Journal of Linear and Topological Algebra Vol. 06, No. 03, 2017, 223-236

Interval valued fuzzy weak bi-ideals of Γ -near-rings

V. Chinnadurai^{a,*}, K. Arulmozhi^a, S. Kadalarasi^a

^aDepartment of Mathematics, Annamalai University, Annamalainagar-608 002, India.

Received 11 May 2017; Revised 25 September 2017; Accepted 1 November 2017.

Abstract. In this paper, we introduce the concept of interval valued fuzzy weak bi-ideals of Γ -near-rings, which is a generalized concept of fuzzy weak bi-ideals of Γ -near-rings. We also characterize some properties and provide examples of interval valued fuzzy weak bi-ideals of Γ -near-rings.

© 2017 IAUCTB. All rights reserved.

Keywords: Γ -near-rings, fuzzy weak bi-ideals, interval valued fuzzy weak bi-ideals, homomorphism and anti-homomorphism.

2010 AMS Subject Classification: 16Y30, 03E72, 08A72.

1. Introduction

Zadeh introduced the concept of fuzzy sets in 1965 [21], and also, generalized it to interval valued fuzzy subsets [22]. Near-ring was introduced by Pilz [14]. Gamma -near-ring was introduced by Satyanarayana [15] in 1984. The concept of bi-ideals of near-ring was applied to Γ -near-rings by Tamizh chelvam et al. [16]. The idea of fuzzy ideals of near-rings was proposed by Kim et al. [9]. Fuzzy ideals in *Gamma*-near-rings proposed by Jun et al. [8] in 1998. Moreover, Manikantan [10] introduced the notion of fuzzy bi-ideals of near-rings and discussed some properties. Meenakumari et al. [12] studied the fuzzy bi-ideals in gamma -near-rings. Cho et al. [20] introduced the concept of weak bi-ideals of near-rings. Thillaigovindan *at al.* [17] studied the interval valued fuzzy quasi-ideals of semigroups. Chinnadurai et al. [3] studied the fuzzy weak bi-ideals of near-rings.

© 2017 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

^{*}Corresponding author.

E-mail address: kv.chinnadurai@yahoo.com (V. Chinnadurai); arulmozhiems@gmail.com (K. Arulmozhi); kadalarasi89@gmail.com (S. Kadalarasi).

In this paper, we define a new notion of an interval valued fuzzy weak bi-ideals of Γ near-rings, which is a generalized concept of interval valued fuzzy bi-ideals of Γ -nearrings. We also investigate some of its properties and illustrate with examples.

2. Preliminaries

In this section, we list some basic definitions.

Definition 2.1 [14] A near-ring is an algebraic system $(R, +, \cdot)$ consisting of a non empty set R together with two binary operations called + and \cdot such that (R, +) is a group not necessarily abelian and (R, \cdot) is a semigroup connected by the following distributive law: $(x + z) \cdot y = x \cdot y + z \cdot y$ valid for all $x, y, z \in R$. We use the word 'near-ring 'to mean 'right near-ring '. We denote xy instead of $x \cdot y$.

Definition 2.2 [15] A Γ - near-ring is a triple $(M, +, \Gamma)$ where (i) (M, +) is a group, (ii) Γ is a nonempty set of binary operators on M such that for each $\alpha \in \Gamma$, $(M, +, \alpha)$ is a near-ring, (iii) $x\alpha(y\beta z) = (x\alpha y)\beta z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Definition 2.3 [12] A Γ -near-ring M is said to be zero-symmetric if $x\alpha 0 = 0$ for all $x \in M$ and $\alpha \in \Gamma$.

Throughout this paper M denotes a zero-symmetric right Γ - near-ring with atleast two elements.

Definition 2.4 [15] A subset A of a Γ -near-ring M is called a left(resp. right) ideal of M if

(i) (A, +) is a normal subgroup of (M, +), (i.e) $x - y \in A$ for all $x, y \in A$ and $y + x - y \in A$ for $x \in A, y \in M$

(ii) $u\alpha(x+v) - u\alpha v \in A$ (resp. $x\alpha u \in A$) for all $x \in A, \alpha \in \Gamma$ and $u, v \in M$.

Definition 2.5 [15] Let M be a Γ -near-ring. Given two subsets A and B of M, we define $A\Gamma B = \{a\alpha b | a \in A, b \in B \text{ and } \alpha \in \Gamma\}$ and also define another operation * on the class of subset of M define by $A\Gamma * B = \{a\gamma(a' + b) - a\gamma a' | a, a' \in A, \gamma \in \Gamma, b \in B\}$.

Definition 2.6 [16] A subgroup B of (M, +) is called a bi-ideal of M if and only if $B\Gamma M\Gamma B \subseteq B$.

Definition 2.7 [5] A subgroup H of (M, +) is said to be a weak bi-ideal of M if $H\Gamma H\Gamma H \subseteq H$.

The characteristic function of M is denoted by \mathbf{M} .

Definition 2.8 [22] If X be any set. A mapping $\eta : X \to D[0, 1]$ is called an interval valued fuzzy subset (briefly, an i.v fuzzy subset) of X, where D[0, 1] denotes the family of closed subintervals of [0, 1] and $\tilde{\eta}(x) = [\eta^-(x), \eta^+(x)]$ for all $x \in X$, where $\eta^-(x)$ and $\eta^+(x)$ are fuzzy subsets of X such that , $\eta^-(x) \leq \eta^+(x)$ for all $x \in X$.

Definition 2.9 [17] By an interval number \tilde{a} , we mean an interval $[a^-, a^+]$ such that $0 \leq a^- \leq a^+ \leq 1$ and where a^- and a^+ are the lower and upper limits of \tilde{a} respectively. The set of all closed subintervals of [0, 1] is denoted by D[0, 1]. We also identify the interval [a, a] by the number $a \in [0, 1]$. For any interval numbers $\tilde{a}_j = [a_j^-, a_j^+], \tilde{b}_j = [b_j^-, b_j^+] \in D[0, 1], j \in \Omega$ we define

 $\begin{aligned} \max^{i}\{\tilde{a}_{j},\tilde{b}_{j}\} &= [\max\{a_{j}^{-},b_{j}^{-}\}, \max\{a_{j}^{+},b_{j}^{+}\}], \min^{i}\{\tilde{a}_{j},\tilde{b}_{j}\} = [\min\{a_{j}^{-},b_{j}^{-}\}, \max\{a_{j}^{+},b_{j}^{+}\}],\\ \inf^{i}\tilde{a}_{j} &= [\cap_{j\in\Omega}a_{j}^{-}, \cap_{j\in\Omega}a_{j}^{+}], \sup^{i}\tilde{a}_{j} = [\cup_{j\in\Omega}a_{j}^{-}, \cup_{j\in\Omega}a_{j}^{+}], \text{ and let} \\ (i) \quad \tilde{a} &\leq \tilde{b} \Leftrightarrow a^{-} \leqslant b^{-} \text{ and } a^{+} \leqslant b^{+},\\ (ii) \quad \tilde{a} &= \tilde{b} \Leftrightarrow a^{-} = b^{-} \text{ and } a^{+} = b^{+},\\ (iii) \quad \tilde{a} &< \tilde{b} \Leftrightarrow \tilde{a} \leqslant \tilde{b} \text{ and } \tilde{a} \neq \tilde{b},\\ (iv) \quad k\tilde{a} &= [ka^{-}, ka^{+}], \text{ whenever } 0 \leqslant k \leqslant 1. \end{aligned}$

Definition 2.10 [17] Let $\tilde{\eta}$ be an i.v fuzzy subset of X and $[t_1, t_2] \in D[0, 1]$. Then the set $\tilde{U}(\tilde{\eta} : [t_1, t_2]) = \{x \in X | \tilde{\eta}(x) \ge [t_1, t_2]\}$ is called the upper level subset of $\tilde{\eta}$.

Definition 2.11 [7, 13, 19] If $\tilde{\eta}$ and $\tilde{\lambda}$ are i.v fuzzy subsets of M. Then $\tilde{\eta} \cap \tilde{\lambda}$, $\tilde{\eta} \cup \tilde{\lambda}$, $\tilde{\eta} + \tilde{\lambda}$, and $\tilde{\eta} * \tilde{\lambda}$ are fuzzy subsets of M defined by:

$$\begin{split} &(\tilde{\eta} \cap \tilde{\lambda})(x) = \min^{i} \{\tilde{\eta}(x), \ \tilde{\lambda}(x)\}.\\ &(\tilde{\eta} \cup \tilde{\lambda})(x) = \max^{i} \{\tilde{\eta}(x), \ \tilde{\lambda}(x)\}.\\ &(\tilde{\eta} + \tilde{\lambda})(x) = \begin{cases} \sup_{x=y+z}^{i} \{\min^{i} \{\tilde{\eta}(y), \ \tilde{\lambda}(z)\}\} & \text{if } x \text{ is expressible as } x = y+z\\ 0 & \text{otherwise.} \end{cases}\\ &(\tilde{\eta} * \tilde{\lambda})(x) = \begin{cases} \sup_{x=y\alpha z}^{i} \{\min^{i} \{\tilde{\eta}(y), \ \tilde{\lambda}(z)\}\} & \text{if } x \text{ is expressible as } x = y\alpha z\\ 0 & \text{otherwise.} \end{cases} \end{split}$$

for $x, y, z \in M$.

Definition 2.12 [5] An i.v fuzzy subset $\tilde{\eta}$ in a Γ -near-ring M is called an i.v fuzzy left (resp. right) ideal of M if

(i) η̃ is an i.v fuzzy normal divisor with respect to the addition,
(ii) η̃(uα(x + v) - uαv) ≥ η̃(x), (resp. η̃(xαu) ≥ η̃(x) for all x, u, v ∈ M and α ∈ Γ. The condition (i) of definition 2.12 means that η̃ satisfies:
(i) η̃(x - y) ≥ minⁱ{η̃(x), η̃(y)},
(ii) η̃(y + x - y) ≥ η̃(x), for all x, y ∈ M
Note that η̃ is an i.v fuzzy left (resp. right) ideal of Γ-near-ring M, then η̃(0) ≥ η̃(x) for all x ∈ M, where 0 is the zero element of M.

Definition 2.13 [6] An i.v fuzzy subset $\tilde{\eta}$ of M is called an i.v fuzzy bi-ideal of M if (i) $\tilde{\eta}(x-y) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\}$ for all $x, y \in M$ (ii) $\tilde{\eta}(x\alpha y\beta z) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(z)\}$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

3. Interval valued fuzzy weak bi-ideals of Γ -near-rings

In this section, we introduce the notion of i.v fuzzy weak bi-ideal of M and discuss some of its properties.

Definition 3.1 An i.v fuzzy set $\tilde{\eta}$ of M is called an i.v fuzzy weak bi-ideal of M, if (i) $\tilde{\eta}(x-y) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\}$ for all $x, y \in M$ (ii) $\tilde{\eta}(x\alpha y\beta z) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\}$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Example 3.2 Let $M = \{0, a, b, c\}$ be a non-empty set with binary operation + and $\Gamma = \{\alpha, \beta\}$ be a non-empty set of binary operations as shown in the following tables:

+	0	a	b	С	α	0	a	b	c	β	0	a	b	0
0	0	a	b	С	0	0	0	0	0	0	0	0	0	0
a	a	0	c	b	a	a	a	a	a	a	0	0	0	$\mid 0$
b	b	c	0	a	b	0	0	b	b	b	0	a	c	b
c	c	b	a	0	c	a	a	С	c	с	0	a	b	c

Let $\tilde{\eta} : M \to D[0,1]$ be an i.v fuzzy subset defined by $\tilde{\eta}(0) = [0.8, 0.9], \tilde{\eta}(a) = [0.6, 0.7],$ $\tilde{\eta}(b) = \tilde{\eta}(c) = [0.2, 0.3].$ Then $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of M.

Theorem 3.3 Let $\tilde{\eta}$ be an i.v fuzzy subgroup of M. Then $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of M if and only if $\tilde{\eta} * \tilde{\eta} * \tilde{\eta} \subseteq \tilde{\eta}$.

Proof. Assume that $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of M. Let $x, y, z, y_1, y_2 \in M$ and $\alpha, \beta \in \Gamma$ such that $x = y\alpha z$ and $y = y_1\beta y_2$. Then

$$\begin{split} (\tilde{\eta} * \tilde{\eta} * \tilde{\eta})(x) &= \sup_{x=y\alpha z}^{i} \{\min^{i} \{ (\tilde{\eta} * \tilde{\eta})(y), \tilde{\eta}(z) \} \} \\ &= \sup_{x=y\alpha z}^{i} \{ \min^{i} \{ \sup_{y=y_{1}\beta y_{2}}^{j} \min^{i} \{ \tilde{\eta}(y_{1}), \tilde{\eta}(y_{2}) \}, \tilde{\eta}(z) \} \} \\ &= \sup_{x=y\alpha z}^{i} \sup_{y=y_{1}\beta y_{2}}^{j} \{ \min^{i} \{ \min^{i} \{ \tilde{\eta}(y_{1}), \tilde{\eta}(y_{2}) \}, \tilde{\eta}(z) \} \} \\ &= \sup_{x=y_{1}\beta y_{2}\alpha z}^{i} \{ \min^{i} \{ \tilde{\eta}(y_{1}), \tilde{\eta}(y_{2}), \tilde{\eta}(z) \} \} \\ &(\text{since } \tilde{\eta} \text{ is an i.v fuzzy weak bi-ideal of } M, \tilde{\eta}(y_{1}\beta y_{2}\alpha z) \ge \min^{i} \{ \tilde{\eta}(y_{1}), \tilde{\eta}(y_{2}), \tilde{\eta}(z) \}) \\ &\leqslant \sup_{x=y_{1}\beta y_{2}\alpha z}^{i} \tilde{\eta}(y_{1}\beta y_{2}\alpha z) \\ &= \tilde{\eta}(x). \end{split}$$

If x can not be expressed as $x = y\alpha z$, then $(\tilde{\eta} * \tilde{\eta} * \tilde{\eta})(x) = \tilde{0} \leq \tilde{\eta}(x)$. In both cases $\tilde{\eta} * \tilde{\eta} * \tilde{\eta} \subseteq \tilde{\eta}$. Conversely, assume that $\tilde{\eta} * \tilde{\eta} \in \tilde{\eta}$. For $x', x, y, z \in M$ and $\alpha, \beta, \alpha_1, \beta_1 \in \Gamma$. Let x' be such that $x' = x\alpha y\beta z$. Then

$$\begin{split} \tilde{\eta}(x\alpha y\beta z) &= \eta(x') \geqslant (\tilde{\eta} * \tilde{\eta} * \tilde{\eta})(x') \\ &= \sup_{x'=p\alpha_1 q}^i \{\min^i \{(\tilde{\eta} * \tilde{\eta})(p), \tilde{\eta}(q)\}\} \\ &= \sup_{x'=p\alpha_1 q}^i \{\min^i \{\sup_{p=p_1\beta_1 p_2}^i \min^i \{\tilde{\eta}(p_1), \tilde{\eta}(p_2)\}, \tilde{\eta}(q)\}\} \\ &= \sup_{x'=p_1\beta_1 p_2\alpha_1 q}^i \{\min^i \{\tilde{\eta}(p_1), \tilde{\eta}(p_2), \tilde{\eta}(q)\}\} \\ &\geqslant \min^i \{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\}. \end{split}$$

Hence $\tilde{\eta}(x\alpha y\beta z) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\}.$

Lemma 3.4 Let $\tilde{\eta}$ and $\tilde{\lambda}$ be an i.v fuzzy weak bi-ideals of M. Then the products $\tilde{\eta} * \tilde{\lambda}$ and $\tilde{\lambda} * \tilde{\eta}$ are also an i.v fuzzy weak bi-ideals of M.

Proof. Let $\tilde{\eta}$ and λ be an i.v fuzzy weak bi-ideals of M and let $\alpha, \alpha_1, \alpha_2 \in \Gamma$. Now

$$\begin{split} (\tilde{\eta} * \tilde{\lambda})(x - y) &= \sup_{x - y = a\alpha b}^{i} \min^{i} \{\tilde{\eta}(a), \tilde{\lambda}(b)\} \\ &\geqslant \sup_{x - y = a_{1}\alpha_{1}b_{1} - a_{2}\alpha_{2}b_{2} < (a_{1} - a_{2})(b_{1} - b_{2}) \min^{i} \{\tilde{\eta}(a_{1} - a_{2}), \tilde{\lambda}(b_{1} - b_{2})\} \\ &\geqslant \sup^{i} \min^{i} \{\min^{i} \{\tilde{\eta}(a_{1}), \tilde{\eta}(a_{2})\}, \min^{i} \{\tilde{\lambda}(b_{1}), \tilde{\lambda}(b_{2})\}\} \\ &= \sup^{i} \min^{i} \{\min^{i} \{\tilde{\eta}(a_{1}), \tilde{\lambda}(b_{1})\}, \min^{i} \{\tilde{\eta}(a_{2}), \tilde{\lambda}(b_{2})\}\} \\ &\geqslant \min^{i} \{\sup_{x = a_{1}\alpha_{1}b_{1}}^{i} \min^{i} \{\tilde{\eta}(a_{1}), \tilde{\lambda}(b_{1})\}, \sup_{y = a_{2}\alpha_{2}b_{2}}^{i} \min^{i} \{\tilde{\eta}(a_{2}), \tilde{\lambda}(b_{2})\}\} \\ &= \min^{i} \{(\tilde{\eta} * \tilde{\lambda})(x), (\tilde{\eta} * \tilde{\lambda})(y)\}. \end{split}$$

It follows that $\tilde{\eta} * \tilde{\lambda}$ is an i.v fuzzy subgroup of M. Further,

$$\begin{split} (\tilde{\eta} * \tilde{\lambda}) * (\tilde{\eta} * \tilde{\lambda}) * (\tilde{\eta} * \tilde{\lambda}) &= \tilde{\eta} * \tilde{\lambda} * (\tilde{\eta} * \tilde{\lambda} * \tilde{\eta}) * \tilde{\lambda} \\ &\subseteq \tilde{\eta} * \tilde{\lambda} * (\tilde{\lambda} * \tilde{\lambda} * \tilde{\lambda}) * \tilde{\lambda}, \text{ since } \tilde{\lambda} \text{ is an i.v fuzzy weak bi-ideal of } M \\ &\subseteq \tilde{\eta} * (\tilde{\lambda} * \tilde{\lambda} * \tilde{\lambda}), \text{ since } \tilde{\lambda} \text{ is an i.v fuzzy weak bi-ideal of } M \\ &\subseteq \tilde{\eta} * \tilde{\lambda}. \end{split}$$

Therefore $\tilde{\eta} * \tilde{\lambda}$ is an i.v fuzzy weak bi-ideal of M. Similarly $\tilde{\lambda} * \tilde{\eta}$ is an i.v fuzzy weak bi-ideal of M.

Lemma 3.5 Every i.v fuzzy ideal of M is an i.v fuzzy bi-ideal of M.

Proof. Let $\tilde{\eta}$ be an i.v fuzzy ideal of M. Then

$$\tilde{\eta} * \mathbf{M} * \tilde{\eta} \subseteq \tilde{\eta} * \mathbf{M} * \mathbf{M} \subseteq \tilde{\eta} * \mathbf{M} \subseteq \tilde{\eta}$$

since $\tilde{\eta}$ is an i.v fuzzy ideal of M. This implies that $\tilde{\eta} * \mathbf{M} * \tilde{\eta} \subseteq \tilde{\eta}$. Therefore $\tilde{\eta}$ is an i.v fuzzy bi-ideal of M.

Theorem 3.6 Every i.v fuzzy bi-ideal of M is an i.v fuzzy weak bi-ideal of M.

Proof. Assume that $\tilde{\eta}$ is an i.v fuzzy bi-ideal of M. Then $\tilde{\eta} * \mathbf{M} * \tilde{\eta} \subseteq \tilde{\eta}$. We have $\tilde{\eta} * \tilde{\eta} * \tilde{\eta} \subseteq \tilde{\eta} * \mathbf{M} * \tilde{\eta} \subseteq \tilde{\eta} * \mathbf{M} * \tilde{\eta} \subseteq \tilde{\eta}$. This implies that $\tilde{\eta} * \tilde{\eta} * \tilde{\eta} \subseteq \tilde{\eta} * \mathbf{M} * \tilde{\eta} \subseteq \tilde{\eta}$. Therefore $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of M.

Theorem 3.7 Every i.v fuzzy ideal of M is an i.v fuzzy weak bi-ideal of M.

Proof. By Lemma 3.5, every i.v fuzzy ideal of M is an i.v fuzzy bi-ideal of M. By Theorem 3.6, every i.v fuzzy bi-ideal of M is an i.v fuzzy weak bi-ideal of M. Theorefore $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of M.

However the converse of the Theorems 3.6 and 3.7 is not true in general which is demonstrated by the following example.

Example 3.8 Let $M = \{0, a, b, c\}$ be a non-emptyset with binary operation + and $\Gamma = \{\alpha, \beta\}$ be a nonempty set of binary operations as shown in the following tables:

										-					
+	0	a	b	c	α	0	a	b	c		β	0	a	b	c
0	0	a	b	c	0	0	0	0	0		0	0	0	0	0
a	a	0	c	b	a	0	a	0	a		a	0	0	0	0
b	b	c	0	a	b	0	0	b	b		b	0	a	c	b
c	c	b	a	0	c	0	a	b	c		c	0	a	b	c

Let $\tilde{\eta} : M \to D[0,1]$ be an i.v fuzzy subset defined by $\tilde{\eta}(0) = [0.7, 0.8], \tilde{\eta}(a) = [0.3, 0.4] = \tilde{\eta}(b)$ and $\tilde{\eta}(c) = [0.5, 0.6]$. Then $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of M. But $\tilde{\eta}$ is not an i.v fuzzy ideal and bi-ideal of M, since $\tilde{\eta}(b\alpha c) = \tilde{\eta}(b) = [0.3, 0.4] \not\geq [0.5, 0.6] = \tilde{\eta}(c), \tilde{\eta}(b\beta c) = \tilde{\eta}(b) = [0.3, 0.4] \not\geq [0.5, 0.6] = \tilde{\eta}(c)$ and $\tilde{\eta}(c\alpha b\beta c) = \tilde{\eta}(b) = [0.3, 0.4] \not\geq [0.5, 0.6] = \tilde{\eta}(c)$ and $\tilde{\eta}(c\alpha b\beta c) = \tilde{\eta}(b) = [0.3, 0.4] \not\geq [0.5, 0.6] = \min^i \{\tilde{\eta}(c), \tilde{\eta}(c)\}.$

Theorem 3.9 Let $\{\tilde{\eta}_i | i \in \Omega\}$ be family of i.v fuzzy weak bi-ideals of a Γ - near-ring M, then $\bigcap_{i \in \Omega} \tilde{\eta}_i$ is also an i.v fuzzy weak bi-ideal of M, where Ω is any index set.

Proof. Let $\{\tilde{\eta}_i | i \in \Omega\}$ be a family of i.v fuzzy weak bi-ideals of M. Let $x, y, z \in M$, $\alpha, \beta \in \Gamma$ and $\tilde{\eta} = \bigcap_{i \in \Omega} \tilde{\eta}_i$. Then, $\tilde{\eta}(x) = \bigcap_{i \in \Omega} \tilde{\eta}_i(x) = \left(\inf_{i \in \Omega}^i \tilde{\eta}_i\right)(x) = \inf_{i \in \Omega}^i \tilde{\eta}_i(x)$. Now,

$$\begin{split} \tilde{\eta}(x-y) &= \inf_{i\in\Omega}^{i} \ \tilde{\eta}_{i}(x-y) \\ \geqslant \inf_{i\in\Omega}^{i} \ \min^{i}\{\tilde{\eta}_{i}(x), \tilde{\eta}_{i}(y)\} \\ &= \min^{i}\left\{\inf_{i\in\Omega}^{i}\tilde{\eta}_{i}(x), \inf_{i\in\Omega}^{i}\tilde{\eta}_{i}(y)\right\} \\ &= \min^{i}\left\{\bigcap_{i\in\Omega}\tilde{\eta}_{i}(x), \bigcap_{i\in\Omega}\tilde{\eta}_{i}(y)\right\} \\ &= \min^{i}\{\tilde{\eta}(x), \tilde{\eta}(y)\}, \end{split}$$

and

$$\begin{split} \tilde{\eta}(x\alpha y\beta z) &= \inf_{i\in\Omega}^{i} \ \tilde{\eta}_{i}(x\alpha y\beta z) \\ &\geqslant \inf_{i\in\Omega}^{i} \ \min^{i}\{\tilde{\eta}_{i}(x),\tilde{\eta}_{i}(y),\tilde{\eta}_{i}(z)\} \\ &= \min^{i}\left\{\inf_{i\in\Omega}^{i}\tilde{\eta}_{i}(x),\inf_{i\in\Omega}^{i}\tilde{\eta}_{i}(y),\inf_{i\in\Omega}^{i}\tilde{\eta}_{i}(z)\right\} \\ &= \min^{i}\left\{\bigcap_{i\in\Omega}\tilde{\eta}_{i}(x),\bigcap_{i\in\Omega}\tilde{\eta}_{i}(y),\bigcap_{i\in\Omega}\tilde{\eta}_{i}(z)\right\} \\ &= \min^{i}\{\tilde{\eta}(x),\tilde{\eta}(y),\tilde{\eta}(z)\}. \end{split}$$

Theorem 3.10 Let $\tilde{\eta}$ be an i.v fuzzy subset of M. Then $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of M if and only if $\tilde{U}(\tilde{\eta} : [t_1, t_2])$ is a weak bi-ideal of M, for all $[t_1, t_2] \in D[0, 1]$.

Proof. Assume that $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of M. Let $[t_1, t_2] \in D[0, 1]$ such that $x, y \in \tilde{U}(\tilde{\eta} : [t_1, t_2])$. Then $\tilde{\eta}(x - y) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\} \ge \min^i \{[t_1, t_2], [t_1, t_2]\} = [t_1, t_2]$. Thus $x - y \in \tilde{U}(\tilde{\eta} : [t_1, t_2])$. Let $x, y, z \in \tilde{U}(\tilde{\eta} : [t_1, t_2])$ and $\alpha, \beta \in \Gamma$. We have $\tilde{\eta}(x\alpha y\beta z) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\} \ge \min^i \{[t_1, t_2], [t_1, t_2]\} = [t_1, t_2]$. Therefore $x\alpha y\beta z \in \tilde{U}(\tilde{\eta} : [t_1, t_2])$. Hence $\tilde{U}(\tilde{\eta} : [t_1, t_2])$ is a weak bi-ideal of M.

Conversely, assume $\tilde{U}(\tilde{\eta}:[t_1,t_2])$ is a weak bi-ideal of M, for all $[t_1,t_2] \in D[0,1]$. Let $x, y \in M$. Suppose $\tilde{\eta}(x-y) < \min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\}$. Choose $[0,0] < [t_1,t_2] \leq [1,1]$ such that $\tilde{\eta}(x-y) < [t_1,t_2] < \min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\}$. This implies that $\tilde{\eta}(x) > [t_1,t_2], \tilde{\eta}(y) > [t_1,t_2]$ and $\tilde{\eta}(x-y) < [t_1,t_2]$. Then we have $x, y \in \tilde{U}(\tilde{\eta}:[t_1,t_2])$, but $x-y \notin \tilde{U}(\tilde{\eta}:[t_1,t_2])$ a contradiction. Thus, $\tilde{\eta}(x-y) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\}$. If there exist $x, y, z \in M$ and $\alpha, \beta \in \Gamma$ such that $\tilde{\eta}(x\alpha y\beta z) < \min^i \{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\}$. Choose $[t_1,t_2]$ such that $\tilde{\eta}(x\alpha y\beta z) < [t_1,t_2] < \min^i \{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\}$. Then $\tilde{\eta}(x) > [t_1,t_2], \tilde{\eta}(y) > [t_1,t_2], \tilde{\eta}(z) > [t_1,t_2]$ and $\tilde{\eta}(x\alpha y\beta z) < [t_1,t_2]$. So, $x, y, z \in \tilde{U}(\tilde{\eta}:[t_1,t_2])$, but $x\alpha y\beta z \notin \tilde{U}(\tilde{\eta}:[t_1,t_2])$, which is a contradiction. Hence $\tilde{\eta}(x\alpha y\beta z) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\}$. Therefore, $\tilde{\eta}$ is an i.v fuzzy

Theorem 3.11 Let $\tilde{\eta} = [\eta^-, \eta^+]$ be an i.v fuzzy subset of M, then $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of near-ring M if and only if η^-, η^+ are fuzzy weak bi-ideals of M.

Proof. Assume that $\tilde{\eta}$ is an i.v fuzzy weak bi-ideals of near-ring M. For any $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Now,

$$\begin{split} [\eta^{-}(x-y), \eta^{+}(x-y)] &= \tilde{\eta}(x-y) \\ \geqslant \min^{i} \{ \tilde{\eta}(x), \tilde{\eta}(y) \} \\ &= \min^{i} \{ [\eta^{-}(x), \eta^{+}(x)], [\eta^{-}(y), \eta^{+}(y)] \} \\ &= \min^{i} \{ [\eta^{-}(x), \eta^{-}(y)], \min^{i} [\eta^{+}(x), \eta^{+}(y)] \}. \end{split}$$

It follows that $\eta^-(x-y) \ge \min\{\eta^-(x), \eta^-(y)\}$ and $\eta^+(x-y) \ge \min\{\eta^+(x), \eta^+(y)\}$.

$$\begin{split} [\eta^{-}(x\alpha y\beta z), \eta^{+}(x\alpha y\beta z)] &= \tilde{\eta}(x\alpha y\beta z) \\ &\geqslant \min^{i}\{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\} \\ &= \min^{i}\{[\eta^{-}(x), \eta^{+}(x)], [\eta^{-}(y), \eta^{+}(y)], [\eta^{-}(z), \eta^{+}(z)]\} \\ &= \min^{i}\{[\eta^{-}(x), \eta^{-}(y), \eta^{-}(z)], \min^{i}[\eta^{+}(x), \eta^{+}(y), \eta^{+}(z)]\}. \end{split}$$

It follows that $\eta^-(x\alpha y\beta z) \ge \min\{\eta^-(x), \eta^-(y), \eta^-(z)\}$ and $\eta^+(x\alpha y\beta z) \ge \min\{\eta^+(x), \eta^+(y), \eta^+(z)\}$. Conversely, assume that η^-, η^+ are fuzzy weak bi-ideals of near-ring M. Let $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

$$\eta^{-}(x-y) = [\eta^{-}(x-y), \eta^{+}(x-y)]$$

$$\geq \min\{[\eta^{-}(x), \eta^{-}(y)], \min[\eta^{+}(x), \eta^{+}(y)]\}$$

$$= \min^{i}\{[\eta^{-}(x), \eta^{+}(x)], [\eta^{-}(y), \eta^{+}(y)]\}$$

$$= \min^{i}\{\tilde{\eta}(x), \tilde{\eta}(y)\}$$

and

weak bi-ideal of M.

$$\begin{split} \tilde{\eta}(x\alpha y\beta z) &= [\eta^{-}(x\alpha y\beta z), \eta^{+}(x\alpha y\beta z)] \\ \geqslant \min[\{\eta^{-}(x), \eta^{-}(y), \eta^{-}(z)\}, \min\{\eta^{+}(x), \eta^{+}(y), \eta^{+}(z)\}] \\ &= \min^{i}\{[\eta^{-}(x), \eta^{+}(x)], [\eta^{-}(y), \eta^{+}(y)], [\eta^{-}(z), \eta^{+}(z)]\} \\ &= \min^{i}\{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\} \end{split}$$

Therefore $\tilde{\eta}$ is an i.v fuzzy weak bi-ideals of near-ring M.

Theorem 3.12 Let I be a weak bi-ideal of near-ring M then for any $[t_1, t_2] \in D[0, 1]$ with $[t_1, t_2] \neq [0, 0]$, there exists an i.v fuzzy weak bi-ideal $\tilde{\eta}$ of M such that $\tilde{U}(\tilde{\eta} : [t_1, t_2]) = I$.

Proof. Let I be a weak bi-ideal of M. Let $\tilde{\eta}$ be an i.v fuzzy subset of M defined by

$$\tilde{\eta}(x) = \begin{cases} [t_1, t_2] & \text{if } x \in I \\ \tilde{0} & \text{otherwise} \end{cases}$$

Then $\tilde{U}(\tilde{\eta} : [t_1, t_2]) = I$. Assume that $\tilde{\eta}(x - y) < \min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\}$. This implies that $\tilde{\eta}(x - y) = \tilde{0}$ and $\min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\} = [t_1, t_2]$ so $x, y \in I$ and $\alpha, \beta \in \Gamma$ but $x - y \notin I$, which is a contradiction. Thus, $\tilde{\eta}(x - y) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\}$. Suppose that $\tilde{\eta}(x\alpha y\beta z) < \min^i \{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\}$. Then $\tilde{\eta}(x\alpha y\beta z) = \tilde{0}$ and $\min^i \{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\} =$ $[t_1, t_2]$ so $x, y, z \in I$ but $x\alpha y\beta z \notin I$ which is a contradiction. Hence $\tilde{\eta}(x\alpha y\beta z) \ge$ $\min^i \{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\}$.

Theorem 3.13 Let *H* be a nonempty subset of *M* and $\tilde{\eta}$ be an i.v fuzzy subset of *M* defined by

$$\tilde{\eta}(x) = \begin{cases} \tilde{s} & \text{if } x \in H \\ \tilde{t} & \text{otherwise} \end{cases}$$

for some $x \in M$, $\tilde{s}, \tilde{t} \in D[0, 1]$ and $\tilde{s} > \tilde{t}$. Then H is a weak bi-ideal of M if and only if $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of H.

Proof. Assume that H is a weak bi-ideal of M. Let $x, y \in M$. We consider four Cases: (1) $x \in H$ and $y \in H$. (2) $x \in H$ and $y \notin H$. (3) $x \notin H$ and $y \in H$. (4) $x \notin H$ and $y \notin H$. Case (1): If $x \in H$ and $y \in H$. Then $\eta(x) = \tilde{s} = \eta(y)$. Since H is a weak bi-ideal of M, then $x - y \in H$. Thus, $\tilde{\eta}(x - y) = \tilde{s} = \min^i \{\tilde{s}, \tilde{s}\} = \min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\}.$ Case (2): If $x \in H$ and $y \notin H$. Then $\tilde{\eta}(x) = \tilde{s}$ and $\tilde{\eta}(y) = \tilde{t}$. So, $\min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\} = \tilde{t}$. Now, $\tilde{\eta}(x-y) = \tilde{s}$ or \tilde{t} according as $x-y \in H$ or $x-y \notin H$. By assumption, $\tilde{s} > \tilde{t}$, we have $\tilde{\eta}(x-y) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\}$. Similarly, we prove Case (3). Case (4): $x, y \notin H$, we have, $\tilde{\eta}(x) = \tilde{t} = \tilde{\eta}(y)$. So, $\min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\} = \tilde{t}$. Next, $\tilde{\eta}(x-y) = \tilde{s}$ or \tilde{t} , according as $x - y \in H$ or $x - y \notin H$. So, $\tilde{\eta}(x - y) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\}$. Now let $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. We have the following eight Cases. (1) $x \in H, y \in H$ and $z \in H$. (2) $x \notin H, y \in H$ and $z \in H$. (3) $x \in H, y \notin H$ and $z \in H$. (4) $x \in H, y \in H$ and $z \notin H$. (5) $x \notin H, y \notin H$ and $z \in H$. (6) $x \in H, y \notin H$ and $z \notin H$. (7) $x \notin H, y \in H$ and $z \notin H$. (8) $x \notin H, y \notin H$ and $z \notin H$. These cases can be proved by arguments similar to the fuzzy cases above. Hence, $\tilde{\eta}(x\alpha \eta\beta z) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\}$. Hence $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of M. Con-

versely, assume that $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of M. Let $x, y, z \in H$ and $\alpha, \beta \in \Gamma$ be such that $\tilde{\eta}(x) = \tilde{\eta}(y) = \tilde{\eta}(z) = \tilde{s}$. Since $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of M, we

have $\tilde{\eta}(x-y) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\} = \tilde{s}$ and $\tilde{\eta}(x\alpha y\beta z) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\} = \tilde{s}$. So, $x-y, x\alpha y\beta z \in H$. Hence H is a weak bi-ideal of M.

Theorem 3.14 A nonempty subset H of M is a weak bi-ideal of M if and only if the characteristic function f_H is an i.v fuzzy weak bi-ideal of M.

Proof. The proof is straightforward.

Theorem 3.15 Let $\tilde{\eta}$ be an i.v fuzzy weak bi-ideal of M then the set $M_{\tilde{\eta}} = \{x \in M | \tilde{\eta}(x) = \tilde{\eta}(0)\}$ is weak bi-ideal of M.

Proof. Let $\tilde{\eta}$ be i.v fuzzy weak bi-ideal of M. Let $x, y \in M_{\tilde{\eta}}$. Then $\tilde{\eta}(x) = \tilde{\eta}(0), \tilde{\eta}(y) = \tilde{\eta}(0)$ and $\tilde{\eta}(x-y) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y)\} = \min^i \{\tilde{\eta}(0), \tilde{\eta}(0)\} = \tilde{\eta}(0)$. So $\tilde{\eta}(x-y) = \tilde{\eta}(0)$. Thus $x - y \in M_{\tilde{\eta}}$. For every $x, y, z \in M_{\tilde{\eta}}$ and $\alpha, \beta \in \Gamma$ we have $\tilde{\eta}(x\alpha y\beta z) \ge \min^i \{\tilde{\eta}(x), \tilde{\eta}(y), \tilde{\eta}(z)\} = \min^i \{\tilde{\eta}(0), \tilde{\eta}(0), \tilde{\eta}(0)\} = \tilde{\eta}(0)$. Thus $x\alpha y\beta z \in M_{\tilde{\eta}}$. Hence $M_{\tilde{\eta}}$ is a weak bi-ideal of M.

4. Homomorphism of interval valued fuzzy weak bi-ideals of Γ -near-rings

In this section, we characterize i.v fuzzy weak bi-ideals of Γ -near-rings using homomorphism.

Definition 4.1 [9] Let f be a mapping from a set M to a set S. Let $\tilde{\eta}$ and δ be i.v fuzzy subsets of M and S respectively. Then $f(\tilde{\eta})$, the image of $\tilde{\eta}$ under f is an i.v fuzzy subset of S defined by

$$f(\tilde{\eta})(y) = \begin{cases} \sup_{x \in f^{-1}(y)}^{i} \tilde{\eta}(x) & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

and the pre-image of $\tilde{\eta}$ under f is an i.v fuzzy subset of M defined by $f^{-1}(\tilde{\delta}(x)) = \tilde{\delta}(f(x))$, for all $x \in M$ and $f^{-1}(y) = \{x \in M | f(x) = y\}$.

Definition 4.2 [9] Let M and S be Γ -near-rings. A map $\theta : M \to S$ is called a (Γ -near-ring)homomorphism if $\theta(x+y) = \theta(x) + \theta(y)$ and $\theta(x\alpha y) = \theta(x)\alpha\theta(y)$ for all $x, y \in M$ and $\alpha \in \Gamma$.

Theorem 4.3 Let $f: M \to S$ be a homomorphism between Γ -near-rings M and S. If $\tilde{\delta}$ is an i.v fuzzy weak bi-ideal of S, then $f^{-1}(\tilde{\delta})$ is an i.v fuzzy weak bi-ideal of M.

Proof. Let δ is an i.v fuzzy weak bi-ideal of S. Let $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Then

$$f^{-1}(\tilde{\delta})(x-y) = \tilde{\delta}(f(x-y))$$
$$= \tilde{\delta}(f(x) - f(y))$$
$$\ge \min^{i} \{ \tilde{\delta}(f(x)), \tilde{\delta}(f(y)) \}$$
$$= \min^{i} \{ f^{-1}(\tilde{\delta}(x)), f^{-1}(\tilde{\delta}(y)) \}$$

and

$$f^{-1}(\tilde{\delta})(x\alpha y\beta z) = \tilde{\delta}(f(x\alpha y\beta z))$$

= $\tilde{\delta}(f(x)\alpha f(y)\beta f(z))$
 $\geq \min^{i}\{\tilde{\delta}(f(x)), \tilde{\delta}(f(y)), \tilde{\delta}(f(z))\}$
= $\min^{i}\{f^{-1}(\tilde{\delta}(x)), f^{-1}(\tilde{\delta}(y)), f^{-1}(\tilde{\delta}(z))\}.$

Therefore $f^{-1}(\tilde{\delta})$ is an i.v fuzzy weak bi-ideal of M.

We can also state the converse of the Theorem 4.3 by strengthening the condition on f as follows.

Theorem 4.4 Let $f: M \to S$ be an onto homomorphism of Γ - near-rings M and S. Let $\tilde{\delta}$ be an i.v fuzzy subset of S. If $f^{-1}(\tilde{\delta})$ is an i.v fuzzy weak bi-ideal of M, then $\tilde{\delta}$ is an i.v fuzzy weak bi-ideal of S.

Proof. Let $x, y, z \in S$. Then f(a) = x, f(b) = y and f(c) = z for some $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. It follows that

$$\begin{split} \tilde{\delta}(x-y) &= \tilde{\delta}(f(a) - f(b)) \\ &= \tilde{\delta}(f(a-b)) \\ &= f^{-1}(\tilde{\delta})(a-b) \\ &\geqslant \min^i \{f^{-1}(\tilde{\delta})(a), f^{-1}(\tilde{\delta})(b)\} \\ &= \min^i \{\tilde{\delta}(f(a)), \tilde{\delta}(f(b))\} \\ &= \min^i \{\tilde{\delta}(x), \tilde{\delta}(y)\}. \end{split}$$

and

$$\begin{split} \tilde{\delta}(x\alpha y\beta z) &= \tilde{\delta}(f(a)\alpha f(b)\beta f(c)) \\ &= \tilde{\delta}(f(a\alpha b\beta c)) \\ &= f^{-1}(\tilde{\delta})(a\alpha b\beta c) \\ &\geqslant \min^i \{f^{-1}(\tilde{\delta})(a), f^{-1}(\tilde{\delta})(b), f^{-1}(\tilde{\delta})(c)\} \\ &= \min^i \{\tilde{\delta}(f(a)), \tilde{\delta}(f(b)), \tilde{\delta}(f(c))\} \\ &= \min^i \{\tilde{\delta}(x), \tilde{\delta}(y), \tilde{\delta}(z)\}. \end{split}$$

Hence $\tilde{\delta}$ is an i.v fuzzy weak bi-ideal of S.

Theorem 4.5 Let $f: M \to S$ be an onto Γ -near-ring homomorphism. If $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of M, then $f(\tilde{\eta})$ is an i.v fuzzy weak bi-ideal of S.

Proof. Let $\tilde{\eta}$ be an i.v fuzzy weak bi-ideal of M. Since $f(\tilde{\eta})(x') = \sup_{f(x)=x'}^{i}(\tilde{\eta}(x))$ for $x' \in S$ and hence $f(\tilde{\eta})$ is nonempty. Let $x', y' \in S$ and $\alpha, \beta \in \Gamma$. Then we have $\{x|x \in f^{-1}(x'-y')\} \supseteq \{x-y|x \in f^{-1}(x') \text{ and } y \in f^{-1}(y')\}$ and $\{x|x \in f^{-1}(x'y')\} \supseteq \{x-y|x \in f^{-1}(x') \in S\}$

232

 $\{x\alpha y|x\in f^{-1}(x') \ \text{ and } \ y\in f^{-1}(y')\}.$

$$f(\tilde{\eta})(x' - y') = \sup_{f(z) = x' - y'}^{i} \{\tilde{\eta}(z)\}$$

$$\geq \sup_{f(x) = x', f(y) = y'}^{i} \{\tilde{\eta}(x - y)\}$$

$$\geq \sup_{f(x) = x', f(y) = y'}^{i} \{\min^{i} \{\tilde{\eta}(x), \tilde{\eta}(y)\}\}$$

$$= \min^{i} \{\sup_{f(x) = x'}^{i} \{\tilde{\eta}(x)\}, \sup_{f(y) = y'}^{i} \{\tilde{\eta}(y)\}\}$$

$$= \min^{i} \{f(\tilde{\eta})(x'), f(\tilde{\eta})(y')\}.$$

Next,

$$\begin{split} f(\tilde{\eta})(x'\alpha y'\beta z') &= \sup_{f(h)=x'\alpha y'\beta z'}^{i}\{\tilde{\eta}(h)\} \\ &\geqslant \sup_{f(x)=x',f(y)=y',f(z)=z'}^{i}\{\tilde{\eta}(x\alpha y\beta z)\} \\ &\geqslant \sup_{f(x)=x',f(y)=y',f(z)=z'}^{i}\{\min^{i}\{\tilde{\eta}(x),\tilde{\eta}(y),\tilde{\eta}(z)\}\} \\ &= \min^{i}\{\sup_{f(x)=x'}^{i}\{\tilde{\eta}(x)\},\sup_{f(y)=y'}^{i}\{\tilde{\eta}(y)\},\sup_{f(z)=z'}^{i}\{\tilde{\eta}(z)\}\} \\ &= \min^{i}\{f(\tilde{\eta})(x'),f(\tilde{\eta})(y'),f(\tilde{\eta})(z')\}. \end{split}$$

Therefore $f(\tilde{\eta})$ is an i.v fuzzy weak bi-ideal of S.

5. Anti-homomorphism of interval valued fuzzy weak bi-ideals of Γ -near-rings

In this section, we characterize i.v fuzzy weak bi-ideals of Γ -near-rings using antihomomorphism.

Definition 5.1 [11] Let M and S be Γ -near-rings. A map $\theta : M \to S$ is called a (Γ -near-ring)anti-homomorphism if $\theta(x+y) = \theta(y) + \theta(x)$ and $\theta(x\alpha y) = \theta(y)\alpha\theta(x)$ for all $x, y \in M$ and $\alpha \in \Gamma$.

Theorem 5.2 Let $f: M \to S$ be a anti-homomorphism between Γ -near-rings M and S. If $\tilde{\delta}$ is an i.v fuzzy weak bi-ideal of S, then $f^{-1}(\tilde{\delta})$ is an i.v fuzzy weak bi-ideal of M.

Proof. Let $\tilde{\delta}$ be an i.v fuzzy weak bi-ideal of S. Let $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Then

$$\begin{split} f^{-1}(\tilde{\delta})(x-y) &= \tilde{\delta}(f(x-y)) \\ &= \tilde{\delta}(f(y) - f(x)) \\ &\geqslant \min^i \{ \tilde{\delta}(f(y)), \tilde{\delta}(f(x)) \} \\ &= \min^i \{ \tilde{\delta}(f(x)), \tilde{\delta}(f(y)) \} \\ &= \min^i \{ f^{-1}(\tilde{\delta}(x)), f^{-1}(\tilde{\delta}(y)) \}. \end{split}$$

and

$$\begin{split} f^{-1}(\tilde{\delta})(x\alpha y\beta z) &= \tilde{\delta}(f(x\alpha y\beta z)) \\ &= \tilde{\delta}(f(z)\alpha f(y)\beta f(x)) \\ &\geqslant \min^i \{\tilde{\delta}(f(z)), \tilde{\delta}(f(y)), \tilde{\delta}(f(x))\} \\ &= \min^i \{\tilde{\delta}(f(x)), \tilde{\delta}(f(y)), \tilde{\delta}(f(z))\} \\ &= \min^i \{f^{-1}(\tilde{\delta}(x)), f^{-1}(\tilde{\delta}(y)), f^{-1}(\tilde{\delta}(z))\}. \end{split}$$

Therefore $f^{-1}(\tilde{\delta})$ is an i.v fuzzy weak bi-ideal of M.

.

We can also state the converse of the Theorem 5.2 by strengthening the condition on f as follows.

Theorem 5.3 Let $f: M \to S$ be an onto anti-homomorphism of Γ -near-rings M and S. Let $\tilde{\delta}$ be an i.v fuzzy subset of S. If $f^{-1}(\tilde{\delta})$ is an i.v fuzzy weak bi-ideal of M, then $\tilde{\delta}$ is an i.v fuzzy weak bi-ideal of S.

Proof. Let $x, y, z \in S$. Then f(a) = x, f(b) = y and f(c) = z for some $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. It follows that

$$\begin{split} \tilde{\delta}(x-y) &= \tilde{\delta}(f(a) - f(b)) \\ &= \tilde{\delta}(f(b-a)) \\ &= f^{-1}(\tilde{\delta})(b-a) \\ &\geqslant \min^i \{f^{-1}(\tilde{\delta})(b), f^{-1}(\tilde{\delta})(a)\} \\ &= \min^i \{\tilde{\delta}(f(a)), \tilde{\delta}(f(b))\} \\ &= \min^i \{\tilde{\delta}(x), \tilde{\delta}(y)\} \end{split}$$

and

$$\begin{split} \tilde{\delta}(x\alpha y\beta z) &= \tilde{\delta}(f(a)\alpha f(b)\beta f(c)) \\ &= \tilde{\delta}(f(c\alpha b\beta a)) \\ &= f^{-1}(\tilde{\delta})(c\alpha b\beta a) \\ &\geqslant \min^i \{f^{-1}(\tilde{\delta})(c), f^{-1}(\tilde{\delta})(b), f^{-1}(\tilde{\delta})(a)\} \\ &= \min^i \{f^{-1}(\tilde{\delta})(a), f^{-1}(\tilde{\delta})(b), f^{-1}(\tilde{\delta})(c)\} \\ &= \min^i \{\tilde{\delta}(f(a)), \tilde{\delta}(f(b)), \tilde{\delta}(f(c))\} \\ &= \min^i \{\tilde{\delta}(x), \tilde{\delta}(y), \tilde{\delta}(z)\}. \end{split}$$

Hence $\tilde{\delta}$ is an i.v fuzzy weak bi-ideal of S.

Theorem 5.4 Let $f: M \to S$ be an onto Γ -near-ring anti-homomorphism. If $\tilde{\eta}$ is an i.v fuzzy weak bi-ideal of M, then $f(\tilde{\eta})$ is an i.v fuzzy weak bi-ideal of S.

Proof. Let $\tilde{\eta}$ be an i.v fuzzy weak bi-ideal of M. Since

234

$$\begin{split} f(\tilde{\eta})(x') &= \sup_{f(x)=x'}^{i}(\tilde{\eta}(x)), \text{ for } x' \in S \text{ and hence } f(\tilde{\eta}) \text{ is nonempty. Let } x', y' \in S \text{ and } \\ \alpha, \beta \in \Gamma. \text{ Then we have } \{x | x \in f^{-1}(x'-y')\} \supseteq \{x-y | x \in f^{-1}(x') \text{ and } y \in f^{-1}(y')\} \\ \text{ and } \{x | x \in f^{-1}(x'y')\} \supseteq \{x\alpha y | x \in f^{-1}(x') \text{ and } y \in f^{-1}(y')\} \end{split}$$

$$\begin{split} f(\tilde{\eta})(x'-y') &= \sup_{f(z)=x'-y'}^{i} \{\tilde{\eta}(z)\} \\ &\geqslant \sup_{f(x)=x', f(y)=y'}^{i} \{\tilde{\eta}(x-y)\} \\ &\geqslant \sup_{f(x)=x', f(y)=y'}^{i} \{\min^{i} \{\tilde{\eta}(x), \tilde{\eta}(y)\}\} \\ &= \min^{i} \{\sup_{f(x)=x'} \{\tilde{\eta}(x)\}, \sup_{f(y)=y'}^{i} \{\tilde{\eta}(y)\}\} \\ &= \min^{i} \{f(\tilde{\eta})(x'), f(\tilde{\eta})(y')\}. \end{split}$$

Next,

$$\begin{split} f(\tilde{\eta})(x'\alpha y'\beta z') &= \sup_{f(h)=x'\alpha y'\beta z'}^{i}\{\tilde{\eta}(h)\} \\ &\geq \sup_{f(x)=x',f(y)=y',f(z)=z'}^{i}\{\tilde{\eta}(x\alpha y\beta z)\} \\ &\geq \sup_{f(x)=x',f(y)=y',f(z)=z'}^{i}\{\min^{i}\{\tilde{\eta}(x),\tilde{\eta}(y),\tilde{\eta}(z)\}\} \\ &= \min^{i}\{\sup_{f(x)=x'}^{i}\{\tilde{\eta}(x)\},\sup_{f(y)=y'}^{i}\{\tilde{\eta}(y)\},\sup_{f(z)=z'}^{i}\{\tilde{\eta}(z)\}\} \\ &= \min^{i}\{f(\tilde{\eta})(x'),f(\tilde{\eta})(y'),f(\tilde{\eta})(z')\}. \end{split}$$

Therefore $f(\tilde{\eta})$ is an i.v fuzzy weak bi-ideal of S.

Acknowledgements

The second author was supported in part by UGC-BSR Grant #F.25-1/2014-15(BSR)/7-254/2009(BSR) dated 20-01-2015 in India. The third author was supported in part by UGC-BSR Grant # F4-1/2006(BSR)/7-254/2009(BSR) in India.

References

- [1] G. L. Booth, A note on Γ-near-rings, Stud. Sci. Math. Hung. 23 (1988), 471-475.
- [2] Ch. Rao, V. Swaminathan, Anti-homomorphism in fuzzy ideals, International scholarly and scientific research and innovation. 4 (8) (2010), 1211-1214.
- [3] V. Chinnadurai, S. Kadalarasi, Fuzzy weak bi-ideals of near-rings, Annals of Fuzzy Mathematics and Informatics. 11 (2016), 799-808.
- [4] V. Chinnadurai, K. Arulmozhi, S. Kadalarasi, Interval valued fuzzy ideals of Γ-near-rings, Submitted.
- [5] V. Chinnadurai, K. Arulmozhi, S. Kadalarasi, Characterization of fuzzy weak bi-ideals of Γ-near-rings, Submitted.
- [6] V. Chinnadurai, K. Arulmozhi, S. Kadalarasi, Interval valued fuzzy bi-ideals of Γ -near-rings, Submitted.
- [7] V. Chinnadurai, S. Kadalarasi, interval valued fuzzy quasi-ideals of near-rings, Annals of Fuzzy Mathematics and Informatics. 11 (2016), 621-631.
- [8] Y. B. Jun, M. Sapanic, M. A. Ozturk, Fuzzy ideals in gamma near-rings, Tr. J. of Mathematics. 22 (1998), 449-549.
- [9] S. D. Kim, H. S. kim, On fuzzy ideals of near-rings, Bull. Korean. Math. Soc. 33 (1996), 593-601.
- [10] T. Manikantan, Fuzzy bi-ideals of near-rings, Journal of Fuzzy Mathematics. 17 (3) (2009), 659-671.
- [11] M. Murali, k. Rao, B. Venkateswarlu, Anti-fuzzy k-ideals and anti-homomorphism of Γ-semirings, J. International Math.l Virtual Institute. 5 (2015), 37-54.
- [12] N. Meenakumari, T. Tamizh Chelvam, Fuzzy bi-ideals in gamma near-rings, Journal of Algebra Discrete Structures. 9 (1-2) (2011), 43-52.
- [13] Al. Narayanan, T. Manikatan, $(\in, \in \lor q)$ -fuzzy subnear-rings and $(\in, \in \lor q)$ -fuzzy ideals of near-rings, J. Applied Math. Computing. 27 (2004), 983-998.

- [14] G. Pilz, Near-rings, The theory and its applications, North-Holland Publishing Company, Amesterdam, 1983.
- [15] Bh. Satyanarayana, Contributions to near-rings theory Doctoral Thesis, Nagarjuna University, 1984.
- [16] T. Tamizh Chelvam, N. Meenakumari, Bi-ideals of gamma near-rings, Southeast Bulletion of Mathematics. 27 (2004) 983-998.
- [17] N. Thillaigovindan, V. Chinnadurai, Interval valued fuzzy quasi-ideals of semigroups, East Asian Mathematics Journal. 25 (4) (2009), 449-467.
 [18] N. Thillaigovindan, V. Chinnadurai, S. Kadalarasi , Interval valued fuzzy ideals of nera-rings, The Journal
- [18] N. Thillaigovindan, V. Chinnadurai, S. Kadalarasi, Interval valued fuzzy ideals of nera-rings, The Journal of Fuzzy Mathematics. 23 (2) (2015), 471-484.
- [19] N. Thillaigovindan, V. Chinnadurai, S. Coumaressane, T-fuzzy subsemigroups and T-fuzzy ideals of regular Γ-semigroups, Annals of Fuzzy Mathematics and Informatics. 11 (4) (2016), 669-680.
- [20] Y. K. Cho, T. Tamizh Chelvam, S. Jayalakshmi, Weak bi-ideals of near-rings, J. Korean. Soc. Math. Edue. Ser B. Pure Appl. Math. 14 (3) (2007), 153-159.
- [21] L. A. Zadeh, Fuzzy sets, Inform and Control. 8 (1965), 338-353.
- [22] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inform. Sci. 8 (1975), 199-249.