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On the solving matrix equations by using the spectral representation
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Abstract. The purpose of this paper is to solve two types of Lyapunov equations and
quadratic matrix equations by using the spectral representation. We focus on solving Lya-
punov equations AX+XA∗ = C and AX+XAT = −bbT for A,X ∈ Cn×n and b ∈ Cn×s with
s < n, which X is unknown matrix. Also, we suggest the new method for solving quadratic
matrix equations AX2 + BX + C = 0, where A,B,C,X ∈ Cn×n and X is unknown matrix
with similar method.

c⃝ 2018 IAUCTB. All rights reserved.

Keywords: Lyapanov equation, square matrix equations, spectral representation.

2010 AMS Subject Classification: 15A24, 15A18, 15A42.

1. Introduction

Consider two square matrices A,C ∈ Cn×n. The problem is to find a square matrix
X ∈ Cn×n in

AX +XA∗ = C, (1)

which is called the Lyapunov equation. Many different algorithms are suitable for dif-
ferent situations depending on the properties of matrices A and C. For dense A, the
Bartels-Stewart algorithm is the most widely used algorithm. It employs Schur decom-
position and then builds simple linear equations which can be solved sequentially [2]. For
sparse and large-scale A, if C is low-rank, Krylov-type methods may be more efficient
[9]. This Lyapunov matrix equation has form AX +XAT = −bbT , where A,X ∈ Cn×n
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and b ∈ Cn×s with s < n. There is no need to have rank of matrix in this paper which
shows our methodology.

In Lyapunov equation (1), suppose that the two matrices A and −A⋆ have not any
common eigenvalues. It is well known that the Lyapunov equation (1) has an unique
solution X ∈ Cn×n if and only if λi ̸= λj for all i, j = 1, · · · , n. In particular, if A
is strictly stable; that is, λi < 1 for all i = 1, · · · , n, then (1) has an unique solution,
where λ1, · · · , λn are the eigenvalues of matrix A. Lyapunov matrix equation has many
applications in control and system theory especially in controllability, and control filtering
with singular measurement noise [3] and optimal control theory [4], model reduction of
linear time-invariant systems [1, 6]. Another application is communicating system theory
and power systems. This equation has an unique solution if and only if λi + λj ̸= 0 for
all i and j, where λ1, · · · , λn are the eigenvalues of A [5, 10].

In the second part of this paper, we present a new method for solving quadratic matrix
equations. Nazari et al. [7] solved the square root of matrix triangular equations for order
n = 3 and Sambasiva Rao et al. [8] presented an extension of Nazari et al’s method. Here,
we solve a general quadratic matrix equations by spectral representation. Some different
examples are presented.

2. Spectral representation of a matrix

At the first, we explain the spectral representation of a matrix and some of the ap-
plications. Let A ∈ Cn×n and λ1, λ2, · · · , λn be its eigenvalues. Assume that vectors
µ1, µ2, · · · , µn be its corresponding eigenvectors, respectively. Consequently, A is a diago-
nalizable matrix and is full rank. It is clear that Aµi = λiµi for every i = 1, 2, · · · , n. Now,
we multiply from the right by µ⋆

i that gives equation Aµiµ
⋆
i = λiµiµ

⋆
i for i = 1, 2, · · · , n.

Then by adding all n obtained above equations, we achieve

A (µ1µ
⋆
1 + µ2µ

⋆
2 + · · ·+ µnµ

⋆
n) = λ1µ1µ

⋆
1 + · · ·+ λnµnµ

⋆
n.

Assume that S = (µ1µ
⋆
1 + · · ·+ µnµ

⋆
n)

−1 and Wi = µiµ
⋆
iS for i = 1, 2, · · · , n, where

Wi are rank-one matrices and S is positive definite matrix. It is easy to show that the
matrix A can be written as linear combination of its eigenvalues and Wi is called spectral
representation of A; that is, A = λ1W1 + λ2W2 + · · ·+ λnWn.

Theorem 2.1 The matrices W1, ...,Wn satisfy in the following conditions: (I) S is
symmetric positive definite matrix,
(II) rank(Wi) = 1 for i = 1, 2, · · · , n,
(III) W1 +W2 + · · ·+Wn = In, In denotes the n× n identity matrix,
(IV) WiWj = 0n for i, j = 1, 2, · · · , n with i ̸= j, 0n denotes the n× n zero matrix,
(V) W r

i = Wi for i = 1, 2, · · · , n with r > 0,
(VI) P (A)Wi = P (λi)Wi for every polynomial,
(VII) WiA = AWi = λiWi for i = 1, 2, · · · , n,
(VIII) 1 ⩽ ∥Wi∥2 ⩽ ∥S∥2 for i = 1, 2, · · · , n,
(IX) If σ(A) denotes the spectrum of the matrix A, then σ(Wi) = {1, 0, · · · , 0},
(X) For any complex numbers α, β it hold that

σ(αWi + βWj) = ασ(Wi) + βσ(Wj) =

{α, β, 0, · · · , 0}, i ̸= j

{α+ β, 0, · · · , 0}, i = j
(XI) Consider a square matrix B(̸= A). There exist n diagonal matrix R1, R2, · · · , Rn

can be computed such that B = W1R1 + · · ·+WnRn.
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Proof. We just only prove the last part and the other parts are trivial. The significant
property WiWj = 0n for i, j = 1, 2, · · · , n with i ̸= j concludes WiB = WiRi for i =
1, 2, · · · , n. If W c

i,j denotes the j-th column of Wi for every i, j = 1, 2, · · · , n and

Ri = diag(ri1,1, r
i
2,2, · · · , rin,n), (2)

then

WiB = WiRi = [W c
1,iW

c
2,i · · ·W c

n,i][diag(r
i
1,1, r

i
2,2, · · · , rin,n)] = [ri1,1W1,ir

i
2,2W2,i · · · rin,nWn,i]

and consequently,

rij,j =
(WiB)1,j
(Wj,i)1

(3)

for i, j = 1, 2, · · · , n, where (WiB)1,j is the element of the matrix WiB in row (arbitrary
chosen) 1 and column j. Moreover, (Wj,i)1 is the first (due to first row) element of the
columns Wj,i by (3). ■

We show that by helping spectral representation how we can compute A−1
n×n and Ar

n×n.
Let A be an invertible matrix. Thus, λ1, · · · , λn are non-zero and it is easy to see that

A−1 =
1

λ1
W1 +

1

λ2
W2 + · · ·+ 1

λn
Wn.

Moreover, for every r ∈ R, the matrix Ar satisfies Ar = λr
1W1 + λr

2W2 + · · ·+ λr
nWn.

In the first part of this paper, we explain a method for solving two cases of Lyapunov
equation AX +XA⋆ = C and AX +XAT = −bbT that discussed above.

3. Solving Lyapunov equation

In this section, we assume that A is invertible and we present a new method of solving

AX +XA⋆ = C. (4)

We have

A = λ1W1 + λ2W2 + · · ·+ λnWn, (5)

C = W1R1 +W2R2 + · · ·+WnRn, (6)

X = W1D1 +W2D2 + · · ·+WnDn, (7)

where Ri for i = 1, 2, · · · , n is denoted in (2) and (3) and D1, D2, · · · , Dn that are
unknown matrices that must be determined for equation AX+XA⋆ = C. By substitution
(5)-(7) in Lyapanov equation (4), we have
(λ1W1+· · ·+λnWn)(W1D1+· · ·+WnDn)+(W1D1+· · ·+WnDn)A

⋆ = W1R1+· · ·+WnRn

such that
(W1λ1D1+ · · ·+WnλnDn)+(W1D1A

⋆+ · · ·+WnDnA
⋆) = W1R1+W2R2+ · · ·+WnRn.

By classifying above equation, we have

W1 (λ1D1 +D1A
⋆) + · · ·+Wn (λnDn +DnA

⋆) = W1R1 + · · ·+WnRn.

Thus, λiDi + DiA
⋆ = Ri for i = 1, 2, · · · , n is achieved. Therefore, the matrices

D1, D2, · · · , Dn are computed as following Di = Ri (λiIn +A⋆)−1 for i = 1, 2, · · · , n.
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Example 3.1 For solving Lyapunov equation AX + XAT = −bbT , consider the 5 × 5
full rank following matrix

A =


1 2 −3 4 2
−2 1 −3 7 −5
3 −3 1 4 −5
0 1 −2 3 −4
−2 3 −1 5 1

 , b =


1
−2
3
−5
4

 .

We use software Matlab and compute the solution of Lyapanove equation AX +XAT =
−bbT . At the first, we obtain the eigenvectors of matrix A, as following matrix

µi =



0.3066 −0.2764 + 0.6004i −0.2764− 0.6004i −0.3730 + 0.1079i −0.3730− 0.1079i

0.8028 −0.1127− 0.1043i −0.1127 + 0.1043i 0.2723− 0.3409i 0.2723 + 0.3409i

0.4373 0.6647 0.6647 0.5791 0.5791

−0.1658 0.0188 + 0.0573i 0.0188− 0.0573i 0.2322− 0.0981i 0.2322 + 0.0981i

−0.2069 −0.3042− 0.0392i −0.3042 + 0.0392i −0.2727− 0.4308i −0.2727 + 0.4308i


and

σ(A) = {λ1 = −1.5558, λ2 = 2.6624 + 3.8198i, λ3 = 2.6624− 3.8199i, λ4 =
1.6155 + 5.3682i, λ5 = 1.6155− 5.3682i},

that associated to the eigenvectors of A. So,

S = (µµ⋆)−1 =



1.1425 −0.2970 0.7204 0.4961 0.5598

−0.2970 1.6762 −1.5053 1.0178 −1.6513

0.7204 −1.5053 3.1215 −2.5528 3.2401

0.4961 1.0178 −2.5528 9.5772 −2.6400

0.5598 −1.6513 3.2401 −2.6400 4.7439


.

Thus, matrices Ri and Di for i = 1, 2, · · · , 5 as they are shown above, are presented in
the following:

R1 = diag ([−17.0684 10.1633 − 89.6434 − 16.4277 55.7326]) ,

R2 = diag
([

1.1302− 16.4245i − 33.3898− 17.8968i − 30.8001− 13.7871i

− 38.3588 + 26.2608i − 62.5822− 23.5840i
])

,

R3 = diag
([

1.1302 + 16.4245i − 33.3898 + 17.8968i − 30.8001 + 13.7871i

− 38.3588− 26.2608i − 62.5822 + 23.5840i
])

,

R4 = diag
([

− 96.5124− 3.0525i − 65.9130 + 29.5523i − 53.3405− 34.0764i

− 38.7462 + 21.3551i − 33.9249− 22.8532i
])

,

R5 = diag
([

− 96.5124 + 3.0525i − 65.9130− 29.5523i − 53.3405 + 34.0764i

− 38.7462− 21.3551i − 33.9249 + 22.8532i
])



A. M. Nazari et al. / J. Linear. Topological. Algebra. 07(04) (2018) 307-316. 311

and

D1 =



−2.2144 0.1681 4.2221 −0.3877 −2.2090

−2.6138 −2.2132 −0.9100 0.0932 −0.0646

−19.6751 −1.1401 −8.3363 −8.7737 0.7154

−1.7248 −3.5827 2.7825 2.3113 2.6545

2.8059 13.3522 16.5956 7.3191 −2.3172


,

D2 =



−1.1071 − 2.2871i −0.9303 − 0.1774i 0.4354 + 0.7158i 0.0506 − 0.0892i −0.2935 − 0.4802i

1.1943 + 1.1459i −4.9332 + 3.4206i −1.0338 + 2.3994i 0.8207 − 1.3558i 1.7427 − 1.4840i

−1.2733 + 1.2896i −1.6759 + 1.0771i −6.1326 + 0.8245i −1.4314 + 0.5095i 0.1345 − 0.7887i

−1.7745 − 1.6297i −6.8371 − 11.1354i −5.5727 − 9.1883i −2.6287 + 3.2181i 3.8724 − 2.7097i

3.6023 − 2.3514i −6.7103 − 0.7777i −9.1271 + 3.8297i −5.2301 + 3.2357i −7.6078 − 2.5234i


,

D3 =



−1.1071 + 2.2871i −0.9303 + 0.1774i 0.4354 − 0.7158i 0.0506 + 0.0892i −0.2935 + 0.4802i

1.1943 − 1.1459i −4.9333 − 3.4206i −1.0338 − 2.3994i 0.8207 + 1.3558i 1.7427 + 1.4840i

−1.2733 − 1.2896i −1.6759 − 1.077i −6.1326 − 0.8245i −1.4314 − 0.5095i 0.1345 + 0.7887i

−1.7745 + 1.6297i −6.8371 + 11.1354i −5.5727 + 9.1883i −2.6287 − 3.2181i 3.8724 + 2.7097i

3.6023 + 2.3514i −6.7103 + 0.7777i −9.1271 − 3.8297i −5.2301 − 3.2357i −7.6078 + 2.5234i


,

D4 =



−11.8361 + 10.4423i 1.5012 + 4.9073i 2.3249 − 4.9892i −0.4762 + 0.3532i −1.8107 + 3.4898i

2.2610 − 2.6180i 0.0674 + 8.4109i 2.5443 + 2.1430i −2.3504 − 1.8132i −1.5340 − 4.2153i

−0.9908 + 2.6725i −3.2591 + 3.0570i −12.0836 − 4.3282i −2.6638 + 2.4017i −1.0698 − 2.2036i

−0.2100 − 0.4351i −9.7579 − 7.0743i −9.6808 − 4.8815i −4.1294 + 3.5173i 2.6023 − 6.1498i

2.4845 − 2.6157i −5.5814 + 1.5571i −5.5854 + 5.6476i −3.1861 + 3.2901i −6.6945 − 2.9140i


,

D5 =



−11.8361 − 10.4423i 1.5012 − 4.9073i 2.3249 + 4.9892i −0.4762 − 0.3523i −1.8107 − 3.4898i

2.2610 + 2.6180i 0.0674 − 8.4109i 2.5443 − 2.1430i −2.3504 + 1.8132i −1.5340 + 4.2153i

−0.9908 − 2.6725i −3.2591 − 3.0570i −12.0836 − 4.3282i −2.6638 − 2.4017i −1.0698 + 2.2036i

−0.2100 + 0.4351i −9.7579 + 7.0743i −9.6808 − 4.8815i −4.1294 − 3.5173i 2.6023 + 6.1498i

2.4845 + 2.6157i −5.5814 − 1.5571i −5.5854 − 5.6476i −3.1861 − 3.2901i −6.6945 + 2.9140i


.

So the unknown matrix X is achieved from the following form:

X = W1D1+W2D2+W3D3+W4D4+W5D5 =



−5.0309 −1.7875 −1.3281 0.8757 0.3085

−1.7840 −16.8314 −25.4596 −12.0316 −3.8204

−1.3271 −25.4591 −38.4578 −12.9268 −2.6543

0.8752 −12.0329 −12.9285 −4.7302 3.0333

0.3090 −3.8229 −2.6544 3.0329 −13.7378


.

Example 3.2 For solving Lyapunov equation AX + XA⋆ = C, consider the following
matrixs 3× 3, where A,A∗, C ∈ Cn×n and A is a full rank matrix.

A =

1 −2 3
4 −5 2
3 −4 −1

 , A⋆ =

 1 4 3
−2 −5 −4
3 2 −1

 , C =

27 22 32
21 52 50
22 78 31

 ,

At the first, we compute the eigenvalues and associated eigenvectors of matrix A as
following:
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µi =


0.3341 −0.7061 −0.7061

−0.4131 −0.6307 + 0.0739i −0.6307− 0.0739i

−0.8472 −0.0831− 0.3023i −0.0831 + 0.3023i


is the matrix eigenvectors of A and the associated eigenvalues are:

σ(A) = {−4.1337,−0.4331 + 1.4938i,−0.4331− 1.4938i} .
So,

S = (µµ⋆)−1 =


4.6175 −4.8144 2.9964

−4.8144 6.2806 −3.6898

2.9964 −3.6898 3.2919

.
Thus, matrices Ri and Di for i = 1, 2, 3 as they are shown above, are presented in the
following:

R1 = diag ([−1.6089 50.7883 114.8284]) ,

R2 = diag ([25.0852 + 6.0470i − 24.6205− 22.0309i 1.6998 + 23.4335i]) ,

R3 = diag ([25.0852− 6.0470i − 24.6205 + 22.0309i 1.6998− 23.4335i])

and

D1 =


0.4627 0.2237 0.0961

5.9250 −1.8859 4.9318

−14.0779 −10.9895 −22.0317

 ,

D2 =


−12.4816− 31.4939i −5.2289− 25.7143i −8.4475− 2.9609i

20.7342− 32.6695i 23.6428− 19.9112i −4.4235− 17.4249i

21.9898− 8.9857i 19.4954− 6.1768i 4.3673− 13.3693i

 ,

D3 =


−12.4816 + 31.4939i −5.2289 + 25.7143i −8.4475 + 2.9609i

20.7342 + 32.6695i 23.6428 + 19.9112i −4.4235 + 17.4249i

21.9898 + 8.9857i 19.4954 + 6.1768i 4.3673 + 13.3693i

 .

So the unknown matrix X is achieved from the following form:

X = W1D1 +W2D2 +W3D3 =


0.9949 −4.0042 2.9999

1.9971 −7.0032 1.0015

3.9985 −6.0016 5.005

.

4. Solving quadratic matrix equations

A manual approach in calculating the root of square matrix is studied in [10]. At first,
consider X2 = A for A,X ∈ Cn×n, which X is unknown matrix. We compute square root
of n×n as a prescribed matrix.

√
A can be obtained as

√
λ1W1+· · ·+

√
λnWn. Therefore,

X =
√
A =

√
λ1W1+ · · ·+

√
λnWn. So, we can compute (X+A)2 = C. As we know C =

λ1W1+· · ·+λnWn, (X+A) =
√
λ1W1+· · ·+

√
λnWn,X =

(√
λ1W1 + · · ·+

√
λnWn

)
−A.
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Now, consider X2 + AX = C for A,X ∈ Cn×n, which X is unknown matrix. So, we
can compute square root of matrix A. Consequently(

X +
A

2

)2

= C +
A2

4
, Y = X +

A

2
, H = C +

A2

4
.

We have H = λ1W1 + λ2W2 + · · · + λnWn, where scalars λ1, · · · , λn are eigenvalues

of matrix H and y =
√
λ1W1 + · · · +

√
λnWn, as a result X = Y − A

2
. Finally, for

solving AX2 + BX = C, where A,B,C,X ∈ Cn×n and X is unknown matrix, we
have AX2 + BX = C. By multiplying it by A−1 from the left, we conclude A−1AX2 +
A−1BX = A−1C and X2+A−1BX = A−1C, that A−1 can be obtained by using spectral
representation as the following

A−1 =
1

λ1
W1 +

1

λ2
W2 + · · ·+ 1

λn
Wn.

Let A−1B = D, A−1C = H. Then

X2 +DX = H,

(
X +

D

2

)2

= H +
D2

4
, Y = X +

D

2
, Z = H +

D2

4
, Y 2 = Z. (8)

Thus, we have Z = λ1W1 + · · ·+ λnWn that scalars λ1, · · · , λn are eigenvalues of matrix

Z. Also, Y =
√
λ1W1 +

√
λ2W2 + · · ·+

√
λnWn, as a result X +

D

2
= Y , X = Y − D

2
.

Example 4.1 For solving X2 = A, consider the following 4× 4 matrix

A =

 0 10 10 0
−20 54 −14 −16
−4 28 0 −59
−2 5 9 29

.
At first, we obtain the eigenvectors of matrix A as following matrix

µi =



−0.9169 0.2315 0.2292− 0.2839i 0.2292 + 0.2839i

−0.3074 0.8981 0.4187− 0.0019i 0.4187 + 0.0019i

0.2394 0.0590 0.7672 0.7672

−0.0867 0.3692 −0.0828− 0.3101i −0.0828 + 0.3101i

,

and its associated eigenvalues are

σ(A) =
{
λ1 = 0.7417, λ2 = 41.3485, λ3 = 20.4549 + 25.2592i, λ4 = 20.4549− 25.2592i

}
.

So,

S =



1.4099 −0.6843 0.1154 −0.6126

−0.6843 2.0900 −1.1267 −1.5458

0.1154 −1.1267 1.5002 1.3746

−0.6126 −1.5458 1.3746 5.1663

 .

Consequently, matrices Wi for i = 1, 2, 3, 4 as they are shown above, are presented in
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the following form:

W1 =



0.9182 0.1382 −0.4406 −0.8416

0.3079 0.0463 −0.1477 −0.2822

−0.2398 −0.0361 0.1150 0.2198

0.0869 0.0131 −0.0417 −0.0796

 , W2 =



−0.1175 0.2503 −0.0901 0.1061

−0.4559 0.9713 −0.3495 0.4116

−0.0300 −0.0638 −0.0230 0.0270

−0.1874 0.03993 −0.1437 0.1692

 ,

W3 =



0.0996− 0.0020i −0.1943− 0.1483i 0.2653− 0.0633i 0.3677 + 0.3723i

0.0740 + 0.0872i −0.0088− 0.2804i 0.2486 + 0.1902i −0.0647 + 0.5970i

0.1349 + 0.1604i −0.0139− 0.5138i 0.4540 + 0.3505i −0.1234 + 1.0933i

0.0503− 0.0718i −0.2062 + 0.0610i 0.0927− 0.2213i 0.4552− 0.0681i

 ,

W4 =



0.0996 + 0.0020i −0.1943 + 0.1483i 0.2653 + 0.0633i 0.3677− 0.3723i

0.0740− 0.0827i −0.0088 + 0.2804i 0.2486− 0.1902i −0.0647− 0.5970i

0.1349− 0.1604i −0.0139 + 0.5138i 0.4540− 0.3505i −0.1234− 1.0933i

0.0503 + 0.0718i −0.2062− 0.0610i 0.0927 + 0.2213i 0.4552 + 0.0681i

 .

Then the unknown matrix X computes as the following

X =
√
A =

√
λ1W1 +

√
λ2W2 +

√
λ3W3 +

√
λ4W4.

Hence,

X =



1.0705 0.4576 2.0826 1.9146

−2.3328 7.5712 −0.7497 −1.1931

0.2017 2.7586 2.9028 −6.2737

−0.2604 0.1572 1.0804 6.0386

.

Example 4.2 For solving X2 + AX = C, A4×4 and C4×4 as they are given. Then we
compute X as it is described above.

A =

−4 3 −4 0
−1 3 8 −2
2 −5 0 −1
−4 3 2 −3

 , C =

 21 0 −27 7
−9 10 16 −6
−26 −2 31 −13
14 −15 1 47

.
The matrix eigenvectors and its associated eigenvalues are computed in the following:

µi =



−0.3015 −0.1921 + 0.1007i −0.1921− 0.1007i −0.5095

0.2736 0.8457 0.8457 0.2655

0.3732 0.1570 + 0.1607i 0.1570− 0.1607i 0.5201

−0.8336 0.4310− 0.0396i 0.4310 + 0.0396i 0.6320


and

σ(H) = {λ1 = 57.4109, λ2 = 0.6322 + 4.2275i, λ3 = 0.6322− 4.2275i, λ4 = 29.3247}.
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Thus,

S = (µµ⋆)−1 =



9.9279 1.0381 6.7054 0.5379

1.0381 1.2468 −0.3104 −0.3654

6.7054 −0.3106 7.4384 0.5461

0.5379 −0.3654 0.5461 0.8843

.

Consequently, matrices Wi for i = 1, 2, 3, 4 as they are shown above, are presented in the
following form:

W1 =



0.1974 −0.0654 −0.0647 0.2398

−0.1792 0.0594 0.0587 −0.2177

−0.2444 0.0810 0.0801 −0.2969

0.5459 −0.1808 −0.1788 0.6632

 ,

W2 =



0.1579 + 0.4207i −0.1177 + 0.0786i 0.2144 + 0.3403i 0.0003 + 0.0260i

0.2164− 1.7388i 0.5487− 0.0585i −0.1243− 1.5637i 0.0462− 0.0904i

0.3706− 0.2817i 0.1130 + 0.0934i 0.2741− 0.3140i 0.0258− 0.0080i

0.0289− 0.8964i 0.2769− 0.0555i −0.1365− 0.7912i 0.0193− 0.0483i

 ,

W3 =



0.1579− 0.4207i −0.1177− 0.0786i 0.2144− 0.3403i 0.0003− 0.0260i

0.2164 + 1.7388i 0.5487 + 0.0585i −0.1243 + 1.5637i 0.0462 + 0.0904i

0.3706 + 0.2817i 0.1130− 0.0934i 0.2741 + 0.3140i 0.0258 + 0.0080i

0.0289 + 0.8964i 0.2769 + 0.0555i −0.1365 + 0.7912i 0.0193 + 0.0483i

 ,

W4 =



0.4867 0.3007 −0.3642 −0.2404

−0.2537 −0.1567 0.1898 0.1253

−0.4968 −0.3069 0.3718 0.2454

−0.6038 −0.3730 0.4518 0.2982

 .

Then the unknown matrix X is computed as the following:

X =



5.4909 −0.9479 −0.7092 0.4460

3.1398 −0.0223 1.3038 0.4179

−3.6208 1.5531 4.3259 −0.3186

5.3766 −3.8728 1.7995 8.3304

.

Example 4.3 For solving AX2 +BX = C with the following matrix A3×3, B3×3, C3×3,
we compute X.

A =

[−4 2 −1
3 7 −3
4 −5 6

]
, B =

[−1 2 3
4 −2 3
5 −1 6

]
, C =

[−38 8 −18
120 −54 164
58 −60 206

]
,
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Since the matrix A is invertible, we compute the matrix A−1 and multiply the above
quadratic matrix equation from the left by A−1. Thus,

A−1 =


−0.2160 0.0560 −0.0080

0.2400 0.1600 0.1200

0.3440 0.0960 0.2720

.
Then, by relations (8), we have

H =


14.4639 −4.2720 11.4239

17.0400 −13.9200 46.6400

14.2240 −18.7520 65.5840

 , D =


0.4000 −0.5360 −0.5280

1.0000 0.0400 1.9200

1.4000 0.2240 2.9520

 ,

Z =


14.1851 −4.3605 10.7242

17.8220 −13.9461 47.9441

15.4532 −18.7720 67.6853

 .

and the unknown matrix X is computed in the following:

X =


3.5705 −0.4204 1.4301

2.5657 −1.4077 4.9393

1.0828 −2.4447 7.4329

 .
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