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Digital cohomology groups of certain minimal surfaces

I. Karacaa, O. Egea,∗

aDepartment of Mathematics, Faculty of Science, Ege University, 35100 Izmir, Turkey.

Received 6 August 2018; Revised 26 September 2018, Accepted 1 October 2018.

Communicated by Ghasem Soleimani Rad

Abstract. In this study, we compute simplicial cohomology groups with different coefficients
of a connected sum of certain minimal simple surfaces by using the universal coefficient
theorem for cohomology groups. The method used in this paper is a different way to compute
digital cohomology groups of minimal simple surfaces. We also prove some theorems related
to degree properties of a map on digital spheres.
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1. Introduction

Digital topology introduced in [19] is an area of great theoretical interest having the
additional bonus of significant applications in imaging science and related areas. It con-
tinues to rise in many fields of science and engineering such as mathematics, image
processing, biology, information systems, and computer science with a great number
of applications. There are topological invariants (connectedness, homology, cohomology,
Euler characteristics, etc.) which are extremely useful in digital images and geometric
modeling. Computing topological invariants of objects has significant impacts in digital
images. Homology is a powerful topological invariant which characterizes an object by its
n-dimensional holes. Cohomology is an important algebraic invariant in classification of
topological spaces because it has a structure called the cup product. Although basic prop-
erties of cohomology groups are similar to homology groups, there are some differences
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between them. One of the differences is that cohomology groups are contravariant func-
tors while homology groups are covariant. Additional structures in cohomology feature
contravariance. They are finer invariants of homotopy type and enable us to distinguish
between topological spaces.

Homology and cohomology theory have significant applications in science and engi-
neering. The progress of computational approach to homology and cohomology theory
is activated by problems in geometric modeling, digital image processing, dynamical
systems and material science (see [12, 13, 17]).

In recent years, there have been many developments in digital topology. Boxer [6]
gives the digital versions of some notions in topology. Arslan et al. [1] introduce the
simplicial homology groups of n-dimensional digital images. Boxer et al. [9] study the
simplicial homology groups of certain minimal simple surfaces and compute the Euler
characteristics of certain minimal simple surfaces. Homology groups of some minimal
simple surfaces are computed in [10]. In [11], simplicial cohomology theory is given for
digital images. Karaca and Burak [18] determine relative cohomology groups of digital
images algebraically by the relative homology groups of digital images. They give a
method for computing cohomology rings of digital images.

This paper is organized as follows. In preliminaries, we review necessary backgrounds
on digital images and digital cohomology groups. Then the simplicial cohomology groups
with various coefficients of connected sums of certain minimal simple surfaces are com-
puted by using a universal coefficient theorem. Moreover, we deal with some degree
properties of a map on digital spheres.

2. Preliminaries

Let Zn be the set of lattice points in the n-dimensional Euclidean space where Z is the
set of integers. We say that (X,κ) is a digital image where X ⊂ Zn and κ is an adjacency
relation for the members of X. We use a variety of adjacency relations in the study of
digital images.

Definition 2.1 [7] For a positive integer l with 1 ⩽ l ⩽ n and two distinct points
p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn) ∈ Zn, p and q are cl-adjacent, if

(1) there are at most l indices i such that |pi − qi| = 1, and
(2) for all other indices j such that |pj − qj | ̸= 1, pj = qj .

The notation cl represents the number of points q ∈ Zn that are adjacent to a given
point p ∈ Zn. Thus, in Z, we have c1 = 2-adjacency; in Z2, we have c1 = 4-adjacency
and c2 = 8-adjacency; in Z3, we have c1 = 6-adjacency, c2 = 18-adjacency and c3 = 26-
adjacency [7].

Given a natural number l in conditions (1) and (2) with 1 ⩽ l ⩽ n, l determines each
of the κ-adjacency relations of Zn in terms of (1) and (2) as follows [14].

κ ∈
{
2n (n ⩾ 1), 3n − 1 (n ⩾ 2), 3n −

r−2∑
t=0

Cn
t 2

n−t − 1 (2 ⩽ r ⩽ n− 1, n ⩾ 3)
}

where Cn
t = n!

(n−t)!t! .

Let κ be an adjacency relation defined on Zn. A κ-neighbor of p ∈ Zn is a point of Zn

that is κ-adjacent to p. A digital image X ⊂ Zn is κ-connected [16] if and only if for every
pair of different points x, y ∈ X, there is a set {x0, x1, . . . , xr} of points of a digital image
X such that x = x0, y = xr and xi and xi+1 are κ-neighbors where i = 0, 1, . . . , r − 1.
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Let a, b ∈ Z with a < b. A digital interval [6] is a set of the form [a, b]Z = {z ∈
Z|a ⩽ z ⩽ b}. Also, let (X,κ0) ⊂ Zn0 and (Y, κ1) ⊂ Zn1 be digital images. A function
f : X → Y is said to be (κ0, κ1)-continuous if for every κ0-connected subset U of X,
f(U) is a κ1-connected subset of Y [4].

A (2, κ)-continuous function f : [0,m]Z → X such that f(0) = x and f(m) = y is
called a digital κ-path from x to y in a digital image X [8]. A simple closed κ-curve of
m ⩾ 4 points in a digital image X is a sequence {f(0), f(1), . . . , f(m − 1)} of images
of the κ-path f : [0,m − 1]Z → X such that f(i) and f(j) are κ-adjacent if and only if
j = i± 1 mod m.

Let X ⊂ Zn0 and Y ⊂ Zn1 be digital images with κ0-adjacency and κ1-adjacency
respectively. A function f : X → Y is (κ0, κ1)-isomorphism if f is (κ0, κ1)-continuous
and bijective and also f−1 : Y → X is (κ1, κ0)-continuous [5].

Definition 2.2 [4] Let (X,κ1) ⊂ Zn1 and (Y, κ2) ⊂ Zn2 be digital images and f, g : X →
Y be two (κ1, κ2)-continuous functions. f and g are called digitally (κ1, κ2)-homotopic
in Y if there is a positive integer m and a function H : X × [0,m]Z → Y such that

• for all x ∈ X, H(x, 0) = f(x) and H(x,m) = g(x),
• for all x ∈ X, Hx : [0,m]Z → Y defined by Hx(t) = H(x, t) for all t ∈ [0,m]Z is

(2, κ2)-continuous,
• for all t ∈ [0,m]Z, Ht : X → Y defined by Ht(x) = H(x, t) for all x ∈ X is (κ1, κ2)-

continuous.
The function H is called a digital (κ1, κ2)-homotopy between f and g.

A digital image (X,κ) is said to be κ-contractible if the identity map on X is (κ, κ)-
homotopic to the constant map with value a for some a ∈ X [6]. For a digital image (X,κ)
and its subset (A, κ), we call (X,A) a digital image pair with κ-adjacency. Moreover, if
A is a singleton set {x0}, then (X,x0) is called a pointed digital image.

A point x ∈ X is called a κ-corner, if x is κ-adjacent to two and only two points
y, z ∈ X such that y and z are κ-adjacent to each other [3]. Moreover, the κ-corner x is
called simple, if y, z are not κ-corners and if x is the only point κ-adjacent to both y, z
[2]. X is called a generalized simple closed κ-curve [2] if what is obtained by removing
all simple κ-corners of X is a simple closed κ-curve [3].

If (X,κ) is a κ-connected digital image in Zn, n ⩾ 3, |X|x = N∗
3n−1(x) ∩ X, where

N∗
3n−1(x) = {x′ : x and x′ are (3n−1)-adjacent} [15]. Let c∗ be a closed κ-curve in Z2. A

point x in Z2\c∗ is said to be in the interior of c∗ if it belongs to the bounded κ̂-connected
component of Z2\c∗. The set of all interior points of c∗ is denoted by Int(c∗).

Definition 2.3 [15] Let (X,κ) be a digital image in Zn, n ⩾ 3 and κ̂ be an adjacency
relation for Zn\X. Then X is called a closed κ-surface if it satisfies the following.

(1) In case that (κ, κ̂) ∈ {(κ, 2n), (2n, 3n − 1)}, where the κ-adjacency is taken from
Definition 2.1 with κ ̸= 3n − 2n − 1, then

(a) for each point x ∈ X, |X|x has exactly one κ-component κ-adjacent to x;
(b) |Zn\X|x has exactly two κ̂-components κ̂-adjacent to x; we denote by Cxx and

Dxx these two components;
(c) for any point y ∈ Nκ(x) ∩ X, Nκ̂(y) ∩ Cxx ̸= ∅ and Nκ̂(y) ∩ Dxx ̸= ∅, where

Nκ(x) means the κ-neighbors of x.
Further, if a closed κ-surface X does not have a simple κ-point, then X is called simple.

(2) In case that (κ, κ̂) = (3n − 2n − 1, 2n), then
(a) X is κ-connected;
(b) for each point x ∈ X, |X|x is a generalized simple closed κ-curve.

Further, if the image |X|x is a simple closed κ-curve, then the closed κ-surface X is called
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simple.

A point x of Zn\Sκ is said to be interior of Sκ if it belongs to a bounded κ̂-connected
component of Zn\Sκ. The set of all interior points of Sκ is denoted by int(Sκ).

The 3-dimensional digital images MSS∗
6 and MSS∗

18 which are obtained from the
minimal simple closed curves MSC4 and MSC8 in Z2 (see Figure 1), respectively, are
essentially used in establishing the notion of a connected sum [15].

Figure 1. Minimal simple closed curves MSC4 and MSC8 [15]

• MSS∗
6 := MSS6 ∪ Int(MSS6) where

MSS6 ≈(6,6) (MSC4 × [0, 2]Z) ∪ (Int(MSC4)× {0, 2})

and MSC4 is 4-isomorphic to the set

{(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1)}.

• MSS∗
18 := MSS18 ∪ Int(MSS18) where

MSS18 ≈(18,18) (MSC8 × {1}) ∪ (Int(MSC8)× {0, 2})

and MSC8 is 8-isomorphic to the set

{(0, 0), (−1, 1), (−2, 0), (−2,−1), (−1,−2), (0,−1)}.

Figure 2. MSS6 and MSS18[15]

Definition 2.4 [15] Let Sκ0
be a closed κ0-surface in Zn0 and Sκ1

be a closed κ1-surface
in Zn1 for n0, n1 ⩾ 3. Consider A′

κ0
⊂ Aκ0

⊂ Sκ0
such that A′

κ0
≈(κ0,8) Int(MSC∗

8 ),
A′

κ0
≈(κ0,4) Int(MSC∗

4 ) or A′
κ0

≈(κ0,8) Int(MSC ′∗
8 ). Let f : Aκ0

→ f(Aκ0
) ⊂ Sκ1

be a
(κ0, κ1)-isomorphism. Let S′

κi
= Sκi

\ A′
κi
, i ∈ {0, 1}. Then the connected sum, denoted

by Sκ0
#Sκ1

, is the quotient space S′
κ0
∪S′

κ1
/ ∼, where i : Aκ0

\A′
κ0

→ S′
κ0

is the inclusion
map and i(x) ∼ f(x) for x ∈ Aκ0

\A′
κ0
.
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3. Digital Homology and Cohomology Groups

In this section, we recall some notions about the digital simplicial homology and coho-
mology theory.

Definition 3.1 [20]. Let S be a set of nonempty subsets of a digital image (X,κ). Let
the following statements hold:

• If p and q are distinct points of s ∈ S, then p and q are κ-adjacent,
• If s ∈ S and ∅ ̸= t ⊂ s, then t ∈ S.

Then the members of S are called simplexes of (X,κ).

An m-simplex is a simplex S such that |S| = m+ 1. For a digital m-simplex P , if P
′

is a nonempty proper subset of P , then P
′
is called a face of P . Note that we use the

same notation for both the digital image and the associated simplicial complex.

Definition 3.2 [1]. Let (X,κ) be a finite collection of digital m-simplices, 0 ⩽ m ⩽ d for
some non-negative integer d. If the followings hold, then (X,κ) is called a finite digital
simplicial complex:

• If P belongs to X, then every face of P also belongs to X,
• If P,Q ∈ X, then P ∩Q is either empty or a common face of P and Q.

The dimension of a digital simplicial complex X is the largest integer m such that X
has an m-simplex.

Definition 3.3 [1]. Cκ
q (X) is a free abelian group with basis all digital (κ, q)-simplices

in X where κ is the adjacency relation and q is the dimension of simplex in X.

Let (X,κ) ⊂ Zn be a digital simplicial complex of dimension m. Then for all q > m,
Cκ
q (X) is a trivial group. The homomorphism ∂q : C

κ
q (X) → Cκ

q−1(X) defined by

∂q(< p0, p1, . . . , pq >) =

{∑q
i=0(−1)i < p0, p1, . . . , p̂i, . . . , pq >, q ⩽ m

0, q > m

is called a boundary homomorphism, where p̂i means delete the point pi.
For a digital image (X,κ), a digital chain complex Cκ

∗ (X) is a sequence of maps

. . .
∂i+1−→ Cκ

i (X)
∂i−→ Cκ

i−1(X)
∂i−1−→ . . .

where ∂i−1 ◦ ∂i = 0. For all 1 ⩽ q ⩽ m, we have ∂q−1 ◦ ∂q = 0. Arslan et al. [1] conclude
that the sequence

Cκ
∗ (X) : 0

∂m+1−→ Cκ
m(X)

∂m−→ Cκ
m−1(X)

∂m−1−→ . . .
∂1−→ Cκ

0 (X)
∂0−→ 0

is a digital chain complex. Let (X,κ) be a digital simplicial complex.
• Zκ

q (X) = Ker ∂q is called the group of digital simplicial q-cycles.
• Bκ

q (X) = Im ∂q+1 is called the group of digital simplicial q-boundaries.
• Hκ

q (X) = Zκ
q (X)/Bκ

q (X) is called the qth digital simplicial homology group.

Theorem 3.4 [9] Let (X,κ) be a digital simplicial complex of dimension m.
(1) Hκ

q (X) is a finitely generated abelian group for every q ⩾ 0.
(2) Hκ

q (X) is a trivial group for all q > m.
(3) Hκ

q (X) is a free abelian group, possibly zero.
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Theorem 3.5 [9] Let

MSS18 ={c0 = (0, 0, 1), c1 = (1, 1, 1), c2 = (1, 2, 1), c3 = (0, 3, 1), c4 = (−1, 2, 1),

c5 = (−1, 1, 1), c6 = (0, 1, 0), c7 = (0, 2, 0), c8 = (0, 2, 2), c9 = (0, 1, 2)}.

Then its digital simplicial homology groups are

H18
q (MSS18) =


Z, q = 0

Z3, q = 1

0, q ̸= 0, 1.

Theorem 3.6 [10] Let MSS6 be a minimal simple surface. Then its homology groups
are

H6
q (MSS6) =

Z, q = 0;
Z23, q = 1;
0, q ̸= 0, 1.

Theorem 3.7 [10] Let MSS18#MSS18 be a connected sum of a minimal simple surface
MSS18 with itself (see Figure 3). Then we have

H18
q (MSS18#MSS18) =

Z, q = 0;
Z7, q = 1;
0, q ⩾ 2.

Figure 3. MSS18#MSS18 [15]

Theorem 3.8 [10] The digital simplicial homology groups of MSS6#MSS6 (see Fig-
ure 4) are

H6
q (MSS6#MSS6) =

Z, q = 0;
Z39, q = 1;
0, q ̸= 0, 1.

For a digital simplicial complex (X,κ) ⊂ Zn, the simplicial digital cochain complex
(C∗(X), δ) is defined as follows. For any q ∈ Z, the q-dimensional digital cochain group
[20] is Cq,κ(X) = Hom(Cκ

q (X),Z), where Hom(G,B) is the functor assigning to any
abelian group G the group of all homomorphisms from G to B, called the dual of G.
Elements of Cq,κ(X) are called digital cochains and denoted either by cq or by c∗, if we
don’t need to specify their dimension q. The value of a digital cochain cq on a chain dq

is denoted by < cq, dq >. The qth coboundary map [20] δk : Cq,κ(X) → Cq+1,κ(X) is the
dual homomorphism of ∂q+1 defined by < δqcq, dq+1 >:=< cq, ∂q+1dq+1 >.

Note that Cq,κ(X) is the free abelian group generated by the dual canonical basis
{Q∗ | Q ∈ Cκ

q (X)}. Given a digital simplicial complex (X,κ), the group of q-dimensional
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Figure 4. MSS6#MSS6 [15]

cocycles of (X,κ) is Zq,κ(X) := Ker δq, and the group of q-dimensional coboundaries of
(X,κ) is Bq,κ := Im δq−1. The qth simplicial cohomology group [20] of (X,κ) is

Hq,κ(X) := Zq,κ(X)/Bq,κ(X).

For a digital simplicial map f : (X,κ0) → (Y, κ1) and q ⩾ 0, an induced homomorphism
f# : Hκ0

q (X) → Hκ1
q (Y ) is defined by f#(z + Bq,κ0(X)) = f(z) + Bq,κ1(Y ), where

z ∈ Zκ
q (X).

Theorem 3.9 [11] Let X be a digital image with κ-adjacency. If i : (X,κ) → (X,κ) is
the identity, then the induced homomorphism i# : H#,κ(X) → H#,κ(X) is the identity.

Theorem 3.10 [11] If (X,κ) is a one-point digital image, then

Hq,κ(X;G) =

{
G, q = 0
0, q > 0.

Theorem 3.11 [11] Let X, Y and Z be digital images with κ0, κ1 and κ2-adjacency,
respectively. If f : (X,κ0) → (Y, κ1) and g : (Y, κ1) → (Z, κ2) are digitally continuous
functions, then (g ◦ f)# = f# ◦ g#.

4. Main Results

In this section we will firstly give the basic properties of Ext(A,B) below [20]. For
any abelian groups A and B, Ext(A,B) is also an abelian group. A sequence of two

homomorphisms of abelian groups A
f−→ B

g−→ C is exact at B if Im f = Ker g.
A short exact sequence of abelian groups, written 0 → A → B → C → 0 is an exact

sequence whose end groups are trivial. A short exact sequence 0 → A
f→ B

g→ C → 0 is
said to be split if g has a right inverse. A free abelian group is an abelian group which
has a basis in that every element of the group could be written in one way as a finite
linear combination of elements of the basis with integer coefficients.

For each abelian group A, choose a short exact sequence 0 −→ R
i−→ F

j−→ A −→ 0
with F free abelian and i inclusion map. Since it is an exact sequence, i is injective and
j is surjective. Moreover, the group R can be considered as a subgroup of F and A is
isomorphic to F/R [20]. For any abelian group G, if we apply the contravariant functor
Hom(−, G) to the above exact sequence, then we obtain

0 −→ Hom(A,G) −→ Hom(F,G)
i#−→ Hom(R,G) −→ 0.
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Thus Ext(A,G) can be defined as

Ext(A,G) = coker i# = Hom(R,G)/i#(Hom(F,G)).

Corollary 4.1 [20] We have the followings:

(1) If A is free abelian, then Ext(A,B) = 0 for any group B.
(2) If B is divisible, then Ext(A,B) = 0 for any group A.
(3) Ext(

∑
Ai, B) ∼=

∏
Ext(Aj , B).

(4) Ext(A,
∏

Bj) ∼=
∏

Ext(A,Bj).
(5) Ext(Z/nZ, B) = B/nB.

We are ready to state the universal coefficient theorem for cohomology of a digital sim-
plicial complex. Note that the proof of the Theorem 4.2 is similar to the proof of the
analogous statement in [20].

Theorem 4.2 Let (X,κ) be a digital simplicial complex. For any abelian group G, there
is a short exact and split sequence

0 → Ext(Hκ
q−1(X,Z), G) → Hq,κ(X,G) → Hom(Hκ

q (X,Z), G) → 0,

hence

Hq,κ(X,G) ∼= Hom(Hκ
q (X,Z), G)⊕ Ext(Hκ

q−1(X,Z), G).

Proof. Consider the following short exact sequence of digital simplicial complexes

0 → Z → X → B → 0 (1)

where Zκ
q = Zκ

q (X) and Bκ
q = Bκ

q (X). Since B is free, the sequence (1) is split. Therefore
there is an exact sequence

. . . → Hq,κ(B,G) → Hq,κ(X,G) → Hq,κ(Z,G)
δ#→ Hq+1,κ(B,G) → . . .

Z and B have trivial boundary operators. Thus Hq,κ(Z,G) = Hom(Zκ
q (X), G),

Hq,κ(B,G) = Hom(Bκ
q−1(X), G) and δ# = Hom(αq, 1) : Hom(Zκ

q (X), G) →
Hom(Bκ

q (X), G) where αq : Bκ
q (X) → Zκ

q (X) is an inclusion map. So we have a short
exact sequence

0 → coker (Hom(αq−1, 1)) → Hq,κ(X,G) → Ker (Hom(αq, 1)) → 0 (2)

On the other hand, consider the following short exact sequence

0 → Bκ
q (X)

αq→ Zκ
q (X) → Hκ

q (X) → 0.

If we apply the functor Hom(−, G) and use the Ext functor, we get an exact sequence

0 → Hom(Hκ
q (X,Z), G) → Hom(Zκ

q (X), G)
Hom(αq,1)→ Hom(Bκ

q (X), G) →
Ext(Hκ

q (X,Z), G) → 0.

As a result, we obtain the followings:

Ker (Hom(αq, 1)) ∼= Hom(Hκ
q (X,Z), G)

coker (Hom(αq−1, 1)) ∼= Ext(Hκ
q (X,Z), G).

If we substitute these in (2), we get the required short exact sequence
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0 → Ext(Hκ
q−1(X,Z), G) → Hq,κ(X,G) → Hom(Hκ

q (X,Z), G) → 0.

This sequence is also split because the sequence in (1) is split. ■

Example 4.3 Let MSS6 be as above. Then we have

Hq,6(MSS6;Z2) =

Z2, q = 0
Z23
2 , q = 1

0, q ̸= 0, 1.

Proof. By Theorem 4.2, Theorem 3.6 and Corollary 4.1, we have the following for q = 0,

H0,6(MSS6;Z2) ∼= Hom(H6
0 (MSS6,Z),Z2)⊕ Ext(H6

−1(MSS6,Z),Z2)

∼= Hom(Z,Z2)⊕ Ext(0,Z2) ∼= Z2,

for q = 1,

H1,6(MSS6;Z2) ∼= Hom(H6
1 (MSS6,Z),Z2)⊕ Ext(H6

0 (MSS6,Z),Z2)

∼= Hom(Z23,Z2)⊕Ext(Z,Z2) ∼= Z23
2 ,

and for q = 2,

H2,6(MSS6;Z2) ∼= Hom(H6
2 (MSS6,Z),Z2)⊕ Ext(H6

1 (MSS6,Z),Z2)

∼= Hom(0,Z2)⊕ Ext(Z23,Z2) ∼= 0.

For all q > 2, we have Hq,6(MSS6;Z2) ∼= 0. As a result, we get

Hq,6(MSS6;Z2) =

Z2, q = 0
Z23
2 , q = 1

0, q ̸= 0, 1.

■

Example 4.4 The digital cohomology groups with the coefficient Z3 of minimal simple
surface MSS6#MSS6 are

Hq,6(MSS6#MSS6;Z3) =

Z3, q = 0
Z39
3 , q = 1

0, q ̸= 0, 1.

Proof. By using Theorem 4.2, Theorem 3.8 and Corollary 4.1 (since 0 and Z are free
abelian groups, Ext groups are trivial), we compute for q = 0,

H0,6(MSS6#MSS6;Z3) ∼=Hom(H6
0 (MSS6#MSS6,Z),Z3)

⊕ Ext(H6
−1(MSS6#MSS6,Z),Z3)

∼=Hom(Z,Z3)⊕ Ext(0,Z3) ∼= Z3,
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for q = 1,

H1,6(MSS6#MSS6;Z3) ∼=Hom(H6
1 (MSS6#MSS6,Z),Z3)

⊕ Ext(H6
0 (MSS6#MSS6,Z),Z3)

∼=Hom(Z39,Z3)⊕ Ext(Z,Z3) ∼= Z39
3 ,

and for q = 2,

H2,6(MSS6#MSS6;Z3) ∼=Hom(H6
2 (MSS6#MSS6,Z),Z3)

⊕ Ext(H6
1 (MSS6#MSS6,Z),Z3)

∼=Hom(0,Z3)⊕ Ext(Z39,Z3) ∼= 0.

For all q > 2, it’s clear that Hq,6(MSS6#MSS6;Z3) ∼= 0. Therefore, we get the desired
result. ■

Example 4.5 The digital cohomology groups with Z5-coefficient of MSS18#MSS18 are
given as follows:

Hq,18(MSS18#MSS18;Z5) =

Z5, q = 0
Z7
5, q = 1

0, q ̸= 0, 1.

Proof. From Theorem 4.2, Theorem 3.7 and Corollary 4.1, we obtain for q = 0,

H0,18(MSS18#MSS18;Z5) ∼=Hom(H18
0 (MSS18#MSS18,Z),Z5)

⊕ Ext(H18
−1(MSS18#MSS18,Z),Z5)

∼=Hom(Z,Z5)⊕ Ext(0,Z5) ∼= Z5,

for q = 1,

H1,18(MSS18#MSS18;Z5) ∼=Hom(H18
1 (MSS18#MSS18,Z),Z5)

⊕ Ext(H18
0 (MSS18#MSS18,Z),Z5)

∼=Hom(Z7,Z5)⊕ Ext(Z,Z5) ∼= Z7
5,

and for q = 2,

H2,18(MSS18#MSS18;Z5) ∼=Hom(H18
2 (MSS18#MSS18,Z),Z5)

⊕ Ext(H18
1 (MSS18#MSS18,Z),Z5)

∼=Hom(0,Z5)⊕ Ext(Z7,Z5) ∼= 0.

For all q > 2, it’s clear that Hq,18(MSS18#MSS18;Z5) ∼= 0. As a result, we conclude
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that

Hq,18(MSS18#MSS18;Z5) =

Z5, q = 0
Z7
5, q = 1

0, q ̸= 0, 1.

■

The boundary Bd(In+1) of an (n + 1)-cube In+1 is homeomorphic to n-sphere Sn.
This allows us to represent a digital sphere by using the boundary of a digital cube. We
use 0n to denote the origin of Zn. Boxer [5] defines sphere-like digital image as follows:

Sn = [−1, 1]n+1
Z \ {0n+1} ⊂ Zn+1.

For example, S1 = [−1, 1]2Z \ {(0, 0)} is digital 1-sphere with 4-adjacency in Z2 and
S2 = [−1, 1]3Z \ {(0, 0, 0)} is digital 2-sphere with 6-adjacency in Z3 (see Figure 5). The
following results are given in [1] and [10], respectively:

H4
q (S1) =

{
Z, q = 0, 1
0, q ̸= 0, 1,

H6
q (S2) =

Z, q = 0
Z23, q = 1
0, q ̸= 0, 1.

Figure 5. S1 and S2 [15]

Definition 4.6 Let f : (Sn, κn) → (Sn, κn) be a (κn, κn)-continuous map where (Sn, κn)
is digital n-sphere, n ∈ {1, 2} and κ1 = 4, κ2 = 6. Then f induces homomorphisms

f# : H#,κn(Sn) → H#,κn(Sn).

We see that f# must be of the form f#([x]) = m[x], for some fixed m ∈ Z, where [x] is
a generator of H#,κn(Sn). This m is the called the degree of f .

We now would like to deal with some degree properties of a map.

Theorem 4.7 Let f : Sn → Sn be a (κn, κn)-continuous map of a digital n-sphere where
n ∈ {1, 2}, κ1 = 4 and κ2 = 6.

(1) deg(1Sn
) = 1 where 1Sn

is the identity map on Sn.
(2) deg(c) = 0, where c is a constant map on Sn.
(3) deg(f ◦ g) = deg(f).deg(g), where f, g : Sn → Sn.
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Proof.

(1) Let 1Sn
: Sn → Sn be the identity map. Using the Theorem 3.9, we obtain that

1#Sn
: H#,κn(Sn) → H#,κn(Sn) is also the identity map. By the definition of the

degree, we conclude that deg(1Sn
) = 1 because 1#Sn

([x]) = [x], where [x] is a

generator of H#,κn(Sn).
(2) Let c be a constant map on Sn such that c(x) = p for all x ∈ Sn where p ∈ Sn.

We can factor c in the following way:

Sn

c
//

g ##H
HH

HH
HH

HH
Sn

{p} ⊂ Sn

h

;;vvvvvvvvv

i.e., c = h ◦ g. By Theorem 3.10, H#,κn({p}) = 0. Therefore c# = g# ◦ h# = 0,
so deg(c) = 0.

(3) For two maps f, g : Sn → Sn, consider the composition map f ◦ g : Sn → Sn.
Using Theorem 3.11, we get

deg(f ◦ g)([x]) = (f ◦ g)#([x])

= g#(f#([x]))

= g#(deg(f).[x])

= deg(g).(deg(f).[x])

= (deg(g). deg(f))([x])

for all [x] ∈ H#,κn(Sn). So we have deg(f ◦ g) = deg(f). deg(g).

■

Theorem 4.8 Let f : S1 → S1 be a (4, 4)-continuous map of a digital 1-sphere. If f is
not surjective, then deg(f) = 0.

Proof. If a ̸∈ Im(f) where a ∈ S1, then f can be factored as S1
f1→ S1 \{a}

i→ S1. Since
i is an inclusion map, f1(x) = f(x) for all x ∈ S1. Taking digital cohomology groups of

the above sequence, we have Hn,4(S1)
f#
1→ Hn,4(S1 \ {a})

i#→ Hn,4(S1). Since S1 \ {a} is

4-contractible, f#
1 = 0 and so, by Theorem 4.7, we conclude that Hn,4(S1 \ {a}) = 0. ■

5. Conclusion

Digital topology with various applications will continue to be an important area of
mathematics. Algebraic topology which has very effective tools such as homology and
cohomology is used to solve some digital imaging problems. So we believe that the results
of this paper will make a major contribution for developing digital topology.
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