AεI

quε(t)
∣∣+ ∣∣Iqfε(t)∣∣.

Thus, pT (ϕε(uε)) ∈ |Er
M | and (ϕε(uε))ε ∈ Es

M (J).
b) First, we have to write (1) in term of representatives{

Dq
cuε(t) = gε(t, uε(t)) = Aε uε(t) + fε(t),

uε(0) = u0ε ∈ R
(14)

Here the topology τε is given by the family of norms (qT,ε)T∈R+ such that for all uε ∈
C∞(J,X), we have

qT,ε(uε) = sup
t∈[0,T ]

∣∣uε(t)∣∣ exp(−t
bq−1

Γ(q)
MT,ε

)

For all uϵ, vϵ ∈ C∞(J,X), we have

ϕε(uε)(t)− ϕε(vε)(t) = Iq(gε(t, uε(t))− gε(t, vε(t))) =

∫ t

0

(t− s)q−1

Γ(q)
(gε(s, uε(s))− gε(s, vε(s)))ds,

which implies that

∣∣ϕε(uε)(t)− ϕε(vε)(t)
∣∣ ⩽ ∫ t

0

(b)q−1

Γ(q)
MT,ε

∣∣uε(s)− vε(s)
∣∣ds,

and

e
−t bq−1

Γ(q) MT,ε

∣∣ϕε(uε)(t)− ϕε(vε)(t)
∣∣ ⩽ e

−t bq−1

Γ(q)
MT,ε

∫ t

0

(b)q−1

Γ(q)
MT,ε

∣∣uε(s)− vε(s)
∣∣ds.

Now,

e
−t bq−1

Γ(q)
MT,ε

∫ t

0

(b)q−1

Γ(q)
MT,ε

∣∣uε(s) − vε(s)
∣∣ds = e

−t bq−1

Γ(q)
MT,ε

∫ t

0

bq−1

Γ(q)
MT,εe

−s bq−1

Γ(q)
MT,ε

e
s bq−1

Γ(q)
MT,ε ∣∣uε(s) − vε(s)

∣∣ds.
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implies that

e−t bq−1

Γ(q)
MT,ε

∫ t

0

(b)q−1

Γ(q)
MT,ε|uε(s)− vε(s)|ds ⩽ e−t bq−1

Γ(q)
MT,εqT,ε(uε − vε)

∫ t

0

bq−1

Γ(q)
MT,εe

−t bq−1

Γ(q)
MT,εds.

Thus,

e
−t bq−1

Γ(q)
MT,ε

∫ t

0

(b)q−1

Γ(q)
MT,ε

∣∣uε(s)− vε(s)
∣∣ds ⩽ qT,ε(uε − vε)(1− e

−t bq−1

Γ(q)
MT,ε).

As consequence qT,ε
(
ϕε(uε) − ϕε(vε)

)
⩽ qT,ε(uε − vε)(1 − e

−b bq−1

Γ(q)
MT,ε). So, ϕε is a con-

traction in (C∞(J,R), τε).
c) We can write for all T ∈ J and uε ∈ C∞(J,X),

sup
t∈[0,T ]

{∣∣uε(t)∣∣ e− bq

Γ(q)
MT,ε

}
⩽ sup

t∈[0,T ]

{∣∣uε(t)∣∣ e−t bq−1

Γ(q)
MT,ε

}
⩽ sup

t∈[0,T ]

∣∣uε(t)∣∣.
Then e

− bq

Γ(q)
MT,εpT ⩽ qT,ε ⩽ pT .

d) For all T ∈ J , we have
(
e

bq

Γ(q)
MT,ε

)
ε
∈ Er

M and

( 1

1− (1− e
−b bq−1

Γ(q)
MT,ε)

)
ε
= (e

bq

Γ(q)
MT,ε)ε ∈ Er

M .

Finally, from definition contraction map on generalized function of Colombeau the fol-
lowing mapping

ϕ :

{
R̃ −→ R̃,
u(t) = [uε(t)] 7−→ ϕ(u)(t) = [ϕε(uε)(t)]

is a contraction. So, from Theorem 4.4, the mapping ϕ has a fixed point. Since zε being
the unique fixed point of ϕε, we are going to prove that z is the unique fixed point of ϕ
and therefore, the unique solution of (1). If v = [vε] is another fixed point of ϕ, then we
have vε = ϕε(vε) + ρε with ρε ∈ N s(R). Thus, (pT (iε))ε ∈ |N r| and

wε(t)− vε(t) = Iqgε(t, wε(t))− Iqgε(t, vε(t))− ρε(t).

Then

wε(t)− vε(t) = AεI
q(wε(t)− vε(t))− ρε(t),

and

wε(t)− vε(t) = ρε +Aε

∫ t

0

(t− s)q−1

Γ(q)
(wε(s)− vε(s))ds,

implies that

pi (wε(t)− vε(t)) ⩽ pi (ρε) +

∫ t

0
MT,ε

bq−1

Γ(q)
pi (wε(s)− vε(s)) ds
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for all i. Since ρϵ ∈ N (R), then pi(ρϵ) ⩽ ϵa for all a ∈ R. Hence, for all i,

pi (wε(t)− vε(t)) ⩽ ϵa +

∫ t

0
MT,ε

bq−1

Γ(q)
pi (wε(s)− vε(s)) ds.

Now, by Lemma 2.2, we get pi
(
wε(t)− vε(t)

)
⩽ ϵa e

MT,ε
bq−1

Γ(q)
t
for all i ∈ I. Also, we have

e
MT,ε

bq

Γ(q) ∈ |Er
M | and (pT (iε))ε ∈ |N r|. Then (pT (wε − vε))ε ∈ |N r|. So, w = v. ■

6. Conclusion

In this paper, we solved fractional differential evolution problem with initial value is a
generalized number. We define an operator from Colombeau’s algebra into itself and rely
on the topology of locally convex spaces for defining the notion of generalized contraction
mapping. From the definition of contraction mapping on G and generalized semigroups
we were able to study the problem proposed at the beginning.
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