Journal of Linear and Topological Algebra Vol. 06*, No.* 02*,* 2017*,* 91*-* 107

Smooth biproximity spaces and *P***-smooth quasi-proximity spaces**

O. A. Tantawy^a, S. A. El-Sheikh^b, R. N. Majeed^{c,d*}

^a*Department of Mathematics, Faculty of Science, Zagazig University, Cairo, Egypt.* ^b*Department of Mathematics, Faculty of Education, Ain Shams University, 11757 beside Tabary school, Roxy, Cairo, Egypt.* ^c*Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.* ^d*Department of Mathematics, Faculty of Education Abn Al-Haitham, Baghdad University, Baghdad, Iraq.*

Received 1 January 2016; Revised 23 April 2017; Accepted 20 August 2017.

Abstract. The notion of smooth biproximity space (X, δ_1, δ_2) where δ_1, δ_2 are gradation proximities defined by Ghanim et al. [10]. In this paper, we show every smooth biproximity space (X, δ_1, δ_2) induces a supra smooth proximity space δ_{12} finer than δ_1 and δ_2 . We study the relationship between (X, δ_{12}) and the FP^* -separation axioms which had been introduced by Ramadan et al. [23]. Furthermore, we show for each smooth bitopological space which is *F P∗T*4, the associated supra smooth topological space is a smooth supra proximal. The notion of *F P*-(resp. *F P[∗]* -) proximity map are also introduced. In addition, we introduce the concept of *P*-smooth quasi-proximity spaces and prove that the associated smooth bitopological space $(X, \tau_{\delta}, \tau_{\delta^{-1}})$ satisfies *FP*-separation axioms in sense of Ramadan et al. [10].

*⃝*c 2017 IAUCTB. All rights reserved.

Keywords: Smooth bitopological space, supra smooth proximity, smooth quasi-proximity, *F P*-separation axioms, compatibility, *F P*-proximity map.

2010 AMS Subject Classification: 54A05, 54A40, 54E55, 54C08.

1. Introduction

Sostak [26], introduced the fundamental concept of a 'fuzzy topological structure', as an extension of both crisp topology and Chang's fuzzy topology [5], indicating that not only

*∗*Corresponding author.

E-mail address: rashanm6@gmail.com (R. N. Majeed).

Online ISSN: $2345-5934$

Print ISSN: 2252-0201 [©] 2017 IAUCTB. All rights reserved.

Online ISSN: 2345-5934 *bttp://ilta.jauctb.ac.ir*

the object were fuzzified, but also the axiomatic. Subsequently, Badard [4], introduced the concept of 'smooth topological space'. Chattopadhyay et al. [6] and Chattopadhyay and Samanta [7] re-introduced the same concept, calling it 'gradation of openess'. Ramadan [22] and his colleagues introduced a similar definition, namely, smooth topological space for lattice $L = [0, 1]$. Following Ramadan, several authors have re-introduced and further studied smooth topological space (cf. [6, 7, 9, 27]). Thus, the terms 'fuzzy topol- χ , in Sostak's sense, 'gradation of openness' and 'smooth topology' are essentially referring to the same concept. In our paper, we adopt the term smooth topology. Lee et al. [20] introduced the concept of smooth bitopological space as a generalization of smooth topological space and Kandil's fuzzy bitopological spaces [12].

The so-called supra topology was established by Mashhour et al. [21] (recall that a supra topology on a set X is a collection of subsets of X , which is closed under arbitrary unions). Abd El-Monsef and Ramadan [2] introduced the concept supra fuzzy topology, followed by Ghanim et al. $[11]$ who introduced the supra fuzzy topology in Sostak sense. Abbas [1] generated the supra fuzzy topology (X, τ_{12}) from fuzzy bitopological space (X, τ_1, τ_2) in Sostak sense as an extension of supra fuzzy topology due to Kandil et al. [13].

The concept of proximity space was first described by Frigyes Riesz (1909) but ignored at the time. It was rediscovered and axiomatized by Efremovic under the name of infinitesimal space [8]. Katsaras [15, 16] introduced and studied fuzzy proximity spaces. Samanta [25] introduced the concept of gradations of fuzzy proximity. It was shown that this fuzzy proximity is more general than that of Artico and Moresco [3]. On the other hand, Ghanim et al. [10] introduced gradation proximity spaces with somewhat different definition of Samanta [25]. Kandil et al. [14] introduced the concept of supra fuzzy proximity and fuzzy biproximity spaces. Ghanim et al. [11] introduced the concept of gradation of supra proximity. Kim and Park [18] introduced the concept of fuzzy quasi-proximity spaces in view of definition of Ghanim et al. [10].

In this paper, we consider the gradation proximity in the sense of Ghanim et al. [10]. In Section 2, we give an alternative description of the fuzzy closure operator C_{δ} , that introduced in [25], by using fuzzy points and the concept of q-coincidence and we study some properties of fuzzy closure operator C_{δ} . In Section 3, we introduce the notion of smooth biproximity space (X, δ_1, δ_2) and we generate a supra smooth proximity (X, δ_{12}) from (X, δ_1, δ_2) . We discuss the supra smooth topological structure $(X, \tau_{\delta_1, \delta_2})$ based on this supra smooth proximity. It will be shown that the induced supra smooth topology $(X, \tau_{\delta_{12}})$ are FP^*R_i -space, $i = 0, 1, 2, 3$ and FP^*T_i -space, $i = 0, 1, 2, 3, 4$. Moreover, for each smooth bitopological space which is $FP[*]T₄$, the induced supra smooth topological space is a supra smooth proximal. The notion of *F P*-(resp. *F P∗* -) proximity map are also introduced. Finally, in Section 4, we introduce the concept of *P*-smooth quasi-proximity δ and study its basic properties. We show the associated smooth bts $(X, \tau_{\delta}, \tau_{\delta^{-1}})$ is FPR_i space $i = 0, 1, 2, 3$ and FPT_i -space $i = 0, 1, 2, 3, 4$ in the sense of Ramadan et al. [23] when δ is separated.

2. Preliminaries

Throughout this paper, let *X* be a non-empty set, $I = [0, 1]$, $I_0 = (0, 1]$, $I_1 = [0, 1)$ and *I*^{*X*} be the family of all fuzzy sets on *X*. For any $\mu_1, \mu_2 \in I^X$,

$$
(\mu_1 \wedge \mu_2)(x) = \min\{\mu_1(x), \mu_2(x) : x \in X\},\
$$

 $(\mu_1 \vee \mu_2)(x) = \max{\mu_1(x), \mu_2(x) : x \in X}.$

For $\lambda \in I^X$, $\overline{1} - \lambda$ denotes the complement of λ . For fixed $\alpha \in I$, $\overline{\alpha}(x) = \alpha \,\forall x \in X$ is a fuzzy constant set on *X*. By $\overline{0}$ and $\overline{1}$, we denote constant fuzzy sets on *X* with value 0 and 1, respectively. For $x \in X$ and $t \in I_0$, a fuzzy point $x_t(y)$, denoted by x_t , which takes *t* if $x = y$ and 0 otherwise, for all $y \in X$. Let $Pt(X)$ be a family of all fuzzy points in *X*. The fuzzy point x_t is said to be contained in a fuzzy set λ iff $\lambda(x) \geq t$. A fuzzy point x_t is said to be quasi-coincident with a fuzzy set λ , denoted by x_t *q* λ if and only if $\lambda(x) + t > 1$. In general, for $\mu, \lambda \in I^X$, μ is called quasi-coincident with λ , denoted by $\mu q \lambda$, if $\mu(x) + \lambda(x) > 1$ for some $x \in X$, otherwise we write $\mu \bar{q} \lambda$. Equivalently, $\mu q \lambda$ if and only if $\exists x_t \in Pt(X)$; $x_t \in \mu$ and $x_t q \lambda$. For $\lambda_1, \lambda_2 \in I^X$, $\lambda_1 \leq \lambda_2$ if and only if $\lambda_1 \bar{q} \bar{1} - \lambda_2$. Also, $\lambda_1 \leq \lambda_2$ if and only if $(\forall x_t \in Pt(X))$ $(x_t q \lambda_1 \Longrightarrow x_t q \lambda_2)$. FP (resp. *FP*^{*}) stand for fuzzy pairwise (resp. fuzzy*P*^{*}). The indices are $i, j \in \{1, 2\}$ and $i \neq j$.

Definition 2.1 [4, 6, 22, 26] A smooth topology on *X* is a mapping $\tau: I^X \to I$ which satisfies the following properties:

- (1) $\tau(\bar{0}) = \tau(\bar{1}) = 1$,
- (2) $\tau(\mu_1 \wedge \mu_2) \geq \tau(\mu_1) \wedge \tau(\mu_2), \forall \mu_1, \mu_2 \in I^X,$ (3) $\tau(\bigvee_{i \in J} \mu_i) \ge \bigwedge_{i \in J} \tau(\mu_i)$, for any $\{\mu_i : i \in J\} \subseteq I^X$.

The pair (X, τ) is called a smooth topological space. For $r \in I_0$, μ is an *r*-open fuzzy set of *X* if $\tau(\mu) \geq r$, and μ is an *r*-closed fuzzy set of *X* if $\tau(\bar{1} - \mu) \geq r$. Note, Sostak [26] used the term 'fuzzy topology' and Chattopadhyay [6], the term 'gradation of openness' for a smooth topology *τ* .

If τ satisfies conditions (1) and (3), then τ is said to be a supra smooth topology and (X, τ) is said to be supra smooth topological space [11].

Definition 2.2 [7] Let (X, τ) be a smooth topological space. For $\lambda \in I^X$ and $r \in I_0$, a fuzzy closure of λ is a mapping $C_{\tau}: I^X \times I_0 \to I^X$ such that

$$
C_{\tau}(\lambda, r) = \bigwedge \{ \rho \in I^X | \rho \geqslant \lambda, \ \tau(\bar{1} - \rho) \geqslant r \}.
$$
 (1)

A fuzzy interior of λ is a mapping $I_{\tau}: I^X \times I_0 \to I^X$ defined as

$$
I_{\tau}(\lambda, r) = \bigvee \{ \rho \in I^X | \rho \leq \lambda, \ \tau(\rho) \geq r \},\tag{2}
$$

which satisfies

$$
I_{\tau}(\bar{1} - \lambda, r) = \bar{1} - C_{\tau}(\lambda, r). \tag{3}
$$

Definition 2.3 [7] A mapping $C: I^X \times I_0 \to I^X$ is called a fuzzy closure operator if, for $\lambda, \mu \in I^X$ and $r, s \in I_0$, the mapping *C* satisfies the following conditions:

 $(C1) C(\bar{0}, r) = \bar{0}$, $(C2)$ $\lambda \leqslant C(\lambda, r),$ $(C3)$ $C(\lambda, r) \vee C(\mu, r) = C(\lambda \vee \mu, r)$, $(C4)$ $C(\lambda, r) \leq C(\lambda, s)$ if $r \leq s$,

The fuzzy closure operator *C* generates a smooth topology $\tau_C: I^X \longrightarrow I$ given by

$$
\tau_C(\lambda) = \bigvee \{ r \in I | C(\bar{1} - \lambda, r) = \bar{1} - \lambda \}.
$$
\n(4)

If *C* satisfies conditions $(C1)$, $(C2)$, $(C4)$, $(C5)$ and the following inequality:

 $(C3)^*$ $C(\lambda, r) \vee C(\mu, r) \leq C(\lambda \vee \mu, r)$, then C is called supra fuzzy closure operator on X [1] and it generates a supra smooth

topology $\tau_C: I^X \longrightarrow I$ as (4)

In analogs to Definition 2.3, one can use the equality (3) to obtain the definitions of fuzzy interior operator and supra fuzzy interior operator are obtained.

Definition 2.4 [22] Let (X, τ) and (Y, τ^*) be smooth topological spaces. A mapping *f* : $(X, \tau) \longrightarrow (Y, \tau^*)$ is called fuzzy continuous if $\tau(f^{-1}(\mu)) \geq \tau^*(\mu)$ for all $\mu \in I^Y$.

Another characterization of fuzzy continuous map is given below in terms of a fuzzy closure of a fuzzy set *µ*

Theorem 2.5 [6] Let (X, τ) and (Y, τ^*) be smooth topological spaces. Then, a mapping *f* : $(X, \tau) \longrightarrow (Y, \tau^*)$ is fuzzy continuous map iff $f(C_{\tau}(\mu, r)) \leq C_{\tau^*}(f(\mu), r)$, for all $\mu \in I^X$, for all $r \in I_0$.

Definition 2.6 [20] A triple (X, τ_1, τ_2) consisting of the set X endowed with smooth topologies τ_1 and τ_2 on X is called a smooth bitopological space (smooth bts, for short).

The following theorem shows how to generate a supra fuzzy closure (resp. interior) operator from a smooth bts (X, τ_1, τ_2) .

Theorem 2.7 [1] Let (X, τ_1, τ_2) be a smooth bts.

(1) For each $\lambda \in I^X, r \in I_0$, the mapping $C_{12}: I^X \times I_0 \to I^X$ defined as

$$
C_{12}(\lambda, r) = C_{\tau_1}(\lambda, r) \wedge C_{\tau_2}(\lambda, r) \tag{5}
$$

is a supra fuzzy closure operator on *X* which generates a supra smooth topology $\tau_{12}: I^X \longrightarrow I$ defined as in (4).

(2) The mapping $I_{12}: I^X \times I_0 \to I^X$ defined as

$$
I_{12}(\lambda, r) = I_{\tau_1}(\lambda, r) \vee I_{\tau_2}(\lambda, r) \tag{6}
$$

is a supra fuzzy interior operator on *X*, satisfies $I_{12}(\bar{1} - \lambda, r) = \bar{1} - C_{12}(\lambda, r)$.

Definition 2.8 [23] A smooth bitopological space (X, τ_1, τ_2) is called:

- (1) *FPR*⁰ if and only if $x_t \bar{q} C_{\tau_i}(y_m, r)$ implies that $y_m \bar{q} C_{\tau_i}(x_t, r)$.
- (2) FPR_1 if and only if $x_t \bar{q} C_{\tau_i}(y_m, r)$ implies that there exist $\lambda, \mu \in I^X$ with $\tau_i(\lambda) \geq r$, $\tau_j(\mu) \geq r$ such that $x_t \in \lambda$, $y_m \in \mu$ and $\lambda \bar{q} \mu$.
- (3) *FPR*₂ if and only if $x_t \bar{q} \rho = C_{\tau_i}(\rho, r)$ implies that there exist $\lambda, \mu \in I^X$ with $\tau_i(\lambda) \geq r$, $\tau_j(\mu) \geq r$ such that $x_t \in \lambda$, $\rho \leq \mu$ and $\lambda \bar{q} \mu$.
- (4) *FPR*₃ if and only if $\rho_1 = C_{\tau_i}(\rho_1, r) \bar{q} \rho_2 = C_{\tau_j}(\rho_2, r)$ implies that there exist $\lambda, \mu \in I^X$ with $\tau_i(\lambda) \geq r$, $\tau_j(\mu) \geq r$ such that $\rho_2 \leq \lambda$, $\rho_1 \leq \mu$ and $\lambda \bar{q} \mu$.
- (5) *FPT*₀ if and only if $x_t \bar{q} y_m$ implies that there exist $\lambda \in I^X$ such that for $i = 1$ or $2 \tau_i(\lambda) \geq r$ and $x_t \in \lambda$, $y_m \bar{q} \lambda$ or $y_m \in \lambda$, $x_t \bar{q} \lambda$.
- (6) *FPT*₁ if and only if $x_t \bar{q} y_m$ implies that there exist $\lambda \in I^X$ such that for $i = 1$ or $2 \tau_i(\lambda) \geq r, x_t \in \lambda$ and $y_m \bar{q} \lambda$.
- (7) *FPT*₂ if and only if $x_t \bar{q} y_m$ implies that there exist $\lambda, \mu \in I^X$ with $\tau_i(\lambda) \geq r$, $\tau_j(\mu) \geq r$ such that $x_t \in \lambda$, $y_m \in \mu$ and $\lambda \bar{q} \mu$.
- (8) FPT_3 if and only if it is FPR_2 and FPT_1 .
- (9) FPT_4 if and only if it is FPR_3 and FPT_1 .

Definition 2.9 [23] A smooth bitopological space (X, τ_1, τ_2) is called:

- (1) FP^*R_i if and only if its associated supra smooth topological space (X, τ_{12}) is FR_i , $i = 0, 1, 2$.
- (2) FP^*T_i if and only if its associated supra smooth topological space (X, τ_{12}) is FT_i , $i = 0, 1, 2, 3, 4.$

Lemma 2.10 [23] Let (X, τ_1, τ_2) be a smooth bts. For $\lambda \in I^X$ and $r \in I_0$. Then x_t *q* $C_{12}(\lambda, r)$ if and only if λ *q* μ for all $\mu \in I^X$ with $\tau_{12}(\mu) \geq r$ and $x_t \in \mu$.

Definition 2.11 [10] A mapping $\delta: I^X \times I^X \longrightarrow I$ is said to be a gradation of proximity on X if it satisfies the following axioms:

(FP1) *δ*(*µ, ρ*) = *δ*(*ρ, µ*).

(FP2) *δ*(*µ ∨ ρ, λ*) = *δ*(*µ, λ*) *∨ δ*(*ρ, λ*).

 $(FP3)$ $\delta(\overline{1}, \overline{0}) = 0.$

 $(FP4)$ $\delta(\mu, \rho) < r$ implies there exists $\eta \in I^X$ such that $\delta(\mu, \eta) < r$ and $\delta(\bar{1} - \eta, \rho) < r$. $(FP5)$ $\delta(\mu, \rho) \neq 1$ implies $\mu \bar{q} \rho$.

The pair (X, δ) is called a fuzzy proximity space.

If δ satisfies conditions (FP1),(FP3),(FP4),(FP5) and the following axiom:

 $(\text{FP2*}) \delta(\mu, \lambda) \vee \delta(\rho, \lambda) \leq \delta(\mu \vee \rho, \lambda),$

then δ is called a gradation of supra proximity on X and the pair (X, δ) is called a supra fuzzy proximity space [11].

In this paper the gradation of proximity δ on *X* refers to as smooth proximity on *X* and the fuzzy proximity space (X, δ) refers to as smooth proximity space. Also, the gradation of supra proximity on X and the supra fuzzy proximity space (X, δ) refers to as supra smooth proximity on *X* and supra smooth proximity space, respectively.

Lemma 2.12 [10] Let (X, δ) be a smooth proximity space, $\lambda, \mu \in I^X$ and $r \in I_0$. If $\delta(\mu, \lambda) \geq r, \mu \leq \mu_1 \text{ and } \lambda \leq \lambda_1 \text{, then } \delta(\mu_1, \lambda_1) \geq r.$

In this paper we adopt Samanta's definition for the fuzzy closure C_{δ} , because this definition satisfies condition (*C*4) of the fuzzy closure operator in Definition 2.3.

Theorem 2.13 [25] Let (X, δ) be a smooth proximity space. Then the mapping $C_{\delta}(\lambda, r)$: $I^X \times I_1 \longrightarrow I^X$ given by

$$
C_{\delta}(\lambda, r) = \overline{1} - \bigvee \{ \rho \in I^X \mid \rho \leq \overline{1} - \lambda, \ \delta(\rho, \lambda) < 1 - r \},\tag{7}
$$

is a fuzzy closure operator. Furthermore, C_{δ} generates a smooth topology $\tau_{\delta}: I^X \longrightarrow I$ as in (4).

Next, we recall the definition of fuzzy quasi-proximity spaces.

Definition 2.14 [18] A mapping $\delta: I^X \times I^X \longrightarrow I$ is said to be a fuzzy quasi-proximity on *X* if it satisfies the following axioms:

 $(FQP1)$ $\delta(\overline{1}, \overline{0}) = 0$ and $\delta(\overline{0}, \overline{1}) = 0$.

 $(\text{FQP2}) \delta(\mu \vee \rho, \lambda) = \delta(\mu, \lambda) \vee \delta(\rho, \lambda) \text{ and } \delta(\mu, \rho \vee \nu) = \delta(\mu, \rho) \vee \delta(\mu, \nu).$

 (FQP3) If $\delta(\mu, \rho) < r$, then there exists $\eta \in I^X$ such that $\delta(\mu, \eta) < r$ and $\delta(\bar{1} - \eta, \rho) < r$. (FQP4) If $\delta(\mu, \rho) \neq 1$, then $\mu \bar{q} \rho$.

The pair (X, δ) is called a fuzzy quasi-proximity space.

In this paper the fuzzy quasi-proximity on *X* refers to as smooth quasi-proximity on *X* and the fuzzy quasi-proximity space (X, δ) refers to as smooth quasi-proximity space.

Remark 1 [18]

- *(1) A smooth quasi-proximity space* (*X, δ*) *is called a smooth proximity space if δ satisfies:* $(FP1)$ $\delta(\mu, \rho) = \delta(\rho, \mu)$ *for any* $\mu, \rho \in I^X$.
- (2) If (X, δ) *is a smooth quasi-proximity space and* $\lambda \leq \mu$, *then, by (FQP2), we have* $\delta(\lambda, \nu) \leq \delta(\mu, \nu)$ *and* $\delta(\rho, \lambda) \leq \delta(\rho, \mu)$ *for any* $\nu, \rho \in I^X$.
- *(3) If* (X, δ) *is a smooth quasi-proximity space. Then,* $\delta^{-1} : I^X \times I^X \longrightarrow I$ *defined by* $\delta^{-1}(\mu,\rho) = \delta(\rho,\mu)$ *for any* $\mu,\rho \in I^X$ *, is also a smooth quasi-proximity and its called the conjugate of δ.*

Definition 2.15 [17] Let (X, δ_1) and (X, δ_2) be smooth (resp. quasi-) proximity spaces. We say that δ_2 is finer than δ_1 (or δ_1 is coarser than δ_2) if and only if for any $\mu, \rho \in I^X$, $\delta_2(\mu, \rho) \leq \delta_1(\mu, \rho).$

3. An alternative description of *C^δ*

In this section we give an alternative description of the fuzzy closure operator C_{δ} defined in (7), by using fuzzy points and the concept of q-coincidence. This alternative description will be used it in the next parts of the paper.

Theorem 3.1 Let (X, δ) be a smooth proximity space, $x_t \in Pt(X)$, $\lambda \in I^X$ and $r \in I_1$. Then, an operator $C_{\delta}: I^X \times I_1 \longrightarrow I^X$ defined as

$$
x_t q C_\delta(\lambda, r) \text{ if and only if } \delta(x_t, \lambda) \geq 1 - r. \tag{8}
$$

is a fuzzy closure operator on *X*.

Proof. We apply Definition 2.3 as follows

- (C1) Since $\delta(\bar{1}, \bar{0}) = 0$, then from Lemma 2.12 we get $\delta(x_t, \bar{0}) = 0$ for all $x_t \in Pt(X)$, it follows that $x_t \bar{q} C_{\delta}(\bar{0}, r)$ for all $x_t \in Pt(X)$ and for all $r \in I_1$, thus $C_{\delta}(\bar{0}, r) = \bar{0}$.
- (C2) Let $x_t q \lambda$. Then by (FP5) axiom we get $\delta(x_t, \lambda) = 1 \geq 1 r$ for all $r \in I_1$ this implies x_t *q* $C_\delta(\lambda, r)$. Hence $\lambda \leq C_\delta(\lambda, r)$.
- (C3)

$$
x_t q C_{\delta}(\lambda \vee \mu, r) \iff \delta(x_t, \lambda \vee \mu) \geq 1 - r
$$

$$
\iff \delta(x_t, \lambda) \geq 1 - r \quad \lor \quad \delta(x_t, \mu) \geq 1 - r
$$

$$
\iff x_t q C_{\delta}(\lambda, r) \quad \lor \quad x_t q C_{\delta}(\mu, r)
$$

$$
\iff x_t q [C_{\delta}(\lambda, r) \vee C_{\delta}(\mu, r)].
$$

Hence, $C_{\delta}(\lambda \vee \mu, r) = C_{\delta}(\lambda, r) \vee C_{\delta}(\mu, r)$.

- (C4) Let $r, s \in I_1$ such that $r \leq s$ and $x_t \in G_\delta(\lambda, r)$. Then, $\delta(x_t, \lambda) \geq 1 r \geq 1 s$ and this means x_t q $C_\delta(\lambda, s)$. Hence, if $r \leq s$, we have $C_\delta(\lambda, r) \leq C_\delta(\lambda, s)$.
- (C5) Let x_t $q C_\delta(C_\delta(\lambda, r), r)$ and x_t $\bar{q} C_\delta(\lambda, r)$. Then, $\delta(x_t, \lambda) < 1 r$. By (FP4) axiom there exists $\eta \in I^X$ such that $\delta(x_t, \eta) < 1 - r$ and $\delta(\bar{1} - \eta, \lambda) < 1 - r$. Since $\delta(\overline{1} - \eta, \lambda) < 1 - r$, then from Lemma 2.12, $\delta(y_m, \lambda) < 1 - r$ for all $y_m \in \overline{1} - \eta$

and therefore $y_m \bar{q} C_\delta(\lambda, r)$ for all $y_m \in \bar{1} - \eta$, this means, $\bar{1} - \eta \bar{q} C_\delta(\lambda, r)$. So, $C_{\delta}(\lambda, r) \leq \eta$. Since $\delta(x_t, \lambda) < 1 - r$ and $C_{\delta}(\lambda, r) \leq \eta$, then from Lemma 2.12, we have $\delta(x_t, C_\delta(\lambda, r)) < 1 - r$. Hence, $x_t \bar{q} C_\delta(C_\delta(\lambda, r), r)$ which is a contradiction. The other inclusion follows directly from (C2). Hence $C_{\delta}(C_{\delta}(\lambda, r), r) = C_{\delta}(\lambda, r)$. Thus, using Definition 2.3, C_{δ} is a fuzzy closure operator.

Corollary 3.2 Let (X, δ) be a smooth proximity space, $\rho, \lambda \in I^X$ and $r \in I_1$. If $\rho q C_{\delta}(\lambda, r)$, then $\delta(\rho, \lambda) \geq 1 - r$.

Proof. Let ρ q $C_{\delta}(\lambda, r)$. Then, there exists $x_t \in \rho$ such that x_t q $C_{\delta}(\lambda, r)$, this implies, $\delta(x_t, \lambda) \geq 1 - r$ and from Lemma 2.12 it follows $\delta(\rho, \lambda) \geq 1 - r$.

Corollary 3.3 Let (X, δ) be a smooth proximity space, for $\rho, \lambda \in I^X$ and $r \in I_1$. If $\delta(\overline{1} - \rho, \lambda) < 1 - r$, then $C_{\delta}(\lambda, r) \leq \rho$.

Corollary 3.4 Let (X, δ) be a smooth proximity space, $\rho, \lambda \in I^X$ and $r \in I_1$. Then

$$
C_{\delta}(\lambda, r) = \bigwedge \{ \rho \in I^X \mid \delta(\bar{1} - \rho, \lambda) < 1 - r \}. \tag{9}
$$

Proof. From Corollary 3.2 we conclude that $\delta(\bar{1} - \rho, \lambda) < 1 - r$ implies $\bar{1} - \rho \bar{q} C_{\delta}(\lambda, r)$ which means $C_{\delta}(\lambda, r) \leq \rho$ and hence

$$
C_{\delta}(\lambda, r) \leq \bigwedge \{ \rho \in I^X \mid \delta(\bar{1} - \rho, \lambda) < 1 - r \}.
$$

To show the reverse inclusion, suppose $x_t \bar{q} C_{\delta}(\lambda, r)$. Then $\delta(x_t, \lambda) = \delta(\bar{1} - (\bar{1} - x_t), \lambda)$ $1-r$. Since $x_t \bar{q} \bar{1}-x_t$, then $x_t \bar{q} \wedge \{\rho \in I^X \mid \delta(\bar{1}-\rho,\lambda) < 1-r\}$. Hence

$$
\bigwedge \{ \rho \in I^X \mid \delta(\bar{1} - \rho, \lambda) < 1 - r \} \leqslant C_{\delta}(\lambda, r).
$$

Clearly C_{δ} given in (9) is coincide with that introduced by Samanta (7).

Proposition 3.5 Let (X, δ) be a smooth proximity space, for $\lambda, \rho \in I^X$ and $r \in I_1$ we have the following:

(1) If $\lambda \leq \rho$, then $C_{\delta}(\lambda, r) \leq C_{\delta}(\rho, r)$.

(2)
$$
\delta(\lambda, \rho) = \delta(C_{\delta}(\lambda, r), C_{\delta}(\rho, r)).
$$

Proof.

- (1) Let $\lambda \leq \rho$ and $x_t \in C_\delta(\lambda, r)$. Then $\delta(x_t, \lambda) \geq 1-r$. Since $\lambda \leq \rho$, then from Lemma 2.12, we get $\delta(x_t, \rho) \geq 1 - r$ this implies $x_t \in C_\delta(\rho, r)$. Hence $C_\delta(\lambda, r) \leq C_\delta(\rho, r)$. (2) Necessity follows directly from Theorem 2.3(C2) and Lemma 2.12.
- Conversely, let $\delta(C_{\delta}(\lambda, r), C_{\delta}(\rho, r)) \geq 1 r$ and suppose that $\delta(\lambda, \rho) < 1 r$. Then by (FP4) axiom, there exists $\eta \in I^X$ such that $\delta(\lambda, \eta) < 1 - r$ and $\delta(\overline{1} - \eta, \rho)$ < 1 *− r*. Since $\delta(\overline{1} - \eta, \rho)$ < 1 *− r*, then from Corollary 3.3, $C_{\delta}(\rho, r) \leq \eta$ and from Lemma 2.12, $\delta(\lambda, \eta) < 1-r$ implies $\delta(\lambda, C_{\delta}(\rho, r)) < 1-r$. It then follows by apply (FP1) and (FP4) axioms on $\delta(\lambda, C_{\delta}(\rho, r)) < 1 - r$, we have $\delta(C_{\delta}(\lambda, r), C_{\delta}(\rho, r)) < 1 - r$ which a contradicts. Hence $\delta(\lambda, \rho)$ *δ*($C_\delta(\lambda, r)$, $C_\delta(\rho, r)$).

■

■

Theorem 3.6 Let (X, δ) be a smooth proximity space and $\lambda \in I^X$. Then

- (1) λ is an *r*-open fuzzy set in (X, τ_{δ}) if and only if $\forall x_t \in \lambda$, $\delta(x_t, \bar{1} \lambda) < 1 r$.
- (2) λ is an *r*-closed fuzzy set in (X, τ_{δ}) if and only if $\delta(x_t, \lambda) \geq 1 r$ implies $x_t \notin \lambda$.

Proof.

- (1) Necessity, let λ be an *r*-open fuzzy set in (X, τ_{δ}) , (i.e $C_{\delta}(\bar{1} \lambda, r) = \bar{1} \lambda$) and $x_t \in \lambda$. Suppose $\delta(x_t, \bar{1} - \lambda) \geq 1 - r$. Then $x_t q C_{\delta}(\bar{1} - \lambda, r) = \bar{1} - \lambda$ and this means $\lambda(x) < t$ which is a contradiction. Hence, $\forall x_t \in \lambda$ we have $\delta(x_t, \bar{1} - \lambda) < 1 - r$. Conversely, to prove λ is an *r*-open fuzzy set in (X, τ_{δ}) we must show $C_{\delta}(\overline{1} \lambda$, *r*) = $\overline{1}$ *−* λ . Suppose that there exists $x_t \in Pt(X)$ such that $x_t q C_\delta(\overline{1} - \lambda, r)$ and x_t \bar{q} $\bar{1} - \lambda$. It follows $x_t \in \lambda$ and $\delta(x_t, \bar{1} - \lambda) < 1 - r$. From (8) we have, x_t \bar{q} $C_{\delta}(\bar{1} - \lambda, r)$ which is a contradiction. Thus, x_t $q \bar{1} - \lambda$ and consequently,
- So, $C_{\delta}(\bar{1} \lambda, r) = \bar{1} \lambda$ and hence λ is an *r*-open fuzzy set in (X, τ_{δ}) .
- (2) Necessity follows directly from hypothesis and (8). Conversely, let x_t q $C_\delta(\lambda, r)$. Then $\delta(x_t, \lambda) \geq 1 - r$ implies x_t q λ . Thus $C_{\delta}(\lambda, r) \leq \lambda$. The other inclusion follows directly from Definition 2.3(C2). Hence the required result.

 $C_{\delta}(\bar{1} - \lambda, r) \leq \bar{1} - \lambda$. The other inclusion follows directly from Definition 2.3(C2).

4. *δ***12-supra smooth proximity spaces**

In this section we introduced the definition of smooth biproximity space (X, δ_1, δ_2) . We prove that for every given smooth biproximity space (X, δ_1, δ_2) there is associated supra smooth proximity space (X, δ_{12}) . We also discuss the supra smooth topological structure based on this supra smooth proximity.

Definition 4.1 A triple (X, δ_1, δ_2) is called a smooth biproximity space, where δ_1 and *δ*² are smooth proximities on *X*.

Now we generate a supra smooth proximity from a smooth biproximity space.

Theorem 4.2 Let (X, δ_1, δ_2) be a smooth biproximity space, $\mu, \rho \in I^X$. Then, the mapping $\delta_{12}: I^X \times I^X \longrightarrow I$ defined as

$$
\delta_{12}(\mu,\rho) = \delta_1(\mu,\rho) \wedge \delta_2(\mu,\rho). \tag{10}
$$

■

defines a supra smooth proximity on *X*, the space (X, δ_{12}) is called the associated supra smooth proximity space.

Proof. To prove that δ_{12} is a supra smooth proximity on *X*, we must show δ_{12} satisfies $(FP1)$, $(FP2^*)$, $(FP3)$, $(FP4)$ and $(FP5)$ axioms in Definition 2.11. Since δ_1 and δ_2 are smooth proximities on X , then from Definition 2.11 the proof comes directly.

Theorem 4.3 Let (X, δ_1, δ_2) be a smooth biproximity space and (X, δ_{12}) its associated supra smooth proximity space. Then

(1) The operator $C_{\delta_{12}}: I^X \times I_1 \longrightarrow I^X$ defined by

$$
C_{\delta_{12}}(\lambda, r) = C_{\delta_1}(\lambda, r) \wedge C_{\delta_2}(\lambda, r) \tag{11}
$$

for all $\lambda \in I^X$ and for all $r \in I_1$, is a supra fuzzy closure operator. (2) The mapping $\tau_{\delta_{12}}: I^X \longrightarrow I$ defined by

$$
\tau_{\delta_{12}}(\lambda) = \bigvee \{ r \in I \mid C_{\delta_{12}}(\bar{1} - \lambda, r) = \bar{1} - \lambda \}
$$
\n(12)

for all $\lambda \in I^X$, is a supra smooth topology on *X* such that $\tau_{\delta_i} \leq \tau_{\delta_{12}}$, $i = 1, 2$.

Proof.

- (1) We only prove condition (C5), the other conditions are deduced from (11) and (5).
	- (C5) Suppose $C_{\delta_{12}}(C_{\delta_{12}}(\lambda, r), r) \nleq C_{\delta_{12}}(\lambda, r)$. Then, there exist $x \in X$ and $t \in I_0$ such that

$$
C_{\delta_{12}}(C_{\delta_{12}}(\lambda, r), r)(x) > t > C_{\delta_{12}}(\lambda, r)(x).
$$
 (13)

Since $C_{\delta_{12}}(\lambda, r)(x) < t$, then by (11), $C_{\delta_1}(\lambda, r)(x) < t$ or $C_{\delta_2}(\lambda, r)(x) < t$. Suppose $C_{\delta_1}(\lambda, r)(x) < t$. Then, there exists $\rho \in I^X$ with $\delta_1(\overline{1-p}, \lambda) < 1-r$ such that $\rho(x) < t$. Since $\delta_1(\overline{1} - \rho, \lambda) < 1 - r$, then by (FP4) axiom there exists $\eta \in I^X$ such that $\delta_1(\overline{1}-\rho, \eta) < 1-r$ and $\delta_1(\overline{1}-\eta, \lambda) < 1-r$. From Corollary 3.3, $\delta_1(\overline{1} - \eta, \lambda) < 1 - r$ which implies $C_{\delta_1}(\lambda, r) \leq \eta$. From Lemma 2.12, we have $\delta_1(\overline{1} - \rho, C_{\delta_1}(\lambda, r)) < 1 - r$ which means $C_{\delta_1}(C_{\delta_1}(\lambda, r), r) \leq \rho$. The latter inequality implies $C_{\delta_1}(C_{\delta_1}(\lambda, r), r)(x) \leq \rho(x) < t$. This contradicts (13). Thus, $C_{\delta_{12}}(C_{\delta_{12}}(\lambda, r), r) \leq C_{\delta_{12}}(\lambda, r)$. Similarly. if $C_{\delta_2}(\lambda, r)(x) < t$ we get $C_{\delta_{12}}(C_{\delta_{12}}(\lambda, r), r) \leqslant C_{\delta_{12}}(\lambda, r)$. The other inclusion follows directly from Definition 2.3(C2). Hence, $C_{\delta_{12}}(C_{\delta_{12}}(\lambda, r), r) = C_{\delta_{12}}(\lambda, r)$

(2) From (1) and Definition 2.3, it follows $\tau_{\delta_{12}}$ is a supra smooth topology on X. Clearly from (11) we have $C_{\delta_{12}}(\lambda, r) \leqslant C_{\delta_i}(\lambda, r)$ for all $\lambda \in I^X$, $r \in I_1$ and $i = 1, 2$, then it follows $\tau_{\delta_i}(\lambda) \leq \tau_{\delta_{12}}(\lambda)$.

Proposition 4.4 Let (X, δ_1, δ_2) be a smooth biproximity space, (X, δ_{12}) its associated supra smooth proximity space and $C_{\delta_{12}}$ be a supra fuzzy closure operator. Then

- (1) $\delta_{12}(\overline{1} \rho, \lambda) < 1 r$ implies $C_{\delta_{12}}(\lambda, r) \leq \rho$.
- (2) $x_t q C_{\delta_{12}}(\lambda, r)$ if and only if $\delta_{12}(x_t, \lambda) \geq 1 r$.
- (3) $\delta_{12}(\lambda, \rho) = \delta_{12}(C_{\delta_{12}}(\lambda, r), C_{\delta_{12}}(\rho, r)).$

Proof. The results follows directly from (10) , (11) , Corollary 3.3, Theorem 3.1, Lemma 2.12 and Proposition 3.5(2).

Definition 4.5 A smooth proximity δ is said to be separated if and only if

$$
x_t \bar{q} y_m \text{ implies } \delta(x_t, y_m) \neq 1 \tag{14}
$$

for all $x_t, y_m \in Pt(X)$.

Proposition 4.6 Let (X, δ_1, δ_2) be a smooth biproximity space and (X, δ_{12}) its associated supra smooth proximity space. Then

$$
\delta_{12} \text{ is separated } \iff \delta_1 \text{ or } \delta_2 \text{ is separated.} \tag{15}
$$

■

Proof. Straightforward.

Theorem 4.7 Let (X, δ_1, δ_2) be a smooth biproximity space and (X, δ_1, δ_2) its associated supra smooth proximity space. Then, $(X, \tau_{\delta_{12}})$ is FP^*R_i -space, $i = 0, 1, 2, 3$.

Proof.

- (0) Let $x_t \bar{q} C_{\delta_{12}}(y_m, r), r \in I_1$. Then, $\delta_{12}(x_t, y_m) < 1 r$ and from $(FP1)$ axiom we get, $\delta_{12}(y_m, x_t) < 1 - r$. This implies $y_m \bar{q} C_{\delta_{12}}(x_t, r)$ and hence $(X, \tau_{\delta_{12}})$ is FP^*R_0 .
- (1) Let $x_t \bar{q} C_{\delta_{12}}(y_m, r), r \in I_1$. Then, $\delta_{12}(x_t, y_m) < 1 r$. From $(FP4)$ axiom there exists $\rho \in I^X$ such that $\delta_{12}(x_t, \rho) < 1-r$ and $\delta_{12}(\overline{1}-\rho, y_m) < 1-r$. This implies $x_t \bar{q} C_{\delta_{12}}(\rho, r)$ and $y_m \bar{q} C_{\delta_{12}}(\bar{1} - \rho, r)$ which means $x_t \in \bar{1} - C_{\delta_{12}}(\rho, r) =$ $I_{\delta_{12}}(\bar{1}-\rho,r), y_m \in \bar{1}-C_{\delta_{12}}(\bar{1}-\rho,r)=I_{\delta_{12}}(\rho,r)$ and $I_{\delta_{12}}(\bar{1}-\rho,r) \bar{q} I_{\delta_{12}}(\rho,r)$. Hence $(X, \tau_{\delta_{12}})$ is FP^*R_1 .
- (2) Let $x_t \bar{q} \rho = C_{\delta_{12}}(\rho, r), r \in I_1$. Then, $\delta_{12}(x_t, \rho) < 1 r$ and from (*FP*4) axiom there exists $\eta \in I^X$ such that $\delta_{12}(x_t, \eta) < 1 - r$ and $\delta_{12}(\overline{1} - \eta, \rho) < 1 - r$. This implies $x_t \bar{q} C_{\delta_{12}}(\eta, r)$ and $\rho \bar{q} C_{\delta_{12}}(\bar{1} - \eta, r)$ which means $x_t \in \bar{1} - C_{\delta_{12}}(\eta, r) =$ $I_{\delta_{12}}(\bar{1}-\eta,r), \rho \leq \bar{1}-C_{\delta_{12}}(\bar{1}-\eta,r)=I_{\delta_{12}}(\eta,r)$ and $I_{\delta_{12}}(\bar{1}-\eta,r) \bar{q} I_{\delta_{12}}(\eta,r)$. Hence $(X, \tau_{\delta_{12}})$ is FP^*R_2 .
- (3) The proof is similar to (2).

Theorem 4.8 Let (X, δ_1, δ_2) be a separated smooth biproximity space and $(X, \delta_1 z)$ its associated supra smooth proximity space. Then, $(X, \tau_{\delta_{12}})$ is FP^*T_i -space, $i = 0, 1, 2, 3, 4$.

Proof.

- (0) Let x_t \bar{q} y_m . Since δ_{12} is separated, then $\delta_{12}(x_t, y_m) \neq 1$. Then, there exists $r \in I_1$ such that $\delta_{12}(x_t, y_m) < 1 - r$ and so it follows $y_m \bar{q} C_{\delta_{12}}(x_t, r)$. Since $x_t \in I_{\delta_{12}}(x_t, r) \leq C_{\delta_{12}}(x_t, r)$, then there exists $\lambda = I_{\delta_{12}}(x_t, r)$ such that $x_t \in \lambda$, $y_m \bar{q} \lambda$. Hence $(X, \tau_{\delta_{12}})$ is FP^*T_0 .
- (1) The proof is similar to part (0).
- (2) Let $x_t \bar{q} y_m$. Since δ_{12} is separated, then $\delta_{12}(x_t, y_m) \neq 1$. This is implies that there exists $r \in I_1$ such that $\delta_{12}(x_t, y_m) < 1 - r$ from (*FP4*) axiom there exits $\eta \in I^X$ such that $\delta_{12}(x_t, \eta) < 1-r$ and $\delta_{12}(\bar{1}-\eta, y_m) < 1-r$. This implies $x_t \bar{q} C_{\delta_{12}}(\eta, r)$ and $y_m \bar{q} C_{\delta_{12}}(\bar{1} - \eta, r)$ which yields, $x_t \in \bar{1} - C_{\delta_{12}}(\eta, r) = I_{\delta_{12}}(\bar{1} - \eta, r)$, $y_m \in$ $\overline{1} - C_{\delta_{12}}(\overline{1} - \eta, r) = I_{\delta_{12}}(\eta, r)$ and $I_{\delta_{12}}(\overline{1} - \eta, r) = I_{\delta_{12}}(\eta, r)$. Hence $(X, \tau_{\delta_{12}})$ is $FP*T_2$.
- (3) The results follows directly from Theorem 4.7(2) and part (1).
- (4) The results follows directly from Theorem 4.7(3) and part (1).

In the following we shall give another description of the FP^*T_1 and FP^*R_3 spaces.

Theorem 4.9 A smooth bts (X, τ_1, τ_2) is a FP^*T_1 if and only $C_{12}(x_t, r) = x_t$, for each *x*^{*t*} $∈ Pt(X), r ∈ I_0.$

Proof. Necessity, let (X, τ_1, τ_2) be a FP^*T_1 to show that, $C_{12}(x_t, r) = x_t$, for each $x_t \in Pt(X)$, $r \in I_0$, let $y_m \bar{q} x_t$, then by FP^*T_1 , there exists $\lambda \in I^X$, $\tau_{12}(\lambda) \geq r$ such that $y_m \in \lambda$ and $x_t \bar{q} \lambda$. From Lemma 2.10, $y_m \bar{q} C_{12}(x_t, r)$. Thus $C_{12}(x_t, r) \leq x_t$. On the other hand $x_t \leq C_{12}(x_t, r)$. Hence, $C_{12}(x_t, r) = x_t$.

Conversely, let $x_t \bar{q} y_m$. Then $x_t \bar{q} C_{12}(y_m, r)$ and by Lemma 2.10, there exists $\lambda \in I^X$, $\tau_{12}(\lambda) \geq r$ such that $x_t \in \lambda$ and $\lambda \bar{q} y_m$. Hence (X, τ_1, τ_2) is a FP^*T_1 .

■

Theorem 4.10 A smooth bts (X, τ_1, τ_2) is FP^*R_3 if and only if for each $\rho, \lambda \in I^X$, $C_{12}(\rho, r) = \rho$ and $\tau_{12}(\lambda) \geq r$, $r \in I_0$ such that $\rho \leq \lambda$, there exists $\nu \in I^X$, $\tau_{12}(\nu) \geq r$ such that $\rho \leqslant \nu \leqslant C_{12}(\nu, r) \leqslant \lambda$.

Proof. First, suppose (X, τ_1, τ_2) is FP^*R_3 and let $\rho, \lambda \in I^X$ such that $C_{12}(\rho, r) = \rho$, $\tau_{12}(\lambda) \geq r$ and $\rho \leq \lambda$. Then, $\rho \bar{q} \bar{1} - \lambda$, so by FP^*R_3 , there exists $\mu_1, \mu_2 \in I^X$ with $\tau_{12}(\mu_1) \geq r$ and $\tau_{12}(\mu_2) \geq r$ such that $\rho \leq \mu_1$, $\overline{1} - \lambda \leq \mu_2$ and $\mu_1 \bar{q} \mu_2$. Since $\mu_1 \bar{q} \mu_2$, then $C_{12}(\mu_1, r) \leq C_{12}(\bar{1} - \mu_2, r) = \bar{1} - \mu_2$. Therefore, $\rho \leq \mu_1$ implies $\rho \leq \mu_1 \leq C_{12}(\mu_1, r) \leq$ $\overline{1} - \mu_2 \leq \lambda$. Put $\nu = \mu_1$, this means there exists $\nu \in I^X$, $\tau_{12}(\nu) \geq r$ such that $\rho \leq \nu \leq$ $C_{12}(\nu, r) \leq \lambda$.

Conversely, suppose the condition holds. Let $\rho, \lambda \in I^X$ such that $C_{12}(\rho_1, r) = \rho_1 \bar{q} \rho_2 =$ $C_{12}(\rho_2, r)$. Then $\rho_1 \leqslant \overline{1} - \rho_2$. By hypothesis, there exists $\nu \in I^X$, $\tau_{12}(\nu) \geqslant r$ such that $\rho_1 \leq \nu \leq C_{12}(\nu, r) \leq \overline{1} - \rho_2$. This implies $\rho_1 \leq \nu$ and $\rho_2 \leq \overline{1} - C_{12}(\nu, r)$. Since $\nu \bar{q}$ ^{$\bar{1}$} − *C*₁₂(ν, r), then (X, τ_1, τ_2) is FP^*R_3 .

Definition 4.11 Let (X, τ) be a supra smooth topological space. If there exists a supra smooth proximity δ such that $\tau = \tau_{\delta}$, then τ and δ are said to compatible or the supra smooth topological space (X, τ) is a supra smooth proximal space.

Theorem 4.12 Let (X, τ_1, τ_2) be a FP^*T_4 and (X, τ_12) its induced supra smooth topological space. Then the mapping $\delta: I^X \times I^X \longrightarrow I$ defined by

$$
\delta(\mu,\rho) = \bigvee \{ 1 - r \in I | C_{12}(\mu,r) \neq C_{12}(\rho,r) \}
$$
\n(16)

is a compatible separated supra smooth proximity on *X*.

Proof. First, we show that δ defines a supra smooth proximity.

- (FP1) obvious.
- (FP2^{*}) Let $\delta(\mu, \lambda) \vee \delta(\rho, \lambda) = 1 r$. Then $C_{12}(\mu, r)$ *q* $C_{12}(\lambda, r)$ or $C_{12}(\rho, r)$ *q* $C_{12}(\lambda, r)$, which implies $C_{12}(\lambda, r) q C_{12}(\mu, r) \vee C_{12}(\rho, r)$. Since $C_{12}(\mu, r) \vee C_{12}(\rho, r) \leq C_{12}(\mu \vee$ (ρ, r) , then $C_{12}(\lambda, r)$ *q* $C_{12}(\mu \vee \rho, r)$. So $\delta(\mu \vee \rho, \lambda) = 1 - r$.
- (FP3) Since $C_{12}(\bar{1}, r) = \bar{1} \bar{q} \bar{0} = C_{12}(\bar{0}, r)$ for all $r \in I_0$, then $\delta(\bar{1}, \bar{0}) = 0$.
- (FP4) Let $\delta(\mu, \rho) < 1 r$. Then $C_{12}(\mu, r) \bar{q} C_{12}(\rho, r)$, this implies, $C_{12}(\mu, r) \leq \bar{1} C_{12}(\rho, r)$. Since (X, τ_1, τ_2) is a FP^*T_4 , then by Theorem 4.10, there exists $\lambda \in I^X$ with $\tau_{12}(\lambda) \geq r$ such that

$$
C_{12}(\mu, r) \leq \lambda \leq C_{12}(\lambda, r) \leq \overline{1} - C_{12}(\rho, r).
$$

put $\nu = \overline{1} - \lambda$. Then $C_{12}(\nu, r) = C_{12}(\overline{1} - \lambda, r) = \overline{1} - \lambda$, and so we have

$$
C_{12}(\mu, r) \leq \bar{1} - C_{12}(\nu, r) \leq C_{12}(\bar{1} - \nu, r) \leq \bar{1} - C_{12}(\rho, r),
$$

implies

$$
C_{12}(\mu, r) \leq \overline{1} - C_{12}(\nu, r)
$$
 and $C_{12}(\overline{1} - \nu, r) \leq \overline{1} - C_{12}(\rho, r)$.

Then

$$
C_{12}(\mu, r) \bar{q} C_{12}(\nu, r)
$$
 and $C_{12}(\bar{1} - \nu, r) \bar{q} C_{12}(\rho, r)$.

Thus,

$$
\delta(\mu, \nu) < 1 - r \text{ and } \delta(\bar{1} - \nu, \rho) < 1 - r.
$$

Hence the result.

(FP5) Let μ q ρ , then $C_{12}(\mu, r)$ q $C_{12}(\rho, r)$ for all $r \in I_0$. It then follows from (16), $\delta(\mu, \rho) = 1$. Hence δ is a supra smooth proximity on X.

To show δ is separated, suppose $\delta(x_t, y_m) = 1$. Then $C_{12}(x_t, r)$ *q* $C_{12}(y_m, r)$ for all $r \in I_0$. Since (X, τ_1, τ_2) is FP^*T_1 , then by Theorem 4.9, $x_t q y_m$. Hence δ is separated.

To show $\tau_{12} = \tau_{\delta}$, first let μ be an *r*-closed fuzzy set in (X, τ_{12}) , i.e. $C_{12}(\mu, r) = \mu$ and let x_t q $C_\delta(\mu, r)$. Then by (8), $\delta(x_t, \mu) \geq 1-r$ and from (16), $C_{12}(x_t, r)$ q $C_{12}(\mu, r)$. Since (X, τ_1, τ_2) is FP^*T_1 and $C_{12}(\mu, r) = \mu$, then we have $x_t \notin \mu$. Thus $C_{\delta}(\mu, r) \leq \mu$, clearly $\mu \leq C_{\delta}(\mu, r)$. So $C_{\delta}(\mu, r) = \mu$ and hence μ is an *r*-closed fuzzy set in (X, τ_{δ}) .

Conversely, let μ be an *r*- closed fuzzy set in (X, τ_{δ}) and x_t *q* $C_{12}(\mu, r)$. This implies $C_{12}(x_t, r)$ *q* $C_{12}(\mu, r)$ and from (16), $\delta(x_t, \mu) \geq 1 - r$, means that x_t *q* $C_{\delta}(\mu, r) = \mu$. Then $C_{12}(\mu, r) \leq \mu$, but $\mu \leq C_{12}(\mu, r)$. So $C_{12}(\mu, r) = \mu$ and hence μ is an *r*-closed fuzzy set in (X, τ_{12}) .

Theorem 4.13 If a smooth bts (X, τ_1, τ_2) is a FP^*T_1 and the induced supra smooth $\text{topological space } (X, \tau_{12}) \text{ has a compatible supra smooth proximity and } \delta: I^X \times I^X \longrightarrow I$ defined by

$$
\delta(\mu,\rho) = \bigvee \{ 1 - r \in I | C_{12}(\mu,r) \neq C_{12}(\rho,r) \}. \tag{17}
$$

Then (X, τ_{δ}) is a FT_4 -space.

Proof. Let $\rho_1, \rho_2 \in I^X$ with $C_\delta(\rho_1, r) = \rho_1, C_\delta(\rho_2, r) = \rho_2$ and $\rho_1 \bar{q} \rho_2$. This implies, $C_{\delta}(\rho_1,r) \bar{q} C_{\delta}(\rho_2,r)$ and so $C_{12}(\rho_1,r) \bar{q} C_{12}(\rho_2,r)$, by (17), we have $\delta(\rho_1,\rho_2) < 1-r$. Then by (FP4) axiom, there exists $\eta \in I^X$ such that $\delta(\rho_1, \eta) < 1 - r$ and $\delta(1 - \eta, \rho_2) < 1 - r$. By using Proposition $3.5(2)$, we have

$$
\delta(\rho_1, C_\delta(\eta, r)) < 1 - r \quad \text{and} \quad \delta(C_\delta(\bar{1} - \eta, r), \rho_2) < 1 - r.
$$

Therefore, $\rho_1 \bar{q} C_{\delta}(\eta, r)$ and $\rho_2 \bar{q} C_{\delta}(\bar{1} - \eta, r)$. So, $\rho_1 \leq \bar{1} - C_{\delta}(\eta, r)$ and $\rho_2 \leq \bar{1} - C_{\delta}(\bar{1} - \eta, r)$. Since $\overline{1} - C_{\delta}(\eta, r)$, $\overline{1} - C_{\delta}(\overline{1} - \eta, r)$ are *r*-open fuzzy sets in (X, τ_{δ}) and $\overline{1} - C_{\delta}(\eta, r)$ \overline{q} $\overline{1}$ – $C_{\delta}(\bar{1} - \eta, r)$, then (X, τ_{δ}) is a *FR*₃. Since (X, τ_{12}) is a *FT*₁ and compatible with δ , then (X, τ_{δ}) is a FT_1 . Hence, (X, τ_{δ}) is a FT_4 .

Definition 4.14 Let (X, δ_1, δ_2) and $(Y, \delta_1^*, \delta_2^*)$ be two smooth biproximity spaces. Then a mapping $f : (X, \delta_1, \delta_2) \longrightarrow (X, \delta_1^*, \delta_2^*)$ is called:

- (1) *FP*-proximity map if it satisfies, $\delta_i(\mu, \rho) \leq \delta_i^*(f(\mu), f(\rho))$ for every $\mu, \rho \in I^X$ and $i = 1, 2.$
- (2) FP^* -proximity map if it satisfies, $\delta_{12}(\mu,\rho) \leq \delta_{12}^*(f(\mu),f(\rho))$ for every $\mu,\rho \in I^X$

Proposition 4.15 Let $f : (X, \delta_1, \delta_2) \longrightarrow (Y, \delta_1^*, \delta_2^*)$, if f is a FP -proximity map, then *f* is a *F P∗* -proximity map.

Proof. The proof follows from the definition of δ_{12} and *FP*-proximity of *f*.

Next we give the relationship between smooth bitopological spaces and smooth biproximity spaces.

Theorem 4.16 Let $f : (X, \delta_1, \delta_2) \longrightarrow (Y, \delta_1^*, \delta_2^*)$ be a FP^* -proximity map. Then: (1) $f: (X, \tau_{\delta_{12}}) \longrightarrow (Y, \tau_{\delta_{12}^*})$ is a *f*-continuous map.

(2)
$$
C_{\delta_{12}}(f^{-1}(\mu), r) \leq f^{-1}(C_{\delta_{12}^*}(\mu, r)),
$$
 for all $r \in I_1$, for all $\mu \in I^Y$

Proof. (1) By Theorem ??, we will show that $f(C_{\delta_{12}}(\mu,r)) \leq C_{\delta_{12}^*}(f(\mu),r)$, for all $r \in I_1$, for all $\mu \in I^X$.

Suppose that, there exist $y \in Y$, $t \in I_0$, such that

$$
f(C_{\delta_{12}}(\mu, r))(y) > t > C_{\delta_{12}^*}(f(\mu), r)(y).
$$
\n(18)

.

By the definition of $C_{\delta_{12}^*}(f(\mu), r)$, there exists $\lambda \in I^Y$ such that $\lambda \leqslant \overline{1} - f(\mu)$, $\delta_{12}^*(\lambda, f(\mu)) < 1 - r$ and $\overline{1 - \lambda(y)} < t$.

On the other hand, since $f^{-1}(\bar{1} - f(\mu)) = \bar{1} - f^{-1}(f(\mu))$, we have $\lambda \leq \bar{1} - f(\mu)$ implies $f^{-1}(\lambda) \leq f^{-1}(\bar{1} - f(\mu)) = \bar{1} - f^{-1}(f(\mu)) \leq \bar{1} - \mu$. Since *f* is a *FP*^{*}-proximity map, and $f(f^{-1}(\lambda)) \leq \lambda$, we have,

$$
\delta_{12}(\mu, f^{-1}(\lambda)) \leq \delta_{12}^*(f(\mu), f(f^{-1}(\lambda))) < 1 - r.
$$

Therefore, $\delta_{12}(\mu, f^{-1}(\lambda)) \leq 1 - r$ implies $C_{\delta_{12}}(\mu, r) \leq 1 - f^{-1}(\lambda)$. So,

$$
f(C_{\delta_{12}}(\mu,r))(y) \leq \overline{1} - f(f^{-1}(\lambda))(y) = f(f^{-1}(\overline{1} - \lambda))(y) < t.
$$

Which is contradicts for (18).

(2) Suppose that $C_{\delta_{12}}(f^{-1}(\mu), r) \nleq f^{-1}(C_{\delta_{12}^*}(\mu, r))$. Then, there exist $x \in X$, $t \in I_0$ such that

$$
C_{\delta_{12}}(f^{-1}(\mu), r)(x) > t > f^{-1}(C_{\delta_{12}^*}(\mu, r))(x).
$$
\n(19)

By the definition of $C_{\delta_{12}^*}(\mu, r)$, there exists $\lambda \in I^Y$ such that $\delta_{12}^*(\lambda, \mu) < 1-r$ and $f^{-1}(\bar{1} - \lambda)(x) < t.$

Since *f* is a *FP*^{*}-proximity map, then we have $\delta_{12}(f^{-1}(\mu), f^{-1}(\lambda)) \leq$ $\delta_{12}^*(f(f^{-1}(\mu)), f(f^{-1}(\lambda))) < \delta_{12}^*(\mu, \lambda) < 1-r$. So, it follows that $C_{\delta_{12}}(f^{-1}(\mu), r)(x)$ $\leq 1 - f^{-1}(\lambda)(x) \leq t$. This contradicts (19). Hence the result. ■

5. *P* **-smooth quasi-proximity spaces**

In this section we introduce the concept of *P*-smooth quasi-proximity δ and study it is basic properties, and we discuss the structure of smooth bts based on *P*-smooth quasiproximity.

Definition 5.1 A mapping $\delta: I^X \times I^X \longrightarrow I$ satisfying (FQP1), (FQP2), (FQP4) and the following axioms:

(FQP3 *∗*)

- (i) If $\delta(\mu, \rho) < r$, then there exists $\eta \in I^X$ such that $\delta(\mu, \eta) < r$ and $\delta(\bar{1} \eta, \rho) < r$.
- (ii) If $\delta(\rho, \mu) < r$, then there exists $\eta \in I^X$ such that $\delta(\rho, \eta) < r$ and $\delta(\bar{1} \eta, \mu) < r$.

is called *P*-smooth quasi-proximity on *X* and the pair (X, δ) is called *P*-smooth quasiproximity space.

Lemma 5.2 Let (X, δ) be a *P*-smooth quasi-proximity space, $\mu, \lambda \in I^X$ and $r \in I_0$. If $\delta(\mu, \lambda) \geq r, \mu \leq \mu_1 \text{ and } \lambda \leq \lambda_1 \text{, then } \delta(\mu_1, \lambda_1) \geq r.$

Proof. The result follows from (FQP2) axiom. ■

Theorem 5.3 Let (X, δ) be a *P*-smooth quasi-proximity space. Then

(1) The mapping $\delta^{-1}: I^X \times I^X \longrightarrow I$ defined by

$$
\delta^{-1}(\mu,\rho) = \delta(\rho,\mu) \tag{20}
$$

for all $\mu, \rho \in I^X$, is also a *P*-smooth quasi-proximity on *X*.

(2) The mapping $C_{\delta}: I^X \times I_1 \longrightarrow I^X$ given by

$$
C_{\delta}(\lambda, r) = \bigwedge \{ \rho \in I^X \mid \delta(\bar{1} - \rho, \lambda) < 1 - r \},\tag{21}
$$

is a fuzzy closure operator. Furthermore, C_{δ} generates a smooth topology τ_{δ} : $I^X \longrightarrow I$ as (4).

Proof.

- (1) By the definition of δ^{-1} and Remark *1*(3), it suffices to show axiom (FQP3^{***}(*ii*)). Let $\delta^{-1}(\rho,\mu) < r$. Since $\delta^{-1}(\rho,\mu) = \delta(\mu,\rho) < r$. Then, by (FQP3^{*}(*i*)), there exists $\eta \in I^X$ such that $\delta(\mu, \bar{1} - \eta) < r$ and $\delta(\eta, \rho) < r$. It follows, $\delta^{-1}(\bar{1} - \eta, \mu) < r$ and $\delta^{-1}(\rho, \eta) < r$, which is the required result. Hence, δ^{-1} is a *P*-smooth quasiproximity on *X*.
- (2) To prove that C_{δ} is a fuzzy closure operator, we need to satisfy conditions $(C1)$ − ($C5$) in Definition 2.3. The proof of the parts $(C1) - (C3)$ follows directly from axiom (FQP1), Remark *1*(2), (21) and axiom (FQP4).

(C4) Let $r, s \in I_1, r \leq s$. Suppose $C_\delta(\lambda, r) \not\leq C_\delta(\lambda, s)$. Then, there exist $x \in X$ and $t \in I_0$ such that

$$
C_{\delta}(\lambda, r)(x) > t > C_{\delta}(\lambda, s)(x). \tag{22}
$$

Since $C_{\delta}(\lambda, s)(x) < t$. Then, there exists $\rho \in I^X$, $\delta(\bar{1} - \rho, \lambda) < 1 - s$ and $\rho(x) < t$. Since $\delta(\bar{1} - \rho, \lambda) < 1 - s < 1 - r$. Then, there exists $\rho \in I^X$, $C_{\delta}(\lambda, r) \leq \rho$. It follows $C_{\delta}(\lambda, r)(x) < t$. This however contradicts (22). Hence, the result.

(C5) From (C2), it is suffices to show that $C_{\delta}(C_{\delta}(\lambda, r), r) \leq C_{\delta}(\lambda, r)$. Suppose the contrary, i.e. there exist $x \in X$ and $t \in I_0$ such that

$$
C_{\delta}(C_{\delta}(\lambda, r), r)(x) > t > C_{\delta}(\lambda, r)(x).
$$
\n(23)

Then, there exists $\rho \in I^X$ such that $C_{\delta}(C_{\delta}(\lambda, r), r)(x) > t > \rho(x), \delta(\bar{1} - \rho, \lambda) <$ 1 *− r*. Since $\delta(\bar{1} - \rho, \lambda) < 1 - r$, then by axiom (FQP3^{***}(*i*)), there exists $η ∈ I^X$ such that $\delta(\bar{1}-\rho,\eta) < 1-r$ and $\delta(\bar{1}-\eta,\lambda) < 1-r$. Hence, $C_{\delta}(\lambda,r) \leq \eta$. It follows from Lemma 5.2, $\delta(\bar{1}-\rho, C_{\delta}(\lambda, r)) < 1-r$. Therefore, $C_{\delta}(C_{\delta}(\lambda, r), r) \leq \rho$ implies $C_{\delta}(C_{\delta}(\lambda, r), r)(x) \leq \rho(x) < t$. This contradicts (23). Hence, C_{δ} is a fuzzy closure operator. From Definition 2.3, C_{δ} generates a smooth topology $\tau_{\delta}: I^X \longrightarrow I$ as in (4) .

Corollary 5.4 Let (X, δ) be a *P*-smooth quasi-proximity space. Then the mapping $C_{\delta^{-1}}: I^X \times I_1 \longrightarrow I^X$ given by

$$
C_{\delta^{-1}}(\lambda, r) = \bigwedge \{ \rho \in I^X \mid \delta(\lambda, \bar{1} - \rho) < 1 - r \},\tag{24}
$$

is a fuzzy closure operator. Furthermore, $C_{\delta^{-1}}$ generates a smooth topology $\tau_{\delta^{-1}}: I^X \longrightarrow$ *I* as (4).

Proposition 5.5 Let (X, δ) be a *P*-smooth quasi-proximity space, $\lambda, \rho \in I^X$, $x_t \in$ $Pt(X)$ and $r \in I_1$. Then

- (1) $x_t q C_\delta(\lambda, r)$ if and only if $\delta(x_t, \lambda) \geq 1 r$.
- (2) $x_t q C_{\delta^{-1}}(\lambda, r)$ if and only if $\delta(\lambda, x_t) \geq 1 r$.
- (3) $\delta(\lambda, \rho) = \delta(C_{\delta^{-1}}(\lambda, r), C_{\delta}(\rho, r)).$

Proof.

(1) Let $x_t q C_\delta(\lambda, r)$ and suppose $\delta(x_t, \lambda) < 1-r$. Then, $\delta(x_t, \lambda) = \delta(\overline{1} - (\overline{1} - x_t), \lambda) <$ 1*−r*, this implies $C_{\delta}(\lambda, r) \leq \overline{1} - x_t$ and thus $x_t \bar{q} C_{\delta}(\lambda, r)$ which is a contradiction. Hence, $\delta(x_t, \lambda) \geq 1 - r$.

Conversely, let $\delta(x_t, \lambda) \geq 1 - r$, suppose $x_t \bar{q} C_{\delta}(\lambda, r)$. Then from (21), there exists $\rho \in I^{\overline{X}}$ with $\delta(\overline{1} - \rho, \lambda) < 1 - r$ such that $x_t \bar{q} \rho$ implies $x_t \leq \overline{1} - \rho$. From Remark $1(2)$, we have $\delta(x_t, \lambda) < 1 - r$ which is a contradiction with hypothesis.

- (2) Let $x_t q C_{\delta^{-1}}(\lambda, r)$ and suppose $\delta(\lambda, x_t) < 1-r$. Then, $\delta(\lambda, \overline{1} (\overline{1} x_t)) < 1-r$, from (24) we have, $C_{\delta^{-1}}(\lambda, r) \leq \overline{1} - x_t$. This implies $x_t \bar{q} C_{\delta^{-1}}(\lambda, r)$ which is a contradiction. Hence, $\delta(\lambda, x_t) \geq 1 - r$. Conversely, similar of part (1).
- (3) The necessity comes directly from Remark *1*(2). For sufficiency, suppose that $\delta(\lambda, \rho) < 1 - r$. Then from $(FQP3^*(i))$, there exists $\eta \in I^X$ such that $\delta(\lambda, \eta) <$ $1-r$ and $\delta(\bar{1}-\eta,\rho) < 1-r$. If $x_t \in \eta$, then $\delta(\lambda, x_t) < 1-r$, so $x_t \bar{q} C_{\delta^{-1}}(\lambda,r)$ and hence $x_t \leq \overline{1} - C_{\delta^{-1}}(\lambda, r)$. Then $\eta \leq \overline{1} - C_{\delta^{-1}}(\lambda, r)$ implies that $C_{\delta^{-1}}(\lambda, r) \leq \overline{1} - \eta$. Thus, from Remark *1*(2), we get, $\delta(C_{\delta^{-1}}(\lambda, r), \rho) < 1 - r$. Again by applying $((FQP3^*(i)))$, we have, $\nu \in I^X$ such that $\delta(C_{\delta^{-1}}(\lambda, r), \bar{1} - \nu) < 1 - r$ and $\delta(\nu, \rho) <$ $1-r$. If $x_t \in \nu$, then $\delta(x_t, \rho) < 1-r$. So, $x_t \bar{q} C_{\delta}(\rho, r)$ and hence $x_t \leq \bar{1} - C_{\delta}(\rho, r)$. Then $\nu \leq \overline{1} - C_{\delta}(\rho, r)$ which implies $C_{\delta}(\rho, r) \leq \overline{1} - \nu$, and from Remark *1*(2), we get, $\delta(C_{\delta^{-1}}(\lambda,r), C_{\delta}(\rho,r)) < 1-r$. Therefore, $\delta(\lambda,\rho) = \delta(C_{\delta^{-1}}(\lambda,r), C_{\delta}(\rho,r))$.

Theorem 5.6 If (X, δ) is a *P*-smooth quasi-proximity space. Then, $(X, \tau_{\delta}, \tau_{\delta^{-1}})$ is *FPR*_{*i*}-space, $i = 0, 1, 2, 3$.

Proof.

- (0) Let $x_t \bar{q} C_{\delta}(y_m, r)$. Then, $\delta(x_t, y_m) < 1-r$. Since $\delta^{-1}(y_m, x_t) = \delta(x_t, y_m) < 1-r$, from Proposition 5.4(2), $y_m \bar{q} C_{\delta^{-1}}(x_t, r)$. Similarly, if $x_t \bar{q} C_{\delta^{-1}}(y_m, r)$, we have $y_m \bar{q} C_{\delta}(x_t, r)$. Hence, $(X, \tau_{\delta}, \tau_{\delta^{-1}})$ is *FPR*₀-space.
- (1) Let $x_t \bar{q} C_{\delta}(y_m, r)$. Then $\delta(x_t, y_m) < 1 r$, by $(FQP3^*(i))$, there exists $\eta \in I^X$ such that $\delta(x_t, \eta) < 1 - r$ and $\delta(\overline{1} - \eta, y_m) < 1 - r$. Hence, $x_t \bar{q} C_{\delta}(\eta, r)$ and $y_m \bar{q} C_{\delta^{-1}}(\bar{1} - \eta, r)$. Then, $x_t \leq \bar{1} - C_{\delta}(\eta, r) = I_{\delta}(\bar{1} - \eta, r), y_m \leq \bar{1} - C_{\delta^{-1}}(\bar{1} - \eta, r) =$ $I_{\delta^{-1}}(\eta,r)$ and $I_{\delta}(\bar{1}-\eta,r) \bar{q} I_{\delta^{-1}}(\eta,r)$. Similarly, if $x_t \bar{q} C_{\delta^{-1}}(y_m,r)$. Then there exists an *r*-*τ*_{δ}-open fuzzy set $I_{\delta}(1 - \nu, r)$ and an *r*-*τ*_{δ}-1-open fuzzy set $I_{\delta^{-1}}(\nu, r)$ such that $x_t \in I_{\delta^{-1}}(\nu, r)$, $y_m \in I_{\delta}(\overline{1} - \nu, r)$ and $I_{\delta^{-1}}(\nu, r) \bar{q} I_{\delta}(\overline{1} - \nu, r)$. Hence, $(X, \tau_{\delta}, \tau_{\delta^{-1}})$ is *FPR*₁-space.

- (2) Let $x_t \bar{q} \rho = C_{\delta^{-1}}(\rho, r)$. Then, from Proposition 5.4(2), $\delta(\rho, x_t) < 1 r$, and by $(FQP3^*(ii))$, there exists $\eta \in I^X$ such that $\delta(\rho, \eta) < 1-r$ and $\delta(\bar{1}-\eta, x_t) < 1-r$. Hence, $\rho \bar{q} C_{\delta}(\eta, r)$ and $x_t \bar{q} C_{\delta^{-1}}(\bar{1} - \eta, r)$. This implies $\rho \leq I_{\delta}(\bar{1} - \eta, r)$, $x_t \in$ *I*_δ^{−1}(*n_, r*) and *I*_δ($\overline{1}$ *− n, r*) \overline{q} *I*_{δ−1}(*n, r*). Similarly, if *x_t* \overline{q} *C*_δ(*p, r*), then there exists $\nu \in I^X$ such that $x_t \in I_\delta(\bar{1} - \nu, r)$ and $\rho \in I_{\delta^{-1}}(\nu, r)$ and $I_\delta(\bar{1} - \nu, r) \bar{q} I_{\delta^{-1}}(\nu, r)$. Hence, $(X, \tau_{\delta}, \tau_{\delta^{-1}})$ is FPR_2 -space.
- (3) Similar to part (2).

Definition 5.7 A *P*-smooth quasi-proximity δ is said to be separated if and only if

$$
x_t \bar{q} y_m \text{ implies } \delta(x_t, y_m) \neq 1 \tag{25}
$$

for all $x_t, y_m \in Pt(X)$.

Theorem 5.8 If (X, δ) is a separated *P*-smooth quasi-proximity space. Then, $(X, \tau_{\delta}, \tau_{\delta^{-1}})$ is FPT_i -space, $i = 0, 1, 2, 3, 4$.

Proof.

- (0) Let x_t \bar{q} y_m . Since δ is a separated, then $\delta(x_t, y_m) \neq 1$. Then, there exists $r \in$ *I*₁ such that $\delta(x_t, y_m) < 1 - r$. It follows that $y_m \bar{q} C_{\delta^{-1}}(x_t, r)$. Since $x_t \in$ $I_{\delta^{-1}}(x_t,r) \leq C_{\delta^{-1}}(x_t,r)$. Then, there exists $\lambda = I_{\delta^{-1}}(x_t,r)$ such that $x_t \in \lambda$, *y*^{*m*} \bar{q} λ . Hence $(X, \tau_{\delta}, \tau_{\delta^{-1}})$ is *FPT*₀-space.
- (1) Similar to part (0).
- (2) Let x_t \bar{q} y_m . Since δ is separated, then $\delta(x_t, y_m) \neq 1$. Then, there exists $r \in I_1$ such that $\delta(x_t, y_m) < 1 - r$. From axiom (FQP3^{*} (*i*)), there exits $\eta \in I^X$ such that $\delta(x_t, \eta) < 1 - r$ and $\delta(\overline{1} - \eta, y_m) < 1 - r$. This implies $x_t \bar{q} C_{\delta}(\eta, r)$ and $y_m \bar{q} C_{\delta^{-1}}(\tilde{1} - \eta, r)$ which yields $x_t \in \bar{1} - C_{\delta}(\eta, r) = I_{\delta}(\bar{1} - \eta, r), y_m \in$ $\bar{1} - C_{\delta^{-1}}(\bar{1} - \eta, r) = I_{\delta^{-1}}(\eta, r)$ and $I_{\delta}(\bar{1} - \eta, r) \bar{q} I_{\delta^{-1}}(\eta, r)$. Hence $(X, \tau_{\delta}, \tau_{\delta^{-1}})$ is FPT_{2} -space.
- (3) It is follows directly from Theorem 4.7(2) and part (1).
- (4) It is follows directly from Theorem 4.7(3) and part (1).

■

References

- [1] S. E. Abbas, A study of smooth topological spaces, Ph.D. Thesis, South Vally University, Egypt, 2002.
- [2] M. E. Abd El-Monsef, A. A. Ramadan, On fuzzy supratopological spaces, Indian Journal of Pure and Applied Mathematics. 18 (1987), 322-329.
- [3] G. Artico, R. Moresco, Fuzzy proximities compatible with Lowen fuzzy uniformities, Fuzzy Sets and Systems. 21 (1987), 85-98.
- R. Badard, Smooth axiomatics, First IFSA Congress Palma de Mallorca, 1986.
- C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [6] K. C. Chattopadhyay, R. N. Hazra, S. K. Samanta, Gradation of openness: Fuzzy topology, Fuzzy Sets and Systems. 94 (1992), 237-242.
- [7] K. C. Chattopadhyay, S. K. Samanta, Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems. 54 (1993), 207-212.
- [8] V. A. Efremovic, Infinitesimal spaces, Doklady Akad. Nauk SSSR (N.S.) (in Russian) 76 (1951), 341-343.
- [9] M. K. El Gayyar, E. E. Kerre, A. A. Ramadan, Almost compactness and near compactness in smooth topological spaces, Fuzzy Sets and Systems. 92 (1994), 193-202.
- [10] M. H. Ghanim, O. A. Tantawy, F. M. Selim, Gradations of uniformity and gradations of proximity, Fuzzy sets and Systems. 79 (1996), 373-382.
- [11] M. H. Ghanim, O. A. Tantawy, F. M. Selim, Gradation of supra-openness, Fuzzy Sets and Systems. 109 (2000), 245-250.
- [12] A. Kandil, Biproximities and fuzzy bitopological spaces, Simon Stevin. 63 (1989), 45-66.

- [13] A. Kandil, A. Nouh, S. A. El-Sheikh, On fuzzy bitopological spaces, Fuzzy Sets and Systemes. 74 (1995), 353-363.
- [14] A. Kandil, A. A. Nouh, S. A. El-Sheikh, Fuzzy supra proximity spaces and fuzzy biproximity spaces, J. Fuzzy Math. 3 (1995), 301-315.
- [15] A. K. Katsaras, Fuzzy proximity spaces, J. Math. Anal. Appl. 68 (1979), 100-110.
- [16] A. K. Katsaras, On fuzzy proximity spaces, J. Math. Anal. Appl. 75 (1980), 671-583.
- [17] Y. C. Kim, Mappings on fuzzy proximity and fuzzy uniform spaces, Kangweon-Kyungki Math. Jour. 4 (1996), 149-161.
- [18] Y. C. Kim, J. W. Park, Some properties of fuzzy quasi-proximity spaces, Kangweon-Kyungki Math. Jour. 5 (1997), 35-49.
- [19] Y. C. Kim, *r*-fuzzy semi-open sets in fuzzy bitopological spaces, Far East J. Math. Sci. special (FJMS) II. (2000), 221-236.
- [20] E. P. Lee, Y.-B. Im, H. Han, Semiopen sets on smooth bitopological spaces, Far East J. Math. Sci. 3 (2001), 493-511.
- [21] A. S. Mashhour, A. A. Allam, F. S. Mohmoud, F. H. Khedr, On supra topological spaces, Indian Journal of Pure and Applied Mathematics. 14 (1983), 502-510.
- [22] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems. 48 (1992), 371-375.
- [23] A. A. Ramadan, S. E. Abbas, A. A. Abd El-Latif, On fuzzy bitopological spaces in Šostak's sense, Commun. Korean Math. Soc. 21 (2006), 497-514.
- [24] A. A. Ramadan, S. E. Abbas, A. A. El-Latif, On fuzzy bitopological spaces in Šostak's sense (II), Commun. Korean Math. Soc. 25 (2010), 457-475.
- [25] S. K. Samanta, Fuzzy proximities and fuzzy uniformities, Fuzzy sets and Systems. 70 (1995), 97-105.
- [26] A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo, Ser.II. 11 (1985), 89-103.
- [27] A. P. Šostak, Basic structures of fuzzy topology, J. Math. Sci. 78 (1996), 662-701.