Some fixed point results for contractive type mappings in b-metric spaces

I. Eroglu ${ }^{a}$
${ }^{\text {a }}$ Department of Mathematics, Ordu University, Altinordu 52200 Ordu, Turkey. Received 28 April 2018; Revised 18 July 2018; Accepted 7 August 2018.

Communicated by Ghasem Soleimani Rad

Abstract

In this work, we prove some fixed point theorems by using wt-distance on bmetric spaces. Our results generalize some fixed point theorems in the literature. Moreover, we introduce $w t_{0}$-distance and by using the concept of $w t_{0}$-distance, we obtain some coupled fixed point results in complete b-metric spaces.

(c) 2018 IAUCTB. All rights reserved.

Keywords: Fixed Point, $w t$-distance, $w t_{0}$-distance, b-metric.
2010 AMS Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.

1. Introduction and preliminaries

There has been numerous generalizations of metric spaces. One such well-known generalization is b-metric space defined by Czerwik [11]. After that many authors have obtained some fixed point theorems in b-metric spaces (see [10, 15, 19, 21-23, 28]). Hussain et al. [13] introduced the notion of $w t$-distance on b-metric spaces, which is a b-metric version of w-distance of Kada et al. [14] and they obtained some fixed point theorems in a partially ordered b-metric space by using $w t$-distance. Then, Mohanta [20] proved some fixed point theorems by using the wt-distance on a b-metric space. Saadati et al. [12] obtained some fixed point theorems for classes of contractive type multi-valued operators via $w t$-distances in the setting of a complete b-metric space. Mbarki et al. [18] introduced the probabilistic aspect of the b-metric spaces and they discussed some topological properties of these structures. Saadati et al. [1] defined the concept of $r t$-distance

[^0]on a Menger probabilistic b-metric space and they investigated some fixed point theorems by using $r t$-distance which is a probabilistic version of $w t$-distance. In 2012, Samet et al. [26] introduced the concepts of $\alpha-\psi$-contractive and α-admissible mappings. Then, many authors investigated some fixed point results by using this idea (see, [4]). Karapinar et al. [8] extended the results of Samet et al. [26] to the setting of b-metric space and they investigated Ulam-Hyers stability results for fixed point theorems by using $\alpha-\psi$-contractive mapping of type-(b) in the sense of b-metric spaces. In this paper, we first prove some fixed point theorems by using $w t$-distance on complete b-metric spaces and we extend the results of Karapinar et al. [8]. Also, we introduce the notion of $w t_{0}$-distance and we obtain some coupled fixed point theorems via $w t_{0}$-distance on b-metric spaces.

Now, we recall some well known notions about b-metric space and $w t$-distance.
Definition 1.1 [11] Let X be a set. Let $D: X \times X \rightarrow[0, \infty)$ be a function which satisfies the following conditions:
(i) $D(x, y)=0$ if and only if $x=y$;
(ii) $D(x, y)=D(y, x)$ for all $x, y \in X$;
(iii) $D(x, y) \leqslant K[D(x, z)+D(z, y)]$ for all $x, y, z \in X$, for some constant $K \geqslant 1$.

Then, (X, D, K) is called a b-metric space.
Example 1.2 [13] Let $X=\mathbb{R}$ and define $D: X \times X \rightarrow[0, \infty)$ by $D(x, y)=|x-y|^{2}$. Then, $(X, D, 2)$ is a b-metric space, but not a metric space.
Example 1.3 Let (X, D, K) be a b-metric space. Then, the functional $D_{p}: X^{2} \times X^{2} \rightarrow$ $[0, \infty)$ defined by $D_{p}((x, y),(z, t))=D(x, z)+D(y, t)$ is a b-metric on X^{2} with coefficient K.

Example 1.4 [8] Let X be a set with the cardinal $\operatorname{card}(X) \geqslant 3$. Suppose that $X=$ $X_{1} \cup X_{2}$ is a partition of X such that $\operatorname{card}\left(X_{1}\right) \geqslant 2$. Let $K>1$ be arbitrary. Then the functional $D: X \times X \rightarrow[0, \infty)$ is defined by

$$
D(x, y)= \begin{cases}0 & x=y \\ 2 K & x, y \in X_{1} \\ 1 & \text { otherwise }\end{cases}
$$

is a b-metric on X with the coefficient $K>1$.
The concept of a $w t$-distance on a b-metric space has been introduced by Hussain et al. [13] by the following:

Definition 1.5 [13] Let (X, D, K) be a b-metric space. Then, a function $P: X \times X \rightarrow$ $[0, \infty)$ is called a $w t$-distance on X if the following conditions are satisfied:
(wt-1) $\quad P(x, z) \leqslant K[P(x, y)+P(y, z)]$ for any $x, y, z \in X$;
(wt-2) for any $x \in X, P(x,):. X \rightarrow[0, \infty)$ is K-lower semi-continuous;
(wt-3) for any $\varepsilon>0$, there exists $\delta>0$ such that $P(z, x) \leqslant \delta$ and $P(z, y) \leqslant \delta$ imply $D(x, y) \leqslant \varepsilon$.

Let us recall that a real-valued function f defined on a b-metric space X is said to be lower K-semi-continuous at a point $x_{0} \in X$ if either $\lim \inf _{x_{n} \rightarrow x_{0}} f\left(x_{n}\right)=\infty$ or $f\left(x_{0}\right) \leqslant \liminf x_{x_{n} \rightarrow x_{0}} K f\left(x_{n}\right)$, whenever $x_{n} \in X$ for each $n \in \mathbb{N}$ and $x_{n} \rightarrow x_{0}$ (see [13]).
Example 1.6 [13] Let (X, D, K) be a b-metric space. Then the metric D is a $w t$-distance on X.

Example 1.7 [13] Let $X=\mathbb{R}$ and $D(x, y)=(x-y)^{2}$. Then the function $P: X \times X \rightarrow$ $[0, \infty)$ defined by $P(x, y)=|x|^{2}+|y|^{2}$ for every $x, y \in X$ is a $w t$-distance on X.

Example 1.8 [13] Let $X=\mathbb{R}$ and $D(x, y)=(x-y)^{2}$. Then the function $P: X \times X \rightarrow$ $[0, \infty)$ defined by $P(x, y)=|y|^{2}$ for every $x, y \in X$ is a $w t$-distance on X.

Following lemma has been proved by Hussain et al. [13] and it is necessary to prove our main theorem.

Lemma 1.9 [13] Let (X, D, K) be a b-metric space and P be a $w t$-distance on X. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in X, let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be sequences in $[0, \infty)$ converging to zero, and let $x, y, z \in X$. Then, the following hold:
(i) if $P\left(x_{n}, y\right) \leqslant \alpha_{n}$ and $P\left(x_{n}, z\right) \leqslant \beta_{n}$ for any $n \in \mathbb{N}$, then $y=z$.
(ii) if $P\left(x_{n}, y_{n}\right) \leqslant \alpha_{n}$ and $P\left(x_{n}, z\right) \leqslant \beta_{n}$ for any $n \in \mathbb{N}$, then $D\left(y_{n}, z\right) \rightarrow 0$.
(iii) if $P\left(x_{n}, x_{m}\right) \leqslant \alpha_{n}$ for any $n, m \in \mathbb{N}$ with $m>n$, then $\left\{x_{n}\right\}$ is a Cauchy sequence.
(iv) if $P\left(y, x_{n}\right) \leqslant \alpha_{n}$ for any $n \in \mathbb{N}$, then $\left\{x_{n}\right\}$ is a Cauchy sequence.

We denote by Ψ the family of all functions $\psi:[0, \infty) \rightarrow[0, \infty)$ satisfying the following conditions:
(1) ψ is nondecreasing,
(2) $\sum_{n=1}^{\infty} \psi^{n}(t)<\infty$ for all $t>0$.

Remark 1 [17] For each $\psi \in \Psi$, we have
(1) $\lim _{n \rightarrow \infty} \psi^{n}(t)=0$ for all $t>0$.
(2) $\psi(t)<t$ for all $t>0$.
(3) $\psi(0)=0$.

In the following definition, Berinde [6] introduced the notion of (b)-comparison function in order to extend some fixed point results to the class of b-metric spaces.
Definition 1.10 [6] Let $s \geqslant 1$ be a real number. A mapping $\varphi:[0, \infty) \rightarrow[0, \infty)$ is called (b)-comparison function if the following conditions satisfy:
(1) φ is monotonically increasing;
(2) there exist $k_{0} \in \mathbb{N}, a \in(0,1)$ and convergent series of nonnegative terms $\sum_{k=1}^{\infty} v_{k}$ such that $s^{k+1} \varphi^{k+1}(t) \leqslant a s^{k} \varphi^{k}(t)+v_{k}$, for $k \geqslant k_{0}$ and any $t \in[0, \infty)$.
In this paper, we will denote by Ψ_{b} the family of all (b)-comparison functions.
Lemma $1.11[5]$ If $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a (b)-comparison function, then the following are true:
(i) the series $\sum_{k=1}^{\infty} s^{k} \varphi^{k}(t)$ converges for any $t \in[0, \infty)$.
(ii) the function $b_{s}:[0, \infty) \rightarrow[0, \infty)$ defined by $b_{s}(t)=\sum_{k=1}^{\infty} s^{k} \varphi^{k}(t), t \in[0, \infty)$, is increasing and continuous at 0 .

Samet et al. [26] introduced the concept of $\alpha-\psi$-contractive and α-admissible mappings as follows.

Definition $1.12[26]$ Let (X, d) be a metric space and $f: X \rightarrow X$ a given mapping. Then, f is called $\alpha-\psi$-contractive mapping if there exist two functions $\alpha: X \times X \rightarrow$ $[0, \infty)$ and $\psi \in \Psi$ such that $\alpha(x, y) d(f(x), f(y)) \leqslant \psi(d(x, y))$ for all $x, y \in X$.
Definition 1.13 [26] Let $f: X \rightarrow X$ and $\alpha: X \times X \rightarrow[0, \infty)$. Then, f is called α-admissible mapping if $\alpha(x, y) \geqslant 1$ for all $x, y \in X$, then $\alpha(f(x), f(y)) \geqslant 1$.

Samet et al. [26] obtained some fixed point theorems for $\alpha-\psi$-contractive mappings satisfying α-admissibility condition in complete metric spaces. Then many authors extended the concepts of $\alpha-\psi$-contractive and α-admissible mappings. (see [2, 3, 9, 17, 27-29]).

Karapinar et al. [8] extended the concept of $\alpha-\psi$-contractive and α-admissible mappings to the b-metric spaces. They introduced the concept of $\alpha-\psi$-contractive mapping of type-(b) and obtained the following results.

Definition $1.14[8]$ Let (X, d) be a b-metric space and $f: X \rightarrow X$ be a given mapping. Then f is called $\alpha-\psi$-contractive mapping of type-(b) if there exist two functions $\alpha: X \times X \rightarrow[0, \infty)$ and $\psi \in \Psi_{b}$ such that $\alpha(x, y) d(f(x), f(y)) \leqslant \psi(d(x, y))$ for all $x, y \in X$.
Theorem 1.15 [8] Let (X, d) be a complete b-metric space with constant $s>1$. Let f : $X \rightarrow X$ be an $\alpha-\psi$-contractive mapping of type-(b) satisfying the following conditions:
(i) f is α-admissible;
(ii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geqslant 1$;
(iii) f is continuous.

Then, f has a fixed point.
Theorem $1.16[8]$ Let (X, d) be a complete b-metric space with constant $s>1$. Let f : $X \rightarrow X$ be an $\alpha-\psi$-contractive mapping of type-(b) satisfying the following conditions:
(i) f is α-admissible;
(ii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geqslant 1$;
(iii) if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$ for all n and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$, then $\alpha\left(x_{n}, x\right) \geqslant 1$ for all n.

Then, f has a fixed point.

2. Main Results

We now prove some new fixed point results for generalized (α, ψ, P)-contractive mappings with $w t$-distances in b-metric spaces. Before starting our main theorem, we introduce a new notion as follows:

Definition 2.1 Let (X, D, K) be a b-metric space with the $w t$-distance P and $f: X \rightarrow$ X a given mapping. We say that f is (α, ψ, P)-contractive mapping if there exist two functions $\alpha: X \times X \rightarrow[0, \infty)$ and $\psi \in \Psi_{b}$ such that for all $x, y \in X$,

$$
\begin{equation*}
\alpha(x, y) P(f(x), f(y)) \leqslant \psi(P(x, y)) \tag{1}
\end{equation*}
$$

We can give the following example to illustrate the notion of (α, ψ, P)-contractive mapping.
Example 2.2 Let $X=[0, \infty)$ and $D(x, y)=|x-y|^{2}$ be a b-metric on X and consider the $w t$-distance $P(x, y)=|x|^{2}+|y|^{2}$ on $(X, D, 2)$. Let $f: X \rightarrow X$ defined by $f(x)=\frac{x}{2}$. Moreover, let the function $\alpha: X \times X \rightarrow[0, \infty)$ defined by

$$
\alpha(x, y)= \begin{cases}0 & \text { if } x \text { or } y \in[0,1] \\ 1 & \text { otherwise }\end{cases}
$$

Then, f is an $(\alpha, \psi, 2)$-contractive for $\psi:[0, \infty) \rightarrow[0, \infty)$ which is defined by $\psi(t)=\frac{t}{2}$.

Now, we give our main result.
Theorem 2.3 Let P be a w-distance on a complete b-metric space (X, D, K) and let $f: X \rightarrow X$ be an (α, ψ, P)-contractive mapping. Suppose that the following hold:
(i) f is an α-admissible mapping;
(ii) there exists a point $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geqslant 1$;
(iii) f is continuous.

Then f has a fixed point.
Proof. Let $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geqslant 1$. We define a sequence x_{n} in X by $x_{n+1}=f\left(x_{n}\right)=f^{n+1}\left(x_{0}\right)$ for all $n \in \mathbb{N}$. If $x_{n}=x_{n+1}$ for some $n \in \mathbb{N}$, then $x_{n}=x$ is a fixed point of f. Hence, we assume that $x_{n} \neq x_{n+1}$ for all $n \in \mathbb{N}$. Since f is α-admissible mapping, we have

$$
\alpha\left(x_{0}, x_{1}\right)=\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geqslant 1 \Rightarrow \alpha\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)=\alpha\left(x_{1}, x_{2}\right) \geqslant 1
$$

By induction, we get

$$
\begin{equation*}
\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1 \tag{2}
\end{equation*}
$$

for all $n \in \mathbb{N}$. By (1) and (2), we have

$$
P\left(x_{n}, x_{n+1}\right)=P\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right) \leqslant \alpha\left(x_{n-1}, x_{n}\right) P\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right) \leqslant \psi\left(P\left(x_{n-1}, x_{n}\right)\right)
$$

for all $n \in \mathbb{N}$. Iteratively, we get that

$$
\begin{equation*}
P\left(x_{n}, x_{n+1}\right) \leqslant \psi^{n}\left(P\left(x_{0}, x_{1}\right)\right) \text { for all } \mathrm{n} \in \mathbb{N} . \tag{3}
\end{equation*}
$$

From (3) and using triangle inequality, for all $p \geqslant 1$, we have

$$
\begin{aligned}
P\left(x_{n}, x_{n+p}\right) \leqslant & K P\left(x_{n}, x_{n+1}\right)+K^{2} P\left(x_{n+1}, x_{n+2}\right)+\cdots+K^{p} P\left(x_{n+p-1}, x_{n+p}\right) \\
\leqslant & K \psi^{n}\left(P\left(x_{0}, x_{1}\right)\right)+K^{2} \psi^{n+1}\left(P\left(x_{0}, x_{1}\right)\right)+\cdots+K^{p} \psi^{n+p-1}\left(P\left(x_{0}, x_{1}\right)\right) \\
= & \frac{1}{K^{n-1}}\left[K^{n} \psi^{n}\left(P\left(x_{0}, x_{1}\right)\right)+K^{n+1} \psi^{n+1} P\left(x_{0}, x_{1}\right)+\cdots\right. \\
& \left.+K^{n+p-1} \psi^{n+p-1}\left(P\left(x_{0}, x_{1}\right)\right)\right]
\end{aligned}
$$

Let us say $T_{n}=\sum_{k=0}^{n} K^{k} \psi^{k}\left(P\left(x_{0}, x_{1}\right)\right)$ for $n \geqslant 1$. Therefore, we get that

$$
\begin{equation*}
P\left(x_{n}, x_{n+p}\right) \leqslant \frac{1}{K^{n-1}}\left[T_{n+p-1}-T_{n-1}\right], n \geqslant 1, p \geqslant 1 \tag{4}
\end{equation*}
$$

From Lemma 1.11, we have $\sum_{k=0}^{\infty} K^{k} \psi^{k}\left(P\left(x_{0}, x_{1}\right)\right)$ is convergent. Also, from Lemma 1.9, we get that x_{n} is a Cauchy sequence in (X, D, K). Since X is complete, there exists x^{*} such that $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$. From the continuity of f, we have

$$
x^{*}=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} f\left(x_{n+1}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)=f\left(x^{*}\right) .
$$

Thus, x^{*} is a fixed point of f.

In the next theorem, we omit the continuity hypothesis of f.
Theorem 2.4 Let P be a $w t$-distance on a complete b-metric (X, D, K) and let $f: X \rightarrow$ X be an (α, ψ, P)-contractive mapping. Suppose that the following conditions hold:
(i) f is an α-admissible;
(ii) there exists a point $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geqslant 1$;
(iii) if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$ for all n and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$, then $\alpha\left(x_{n}, x\right) \geqslant 1$ for all n.
Then, f has a fixed point.
Proof. Following the proof of Theorem 2.3, we have that x_{n} is a Cauchy sequence in the complete b-metric space (X, D, K). Then, there exists $x^{*} \in X$ such that $x_{n} \rightarrow x^{*}$. Moreover, from (2) and the hypothesis (iii), we have $\alpha\left(x_{n}, x^{*}\right) \geqslant 1$ for all $n \in \mathbb{N}$. Since f is α-admissible, $\alpha\left(f\left(x_{n}\right), f\left(x^{*}\right)\right) \geqslant 1$. From, (wt-2) and (4), we get

$$
P\left(x_{n}, x^{*}\right) \leqslant \liminf _{p \rightarrow \infty} K P\left(x_{n}, x_{n+p}\right)
$$

for all $n \in \mathbb{N}$. Thus, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(x_{n}, x^{*}\right)=0 \tag{5}
\end{equation*}
$$

Then,

$$
P\left(x_{n+1}, f\left(x^{*}\right)\right)=P\left(f\left(x_{n}\right), f\left(x^{*}\right)\right) \leqslant \alpha\left(x_{n}, x^{*}\right) P\left(f\left(x_{n}\right), f\left(x^{*}\right)\right) \leqslant \psi\left(P\left(x_{n}, x^{*}\right)\right)
$$

for all $n \in \mathbb{N}$. Using (5) in the above inequality we obtain that $\lim _{n \rightarrow \infty} P\left(x_{n+1}, f\left(x^{*}\right)\right)=0$. By the triangle inequality, we have that

$$
P\left(x_{n}, f\left(x^{*}\right)\right) \leqslant K\left[P\left(x_{n}, x_{n+1}\right)+P\left(x_{n+1}, f\left(x^{*}\right)\right)\right]
$$

Hence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(x_{n}, f\left(x^{*}\right)\right)=0 \tag{6}
\end{equation*}
$$

Hence by (i) of the Lemma1.9, (5) and (6) we conclude that $f\left(x^{*}\right)=x^{*}$.
Next example shows that, setting $P=D$, Theorem 2.3 and Theorem 2.4 are generalizations of Theorem 17 and Theorem 18 in [8] respectively.
Example 2.5 Consider $X=[0, \infty)$ with the b-metric $D(x, y)=|y-x|^{2}$ and $w t$-distance $P: X \times X \rightarrow[0, \infty)$ is defined by $P(x, y)=|y|^{2}$. Let $f: X \rightarrow X$ be a function defined by $f(x)=\frac{x}{\sqrt{2}}$ and $\alpha: X \times X \rightarrow[0, \infty)$ is defined by

$$
\alpha(x, y)= \begin{cases}1 & x \geqslant y \\ 0 & x<y\end{cases}
$$

It is clear that f is α-admissible. Moreover, f is (α, ψ, P)-contractive mapping with respect to $\psi(t)=\frac{t}{2}$. Indeed, let $x<y$. Then, $\alpha(x, y)=0$. Thus, it is obvious that

$$
\alpha(x, y) P\left(\frac{x}{\sqrt{2}}, \frac{x}{\sqrt{2}}\right)=0 \leqslant \psi(P(x, y))=\frac{y^{2}}{2}
$$

Now, suppose that $x \geqslant y$. Then, $\alpha(x, y)=1$ and we have

$$
\alpha(x, y) P\left(\frac{x}{\sqrt{2}}, \frac{y}{\sqrt{2}}\right)=\frac{y^{2}}{2} \leqslant \psi(P(x, y))=\frac{y^{2}}{2}
$$

Also, there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geqslant 1$. Indeed, we have $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geqslant 1$ for $x_{0}=0$. Now, let $\left\{x_{n}\right\}$ be a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$. By the definition of the function α, we have that $\left\{x_{n}\right\}$ is a decreasing sequence. Then, it is clear that $x_{n} \geqslant x$ and $\alpha\left(x_{n}, x\right) \geqslant 1$. Therefore, all the hypotheses of Theorem 2.3 and Theorem 2.4 are satisfied. 0 is the fixed point of f.

Our main results does not guarantee the uniqueness of the fixed point.
Example 2.6 Let $X=[0, \infty)$ and $D(x, y)=|x-y|^{2}$ be a b-metric on X and consider the $w t$-distance $P(x, y)=|x|^{2}+|y|^{2}$ on $(X, D, 2)$. Let $f: X \rightarrow X$ defined by $f(x)=\sqrt{x}$. Moreover, let the function $\alpha: X \times X \rightarrow[0, \infty)$ defined by

$$
\alpha(x, y)= \begin{cases}0 & \text { if } x \text { or } y \in[0,1] \\ 1 & \text { otherwise }\end{cases}
$$

Then f is a (α, ψ, P)-contractive mapping, where $\psi(t)=\frac{t}{2}$. All the hypotheses of Theorem 2.3 holds, but f has not a unique fixed point.

To assure the uniqueness of the fixed point, we will consider the following hypothesis:
(H) $\forall x, y \in X$ there exists $z \in X$ such that $\alpha(x, z) \geqslant 1, \alpha(y, z) \geqslant 1$.

Theorem 2.7 Adding property (H) to the hypothesis of Theorem 2.3 we obtain the uniqueness of the fixed point of f.

Proof. Suppose that x^{*} and y^{*} are two fixed points of f. By property (H), there exists $z^{*} \in X$ such that $\alpha\left(z^{*}, x^{*}\right) \geqslant 1$ and $\alpha\left(z^{*}, y^{*}\right) \geqslant 1$. Since f is α-admissible, we get that $\alpha\left(f^{n}\left(z^{*}\right), f^{n}\left(x^{*}\right)\right) \geqslant 1$ and $\alpha\left(f^{n}\left(z^{*}\right), f^{n}\left(y^{*}\right)\right) \geqslant 1$. Since f is (α, ψ, P)-contraction, we have that

$$
\begin{aligned}
P\left(f^{n+1}\left(z^{*}\right), x^{*}\right) & =P\left(f\left(f^{n}\left(z^{*}\right)\right), f\left(x^{*}\right)\right) \\
& \leqslant \alpha\left(f^{n}\left(z^{*}\right), f^{n}\left(x^{*}\right)\right) P\left(f\left(f^{n}\left(z^{*}\right)\right), f\left(x^{*}\right)\right) \\
& \leqslant \psi\left(P\left(f^{n}\left(z^{*}\right), x^{*}\right)\right)
\end{aligned}
$$

for each $n \in \mathbb{N}$. By induction, we get $P\left(f^{n+1}\left(z^{*}\right), x^{*}\right) \leqslant \psi^{n}\left(P\left(z^{*}, x^{*}\right)\right)$ for all $n \in$ \mathbb{N}. In a similar way, we get that $P\left(f^{n+1}\left(z^{*}\right), y^{*}\right) \leqslant \psi^{n}\left(P\left(z^{*}, y^{*}\right)\right)$. Then, we have $\lim _{n \rightarrow \infty} \psi^{n} P\left(z^{*}, x^{*}\right)=0$ and $\lim _{n \rightarrow \infty} \psi^{n} P\left(z^{*}, y^{*}\right)=0$. From Lemma 1.9, we obtain $y^{*}=x^{*}$

The next two theorems generalize the results of Ran and Reurings [25] and Nieto-Rodrigues-Lopez [24].

Theorem 2.8 Let (X, D, K) be a complete b-metric space such that (X, \preceq) is a partially ordered set. Let $f: X \rightarrow X$ be a nondecreasing mapping with respect to " $\preceq "$. Suppose that the following conditions hold:
(i) There exists $k \in[0,1)$ such that

$$
D(f(x), f(y)) \leqslant k D(x, y) \text { for each } x, y \in X \text { such that } x \preceq y
$$

(ii) There exists $x_{0} \in X$ such that $x_{0} \preceq f\left(x_{0}\right)$;
(iii) f is continuous.

Then f has a fixed point.
Proof. Consider the mapping $\alpha: X \times X \rightarrow[0, \infty)$ defined by

$$
\alpha(x, y)=\left\{\begin{array}{lc}
1 & \text { if } x \preceq y \\
0 & \text { otherwise }
\end{array}\right.
$$

We will show that the contractive condition (1) is satisfied with respect to the $w t$-distance D on the b-metric space (X, D, K). By (i), we have that $\alpha(x, y) D(f(x), f(y)) \leqslant k D(x, y)$ for all $x, y \in X$. Then, f is (α, ψ, D)-contractive mapping with $\psi(t)=k t$ for all $t>0$. Now, we assume that $\alpha(x, y) \geqslant 1$. Then, $x \preceq y$. Since f is nondecreasing with respect to $" \preceq "$, we get that $f(x) \preceq f(y)$ and so $\alpha(f(x), f(y)) \geqslant 1$. Therefore, f is α-admissible. From (ii), there exists $x_{0} \in X$ such that $x_{0} \preceq f\left(x_{0}\right)$. This implies that $\alpha\left(x_{0}, f\left(x_{0}\right)\right) \geqslant 1$. Then, the hypotheses of Theorem 2.3 are satisfied and f has a fixed point.
Theorem 2.9 Let (X, D, K) be a complete b-metric space such that (X, \preceq) is a partially ordered set. Let $f: X \rightarrow X$ be a nondecreasing mapping with respect to " \preceq ". Suppose that the following conditions hold:
(i) There exists $k \in[0,1)$ such that

$$
D(f(x), f(y)) \leqslant k D(x, y) \text { for each } x, y \in X \text { such that } x \preceq y ;
$$

(ii) There exists $x_{0} \in X$ such that $x_{0} \preceq f\left(x_{0}\right)$;
(iii) If $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x \in X x_{n} \rightarrow x$ as $n \rightarrow \infty$, then $x_{n} \preceq x$ for all n.

Then f has a fixed point.
Proof. Define the mapping $\alpha: X \times X \rightarrow X$ by

$$
\alpha(x, y)=\left\{\begin{array}{lc}
1 & \text { if } x \preceq y \\
0 & \text { otherwise }
\end{array}\right.
$$

Then, f is (α, ψ, D)-contractive, where $\psi(t)=k t$ and $k \in[0,1)$. Moreover, f is α admissible. Let x_{n} be a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$ for all n and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$. Then, $\alpha\left(x_{n}, x\right)=1$. Thus, all the hypotheses of Theorem 2.4 are satisfied and f has a fixed point.
Theorem 2.10 Adding the condition $\left(H^{\prime}\right)$:
For all $x, y \in X$ there exists $z \in X$ such that $x \preceq z$ and $y \preceq z$
to the Theorem 2.8 and Theorem 2.9, we obtain the uniqueness.
Proof. Suppose that x^{*} and y^{*} are two fixed point of f. Then, there exists $z \in X$ such that $x^{*} \preceq z$ and $y^{*} \preceq z$. Then, $\alpha\left(x^{*}, z\right) \geqslant 1$ and $\alpha\left(y^{*}, z\right) \geqslant 1$. Then the hypothesis (H) is satisfied and f has a unique fixed point.

3. Some coupled fixed point results and $w t_{0}$-distance

In [16], Radenović et al. introduced the notion of w_{0}-distance to obtain some fixed point results. In this section, we will introduce $w t_{0}$-distance which is a b-metric version of w_{0}-distance. Then, we will show that our previous results help us to obtain some coupled fixed point theorems in complete b-metric spaces.

Definition 3.1 Let (X, D, K) be a b-metric space. Then, a function $P: X \times X \rightarrow[0, \infty)$ is called a $w t_{0}$-distance on X if the following are satisfied:

$$
\left(w t_{0}\right)-1 \quad P(x, y) \leqslant K[P(x, z)+P(z, y)]
$$

$\left(w t_{0}\right)-2$ for any $x \in X$, the functions $P(x,),. P(., x): X \rightarrow[0, \infty)$ are K-lower semicontinuous;
$\left(w t_{0}\right)-3$ for any $\varepsilon>0$, there exists $\delta>0$ such that $P(z, x) \leqslant \delta$ and $P(z, y) \leqslant \delta$ imply $D(x, y) \leqslant \varepsilon$.

Example 3.2 Let consider the b-metric space $(\mathbb{R}, D, 2)$, where $D(x, y)=(x-y)^{2}$ for all $x, y \in \mathbb{R}$. Then, the function $P: X \times X \rightarrow[0, \infty)$ defined by $P(x, y)=|x|^{2}+|y|^{2}$. Then, P is a $w t_{0}$ distance on $(\mathbb{R}, D, 2)$, but not a b-metric.

Example 3.3 Let $X=[0, \infty)$ and consider the b-metric $(X, D, 2)$, where $D(x, y)=$ $(x-y)^{2}$ for all $x, y \in X$ and $w t$-distance function $P: X \times X \rightarrow[0, \infty)$ defined by $P(x, y)=|y|^{2}$. Inspired by the Example 1.3 given in [16], we will construct the following $w t$-distance. Let $\alpha: X \rightarrow[0, \infty)$ defined by

$$
\alpha(x)= \begin{cases}e^{-x} & x>0 \\ 3 & x=0\end{cases}
$$

The function $P^{\prime}: X \times X \rightarrow[0, \infty)$ defined by $P^{\prime}(x, y)=\max \{\alpha(x), P(x, y)\}$. Then, P^{\prime} is a $w t$-distance on $(X, D, 2)$. However, P^{\prime} is not a $w t_{0}$-distance on X. Indeed, consider the sequence $\left\{x_{n}\right\}$ in X, where $x_{n}=\frac{1}{n}$ for all $n \in \mathbb{N}$. Then, x_{n} converges to 0 in $(X, D, 2)$. But, for $x=0$, we have the following $\liminf _{n \rightarrow \infty} 2 \max \left\{e^{-\frac{1}{n}}, 0\right\}=2 \leqslant P^{\prime}(0,0)=3$. Thus, the function $P^{\prime}(., 0)$ is not 2 -lower semi-continuous. Hence, P^{\prime} is not a $w t_{0}$ distance on ($X, D, 2$).

Lemma 3.4 Let (X, D, K) be a complete b-metric space and P be a $w t_{0}$-distance on X. Then the function $\delta: X^{2} \times X^{2} \rightarrow[0, \infty)$ defined by

$$
\delta((x, y),(z, t))=\max \{P(x, z)+P(y, t), P(z, x)+P(t, y)\}
$$

for all $(x, y),(z, t) \in X^{2}$ is a symmetric $w t_{0}$-distance on the complete b-metric space $\left(X^{2}, D_{p}, K\right)$, where D_{p} is defined on X^{2} by $D_{p}((x, y),(z, t))=D(x, z)+D(y, t)$.

Proof. $\left(w t_{0}\right)-1$ Let $(x, y),(z, t),(u, v) \in X^{2}$. Then, we have

$$
\begin{aligned}
& K[\delta((x, y),(u, v))+\delta((u, v),(z, t))] \\
& =K[\max \{P(x, u)+P(y, v), P(u, x)+P(v, y)\}+\max \{P(u, z)+P(v, t), P(z, u)+P(t, v)\}] \\
& \geqslant K[\max \{P(x, u)+P(y, v)+P(u, z)+P(v, t), P(u, x)+P(v, y)+P(z, u)+P(t, v)\}] \\
& =\max \{K[P(x, u)+P(y, v)+P(u, z)+P(v, t)], K[P(u, x)+P(v, y)+P(z, u)+P(t, v)]\} \\
& \geqslant \max \{P(x, z)+P(y, t), P(z, x)+P(t, y)\}=\delta((x, y),(z, t))
\end{aligned}
$$

$\left(w t_{0}\right)-2$ Let (x, y) be a point of X^{2}. Now we show that the function $\delta((x, y),):. X^{2} \rightarrow$ $[0, \infty)$ is K-lower semi-continuous. To this end, let $\left(x_{n}, y_{n}\right)$ be a sequence in X^{2} and there exists a point $(a, b) \in X^{2}$ such that $\lim _{n \rightarrow \infty} D_{p}\left(\left(x_{n}, y_{n}\right),(a, b)\right)=0$. Thus, we have $\lim _{n \rightarrow \infty} D\left(x_{n}, a\right)=0$ and $\lim _{n \rightarrow \infty} D\left(y_{n}, b\right)=0$. Since P is a $w t_{0}$-distance, we have the following
inequalities from $\left(w t_{0}\right)-2$ condition:

$$
\begin{align*}
P(x, a) & \leqslant \liminf _{n \rightarrow \infty} K P\left(x, x_{n}\right), \tag{7}\\
P(a, x) & \leqslant \liminf _{n \rightarrow \infty} K P\left(x_{n}, x\right), \tag{8}\\
P(y, b) & \leqslant \liminf _{n \rightarrow \infty} K P\left(y, y_{n}\right), \tag{9}\\
P(b, y) & \leqslant \liminf _{n \rightarrow \infty} K P\left(y_{n}, y\right) . \tag{10}
\end{align*}
$$

Adding (7) to (9) and (8) to (10), we get the following:

$$
\begin{aligned}
P(x, a)+P(y, b) & \leqslant \liminf _{n \rightarrow \infty} K P\left(x, x_{n}\right)+\liminf _{n \rightarrow \infty} K P\left(y, y_{n}\right) \\
& \leqslant \liminf _{n \rightarrow \infty} K\left[P\left(x, x_{n}\right)+P\left(y, y_{n}\right)\right] \\
& \leqslant \liminf _{n \rightarrow \infty}\left[\max \left\{K\left[P\left(x, x_{n}\right)+P\left(y, y_{n}\right)\right], K\left[P\left(x_{n}, x\right)+P\left(y_{n}, y\right)\right]\right\}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
P(a, x)+P(b, y) & \leqslant \liminf _{n \rightarrow \infty} K P\left(x_{n}, x\right)+\liminf _{n \rightarrow \infty} K P\left(y_{n}, y\right) \\
& \leqslant \liminf _{n \rightarrow \infty} K\left[P\left(x_{n}, x\right)+P\left(y_{n}, y\right)\right] \\
& \leqslant \liminf _{n \rightarrow \infty}\left[\max \left\{K\left[P\left(x_{n}, x\right)+P\left(y_{n}, y\right)\right], K\left[P\left(x, x_{n}\right)+P\left(y, y_{n}\right)\right]\right\}\right] .
\end{aligned}
$$

Thus, we have

$$
\max \{P(x, a)+P(y, b), P(a, x)+P(b, y)\} \leqslant \liminf _{n \rightarrow \infty} K \max \left\{P\left(x, x_{n}\right)+P\left(y, y_{n}\right)\right.
$$

$$
\left., P\left(x_{n}, x\right)+P\left(y_{n}, y\right)\right\}
$$

Therefore, we get that $\delta((x, y),(a, b)) \leqslant \liminf _{n \rightarrow \infty} K \delta\left((x, y),\left(x_{n}, y_{n}\right)\right)$, which implies $\delta((x, y),$.$) is K-lower semi-continuous function. Also, in a similar way, \delta(.,(x, y))$ is $\mathrm{K}-$ lower semi-continuous function.
$\left(w t_{0}\right)-3$ Let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)$ be points of X^{2} and $\varepsilon>0$. Since P is $w t_{0}$ distance, there exist $\delta_{1}>0, \delta_{2}>0$ such that $P\left(z_{1}, x_{1}\right) \leqslant \delta_{1}$ and $P\left(z_{1}, y_{1}\right) \leqslant \delta_{1}$ imply that $D\left(x_{1}, y_{1}\right) \leqslant \frac{\varepsilon}{2}$. Also, $P\left(z_{2}, x_{2}\right) \leqslant \delta_{2}$ and $P\left(z_{2}, y_{2}\right) \leqslant \delta_{1}$ imply that $D\left(x_{2}, y_{2}\right) \leqslant \frac{\varepsilon}{2}$. Let us say $\delta_{0}=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then, $\delta\left(\left(z_{1}, z_{2}\right),\left(x_{1}, x_{2}\right)\right) \leqslant \delta_{0}$ and $\delta\left(\left(z_{1}, z_{2}\right),\left(y_{1}, y_{2}\right)\right) \leqslant \delta_{0}$ imply that $D_{p}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \leqslant \varepsilon$. Moreover, it is clear that δ is a symmetric distance. Therefore, we obtain that δ is a symmetric $w t_{0}$-distance on $\left(X^{2}, D_{p}, K\right)$.

Now, we recall some well known notions about coupled fixed points.
Definition 3.5 [7] Let $F: X \times X \rightarrow X$ be a given mapping. We say that (x, y) is a coupled fixed point of F if $F(x, y)=x$ and $F(y, x)=y$.

Lemma 3.6 [26] Let $F: X \times X \rightarrow X$ be a given mapping. Define the mapping T : $X \times X \rightarrow X \times X$ by $T(x, y)=(F(x, y), F(y, x))$ for all $(x, y) \in X \times X$. Then (x, y) is a coupled fixed point of F iff (x, y) is a fixed point of T.

Theorem 3.7 Let (X, D, K) be a complete b-metric space and P be a $w t_{0}$-distance on X. Let $F: X \times X \rightarrow X$ be a given mapping. Suppose that there exists $\psi \in \Psi_{b}$ and a function $\alpha: X^{2} \times X^{2} \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\alpha((x, y),(u, v))[P(F(x, y), F(u, v))+P(F(y, x), F(v, u))] \leqslant \frac{1}{2} \psi(P(x, u)+P(y, v)) \tag{11}
\end{equation*}
$$

for all $(x, y),(u, v) \in X \times X$. Suppose also that
(i) For all $(x, y),(u, v) \in X \times X$, we have

$$
\alpha((x, y),(u, v)) \geqslant 1 \Rightarrow \alpha((F(x, y), F(y, x)),(F(u, v), F(v, u))) \geqslant 1
$$

(ii) There exists $\left(x_{0}, y_{0}\right) \in X \times X$ such that

$$
\alpha\left(\left(x_{0}, y_{0}\right),\left(F\left(x_{0}, y_{0}\right), F\left(y_{0}, x_{0}\right)\right)\right) \geqslant 1, \quad \alpha\left(\left(F\left(y_{0}, x_{0}\right), F\left(x_{0}, y_{0}\right)\right),\left(y_{0}, x_{0}\right)\right) \geqslant 1
$$

(iii) F is continuous.

Then F has a coupled fixed point.
Proof. From (11), we have

$$
\begin{aligned}
& \alpha((x, y),(u, v))[P(F(x, y), F(u, v))+P(F(y, x), F(v, u))] \leqslant \frac{1}{2} \psi(P(x, u)+P(y, v)) \\
& \alpha((v, u),(y, x))[P(F(v, u), F(y, x))+P(F(u, v), F(x, y))] \leqslant \frac{1}{2} \psi(P(v, y)+P(u, x)
\end{aligned}
$$

Since ψ is monotonically increasing, we get that

$$
\begin{align*}
& \alpha((x, y),(u, v))[P(F(x, y), F(u, v))+P(F(y, x), F(v, u))] \leqslant \frac{1}{2} \psi(\delta((x, y),(u, v))) \tag{12}\\
& \alpha((v, u),(y, x))[P(F(v, u), F(y, x))+P(F(u, v), F(x, y))] \leqslant \frac{1}{2} \psi(\delta((x, y),(u, v))) \tag{13}
\end{align*}
$$

where δ is defined by

$$
\delta((x, y),(u, v))=\max \{P(x, u)+P(y, v), P(u, x)+P(v, y)\}
$$

From Lemma 3.4, we know that δ is a symmetric $w t_{0}$-distance. Adding (12) to (13), we get that $\theta((z, t)) \delta((T(z), T(t))) \leqslant \psi(\delta(z, t))$ for all $z=\left(z_{1}, z_{2}\right), t=\left(t_{1}, t_{2}\right) \in Y$, where $\theta: Y \times Y \rightarrow[0, \infty)$ is a function defined by

$$
\theta\left(\left(z_{1}, z_{2}\right),\left(t_{1}, t_{2}\right)\right)=\min \left\{\alpha\left(\left(z_{1}, z_{2}\right),\left(t_{1}, t_{2}\right)\right), \alpha\left(\left(t_{2}, t_{1}\right),\left(z_{2}, z_{1}\right)\right)\right\}
$$

and $T: Y \rightarrow Y$ is defined by $T(x, y)=(F(x, y), F(y, x))$. Thus, T is continuous and (θ, ψ, δ)-contractive mapping. Moreover, let $\theta\left(\left(z_{1}, z_{2}\right),\left(t_{1}, t_{2}\right)\right) \geqslant 1$. By using (i), we obtain that $\theta\left(T\left(z_{1}, z_{2}\right), T\left(t_{1}, t_{2}\right)\right) \geqslant 1$. Thus, T is θ-admissible. From condition (ii), we have that there exists $\left(x_{0}, y_{0}\right) \in Y$ such that $\theta\left(\left(x_{0}, y_{0}\right), T\left(x_{0}, y_{0}\right)\right) \geqslant 1$. Thus all the hypotheses of Theorem 2.3 are satisfied and T has a fixed point. By using Lemma $3.6, F$ has a coupled fixed point.

In the next theorem, we omit the continuity hypothesis of F.

Theorem 3.8 Let (X, D, K) be a complete b-metric space and P be a $w t_{0}$-distance on X. Let $F: X \times X \rightarrow X$ be a function. Suppose that there exists $\psi \in \Psi_{b}$ and $\alpha: X^{2} \times X^{2} \rightarrow[0, \infty)$ such that

$$
\alpha((x, y),(u, v))[P(F(x, y), F(u, v))+P(F(y, x)+F(v, u))] \leqslant \frac{1}{2} \psi(P(x, u)+P(y, v))
$$

for all $(x, y),(u, v) \in X \times X$. Suppose that
(i) For all $(x, y),(u, v) \in X \times X$, we have

$$
\alpha((x, y),(u, v)) \geqslant 1 \Rightarrow \alpha((F(x, y), F(y, x)),(F(u, v), F(v, u))) \geqslant 1 ;
$$

(ii) There exists $\left(x_{0}, y_{0}\right) \in X \times X$ such that

$$
\alpha\left(\left(x_{0}, y_{0}\right),\left(F\left(x_{0}, y_{0}\right), F\left(y_{0}, x_{0}\right)\right)\right) \geqslant 1, \alpha\left(\left(F\left(y_{0}, x_{0}\right), F\left(x_{0}, y_{0}\right)\right),\left(y_{0}, x_{0}\right)\right) \geqslant 1
$$

(iii) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in X such that $\alpha\left(\left(x_{n}, y_{n}\right),\left(x_{n+1}, y_{n+1}\right)\right) \geqslant 1$ and $\alpha\left(\left(y_{n+1}, x_{n+1}\right),\left(y_{n}, x_{n}\right)\right) \geqslant 1, x_{n} \rightarrow x \in X$ and $y_{n} \rightarrow y \in X$ as $n \rightarrow \infty$, then $\alpha\left(\left(x_{n}, y_{n}\right),(x, y)\right) \geqslant 1$ and $\alpha\left((y, x),\left(y_{n}, x_{n}\right)\right) \geqslant 1$.
Then F has a coupled fixed point.
Proof. We will use the similar arguments given in the proof of Theorem 3.7. Let $\left\{\left(x_{n}, y_{n}\right)\right\}$ be a sequence in Y such that $\theta\left(\left(x_{n}, y_{n}\right),\left(x_{n+1}, y_{n+1}\right)\right) \geqslant 1$ and $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ as $n \rightarrow \infty$. By the condition (iii), we obtain that $\theta\left(\left(x_{n}, y_{n}\right),(x, y)\right) \geqslant 1$. Thus, all the hypotheses of Theorem 2.4 are satisfied. Therefore, T has a fixed point. Whence, F has a coupled fixed point.

For the uniqueness of the coupled fixed point, we consider the following hypothesis:
$\left(\mathrm{H}\right.$ ") For all $(x, y),(u, v) \in X \times X$, there exists $\left(w_{1}, w_{2}\right) \in X \times X$ such that

$$
\begin{aligned}
& \alpha\left((x, y),\left(w_{1}, w_{2}\right)\right) \geqslant 1, \alpha\left(\left(w_{2}, w_{1}\right),(y, x)\right) \geqslant 1, \\
& \alpha\left((u, v),\left(w_{1}, w_{2}\right)\right) \geqslant 1, \alpha\left(\left(w_{2}, w_{1}\right),(v, u)\right) \geqslant 1 .
\end{aligned}
$$

Theorem 3.9 Adding condition (H") to the hypothesis of the Theorem 3.7, we obtain the uniqueness of the coupled fixed point of F.
Proof. It is clear that θ satisfy the condition (H). Thus, the proof follows from Theorem 2.7.

References

[1] A. A. N. Abdou, Y. J. Cho, R. Saadeti, Distance type and common fixed point theorems in Menger probabilistic metric type spaces, Appl. Math. Comput. 265 (2015), 1145-1154.
[2] P. Amiri, Sh. Rezapour, N. Shahzad, Fixed points of generalized α - ψ-contractions, RACSAM. 108 (2) (2014), 519-526.
[3] JH. Asl, S. Rezapour, N. Shahzad, On fixed points of $(\alpha-\psi)$-contractive multifunctions, Fixed Point Theory Appl. (2012), 2012:212.
[4] Z. Badehian, M. S. Asgari, Fixed point theorems for $\alpha-\psi-\phi$-contractive integral type mappings, J. Linear. Topological. Algebra. 3 (4) (2014), 219-230.
[5] V. Berinde, Generalized contractions in quasimetric spaces, "Babes-Bolyai" University-Preprint Seminar on Fixed Point Theory, 93 (3) (1993), 3-9.
[6] V. Berinde, Sequences of operators and fixed points in quasi-metric spaces, Mathematica. 41 (4) (1996), 23-27.
[7] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393.
[8] M. F. Bota, E. Karapinar, O. Mleşniţe, Ulam-Hyers stability results for fixed point problems via $\alpha-\psi$ contractive mapping in b-metric space, Abstr. Appl. Anal. (2013), 2013:825293.
[9] M. F. Bota, C. Chifu, E. Karapinar, Fixed point theorems for generalized ($\alpha_{*}-\psi$)-Ćirić-type contractive multivalued operators in b-metric spaces, J. Nonlinear Sci. Appl. 9 (2016), 1165-1177.
[10] S. H. Cho, Fixed points for multivalued mappings in b-metric spaces, Appl. Math. Sci. 10 (59) (2016), 2927-2944.
[11] S. Czerwik, Contraction mappings in b-metric spaces, Acta. Math. et Infor. Uni. Ostraviensis. 1 (1993), 5-11.
[12] M. Demma, R. Sadaati, P. Vetro, Multi-valued operators with respect $w t$-distance on metric type spaces, Bull. Iranian Math. Soc. 42 (6) (2016), 1571-1582.
[13] N. Hussain, R. Saadati, R. P. Agrawal, On the topology and wt-distance on metric type spaces, Fixed Point Theory and Appl. (2014), 2014:88.
[14] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Sci. Math. Jpn. 44 (2) (1996), 381-391.
[15] W. A. Kirk, N. Shahzad, Fixed point theory in Distance Spaces, Springer-Heidelberg, 2014.
[16] A. Kostić, V. Rakočević, S. Radenović, Best proximity points involving simulation functions with w_{0}-distance, RACSAM (2018), in press.
[17] H. Lakzian, D. Gopal, W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, J. Fixed Point Theory Appl. 18 (2016), 251-266.
[18] A. Mbarki, R. Oubrahim, Probabilistic b-metric spaces and nonlinear contractions, Fixed Point Theory Appl. (2017), 2017:29.
[19] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl. 19 (3) (2017), 2153-2163.
[20] S. K. Mohanta, Some fixed point theorems using wt-distance in b-metric spaces, Fasc. Math. 54 (2015), 125-140.
[21] S. K. Mohanta, S. Patra, Coincidence points and common fixed points for hybrid pair of mappings in b-metric spaces endowed with a graph, J. Linear. Topological. Algebra. 6 (4) (2017), 301-321.
[22] C. Mongkolkeha, Y. J. Cho, P. Kumam, Fixed point theorems for simulation functions in b-metric spaces via the $w t$-distance, Appl. Gen. Topol. 18 (1) (2017), 91-105.
[23] S. Nădăban, Fuzzy b-Metric Spaces, Int. J. Comput. Commun. Control. 11 (2) (2016), 273-281.
[24] J. J. Nieto, R. Rodrǵguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order. 22 (2005), 223-239.
[25] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and applications to matrix equations, Proc. Amer. Math. Soc. 132 (2003), 1435-1443.
[26] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165.
[27] B. Samet, The class of $(\alpha-\psi)$-type contractions in b-metric spaces and fixed point theorems, Fixed Point Theory Appl. (2015), 2015:1.
[28] R. J. Shahkoohi, A. Razani, Fixed Point Theorems for semi λ-subadmissible Contractions in b-Metric spaces, J. Linear. Topological. Algebra. 3 (4) (2014), 219-230.
[29] X. Wu, Generalized $\alpha-\psi$ contractive mappings in partial b-metric spaces and related fixed point theorems, J. Nonlinear Sci. Appl. 9 (2016), 3255-3278.

[^0]: *Corresponding author.
 E-mail address: iremerogg@gmail.com (I. Eroglu).

