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Abstract. The Mod 2 Steenrod algebra is a Hopf algebra that consists of the primary co-
homology operations, denoted by Sqn, between the cohomology groups with Z2 coefficients
of any topological space. Regarding to its vector space structure over Z2, it has many base
systems and some of the base systems can also be restricted to its sub algebras. On the
contrary, in addition to the work of Wood, in this paper we define a new base system for the
Hopf subalgebras A(n) of the mod 2 Steenrod algebra which can be extended to the entire
algebra. The new base system is obtained by defining a new linear ordering on the pairs

(s+ t, s) of exponents of the atomic squares Sq2
s(2t−1) for the integers s ⩾ 0 and t ⩾ 1.
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1. Introduction

The mod 2 Steenrod algebra A consists of the Steenrod squares

Sqi : Hn(X;Z2) −→ Hn+i(X;Z2) for i ⩾ 0

which were introduced by Norman Steenrod [8] in 1947. These squares are the coho-
mology operations satisfying the naturality property. Furthermore they commute with
the suspension maps hence they are stable (for the details, please refer to [7] and the
references therein).
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The Steenrod algebra was applied to the Hopf invariant 1 problem and the vector
fields on spheres and the Steenrod operations are also used for computing the homotopy
groups of n-spheres. Therefore it is one of the important tools in algebraic topology. It
has a deep structure which has still not been completely solved.

The Steenrod algebra has a Hopf algebraic structure [4] and is the union of the finite
Hopf subalgebras, A(n)’s. Hence every element of the Steenrod algebra belongs to A(n)
for some n and the A(n)s are finite dimensional vector spaces. This means that every
element in positive grading is nilpotent. Some researchers in this area investigate the
nilpotence height of some operations but this is still an open problem, and we do not
know the nilpotence height of all elements of the Steenrod algebra. The more we know
about the structure of the sub Hopf algebras, we’ll be closer to consider the problems in
the entire Steenrod algebra. Monks [5] has defined a special base system by constructing
a family of certain Milnor elements [4] for the mod 2 Steenrod algebra. Arnon [1] has
also defined base systems for the Hopf subalgebra that can be extended to whole mod 2
Steenrod algebra and Karaca [2] has generalized the Arnon base systems to odd prime
cases. Further, Palmieri and Zhang [6] have constructed a family of bases for the mod p
Steenrod algebra from the elements called iterated commutators.

Wood [10] has defined the atomic squares which are of the form Sq2
s(2t−1) and intro-

duced the Y and Z base systems for the Hopf subalgebra by giving a linear ordering on
the pairs (s, t) and (s + t, t) respectively. Wood has also stated the Problem 4.19 in [9]
that “Which orderings of atomic square give rise to bases of the A(n)?” This paper is
one of the examples of his problem.

The paper is organized as follows: Firstly we provide a brief information about the
mod 2 Steenrod algebra and the Y and Z base systems introduced by Wood [10]. Then
we introduce the new base system, N basis, which can be used alternatively in place of
Y and Z basis.

2. Preliminaries

For each pair of nonnegative integers i, n there is a group homomorphism

Sqi : Hn(X;Z2) −→ Hn+i(X;Z2)

between the cohomology groups of a topological space X, called the ith Steenrod squares.
They are stable cohomology operations, that is, they commute with suspension maps. All
the Steenrod squares form an algebraic structure which is known as the mod 2 Steenrod
algebra A subject to the Adem relations

SqiSqj =

⌊ i

2
⌋∑

k=0

(
j − k − 1
i− 2k

)
Sqi+j−kSqk

for i < 2j, where ⌊ i
2⌋ denotes the greatest integer which is less than or equal to i

2 and the

binomial coefficient is taken in mod 2. The grading of the Steenrod square Sqi is i and
for the composition of the Steenrod squares Sqi1Sqi2 ...Sqik , the grading is i1+i2+ ...+ik.

The Steenrod algebra A has a natural co-product map ψ : A −→ A ⊗ A, where
Sqi 7→ ψ(Sqi) =

∑
j+k=i Sq

j ⊗ Sqk over the Steenrod squares [4]. Since ψ is linear, then
it can be extended to the whole algebra therefore it makes A into a co-commutative Hopf
algebra.
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Milnor [4] also showed that the Steenrod algebra has a filtration by finite dimensional
sub algebras and is a finite dimensional vector space in each grading (we say in algebraic
topology that Steenrod algebra is finite type) so the dual algebra also has a Hopf alge-
braic structure. Knowing what the dual algebra is and the base system of it provides to
determine the base system of the Steenrod algebra.

For n ⩾ 0, let A(n) be the Hopf subalgebras which are defined by the profile functions
h: {1, 2, ...} −→ {0, 1, ...,∞} [3], where t 7−→ h(t) = max{n + 2 − t, 0}. Then each
A(n) is generated as an algebra by {P s

t : s + t ⩽ n + 1} where P s
t is a Milnor basis

Sq(0, ..., 0, 2s, 0, , ) such that 2s occupies position t [3, 5]. Note that the grading of P s
t is

2s(2t − 1).
Let’s associate the Sq2

s(2t−1) to P s
t . We call the number 2s(2t − 1) as atomic numbers

and the squares Sq2
s(2t−1) as atomic squares [9].

3. A New Base System

Wood considers two base systems forA(n) which can be extended toA and constructed
by the Steenrod squares. Let

W k
n = Sq2

k(2n+1−1)Sq2
k(2n−1)...Sq2

k

and define

Yn =Wn
0 W

n−1
1 ...W 0

n .

For instance,

Y1 = Sq2Sq3Sq1

Y2 = Sq4Sq6Sq2Sq7Sq3Sq1

Y3 = Sq8Sq12Sq4Sq14Sq6Sq2Sq15Sq7Sq3Sq1.

Wood proves that Yn is the top element for A(n) where the top element means the
monomial in the subalgebra with a maximum length, length is the number of Steenrod
operations in the monomial and the set of 2(n+1)(n+2)/2 monomials obtained by selecting
all subsets of atomic factors in Yn, in the given order, is an additive basis for A(n) [10].

Another base system constructed by Wood for A(n) is as follows: Let

Xn = Sq1.2
n

Sq3.2
n−1

Sq7.2
n−2

...Sq2
n+1−1

and define

Zn := XnXn−1...X1X0.

For instance,

Z1 = Sq2Sq3Sq1

Z2 = Sq4Sq6Sq7Sq2Sq3Sq1

Z3 = Sq8Sq12Sq14Sq15Sq4Sq6Sq7Sq2Sq3Sq1.
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In this case element Zn is again the top element for A(n) in terms of grading and the
set of 2(n+1)(n+2)/2 monomials obtained by selecting all subsets of atomic factors in Zn,
in the given order, is, again, an additive basis for A(n) [10].

The motivation of the constructions for the base systems Y and Z for A(n) is based on
considering the atomic squares Sq2

s(2t−1) associated with P s
t and imposing and ordering

for the pairs (s, t). Wood call the orderings as Y -order and Z-order for the base system
Y and Z respectively. The Y -order is a left lexicographic order on the pairs (s, t) and
Z-order is a left lexicographic order on the pairs (s+ t, s).

There is a practical tool for finding the top elements Yn and Zn in A(n) under the
given order. For this, we will use the sequence of terms in 1, 3, 7, · · · , 2n− 1 form. In this
case, we take the first n+ 1 term from this sequence and write it down in the first row.
Then in the following row, we place the double of the terms in the previous row but the
number of terms in each row will be one-less than the number of previous terms. We will
continue this process until the number of terms in the last row is 1. These numbers will
be the exponents of our top element Yn or Zn.

For instance consider A(3). In this case, we will write down the terms 1, 3, 7, 15 in the
first row In the second row, we will write down the doubles of 1, 3 and 7 , which are
2, 6 and 14. In the following line, we will write down the doubles of 2 and 6, which are
4 and 12. In the last line, we will only write down the double of 4, 8. Now, in which
sequence should we read these numbers? If we start reading from the bottom line to the
top line, from right to left, this gives us the exponents for the top element Yn in A(n).
For example, we want to read the top element Y3 in A(3). We start off from the bottom
line, 8. Then we go up to the upper line and read from right to left, 12 and 4. We go up
again to the upper line and read from right to left, 14, 6, 2, and it goes on like this and
this will give us the exponents for the top element Y3. Notice that, if we read from the
bottom to the top diagonally, this will give us the top element Zn.

Figure 1. Y1, Y2 and Y3

Unfortunately not all orderings on this number set yield a top element because of the
Adem relations, the coefficient can be a multiple of 2 so a monomial can vanish. Wood
offers the Problem 4.19 in his paper [9] that in which ordering on this number set give
rise to bases for A(n) that can be also extended to whole algebra? For this, we have
made an ordering by applying the ’Cantor Diagonalization Method’ to the pair (s+ t, s)
of atomic squares Sq2

s(2t−1).
For instance the pair (4, 0) is larger than the pair (2, 1) so the atomic squares Sq15

which is associated with (4, 0) will take precedence of Sq2 which is associated with (2, 1)
while we form a new basis element.

Again, there is a practical tool for finding the new top element. We order the number
set as we considered above. The new top element is as follows: We start reading from
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Figure 2. Z1, Z2 and Z3

s+t \ s 0 1 2 3 4 5 6 7 8 . . .
1 (1,0) → (1,1) (1,2) → (1,3) (1,4) → (1,5) (1,6) → (1,7) (1,8)

↙ ↗ ↙ ↗ ↙ ↗ ↙ ↗
2 (2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

↓ ↗ ↙ ↗ ↙ ↗ ↙ ↗
3 (3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

↙ ↗ ↙ ↗ ↙ ↗
4 (4,0) (4,1) (4,2) (4,3) (4,4) (4,5)

↓ ↗ ↙ ↗ ↙ ↗
5 (5,0) (5,1) (5,2) (5,3) (5,4)

↙ ↗ ↙ ↗
6 (6,0) (6,1) (6,2) (6,3)

↓ ↗ ↙ ↗
7 (7,0) (7,1) (7,2)

↙ ↗
8 (8,0) (8,1)

↓ ↗
9 (9,0)
...

Table 1. Cantor Diagonalization Method’ to the pair (s + t, s) of atomic squares Sq2
s(2t−1)

the bottom row. We go up and move from right to the left. Then we go up again and
go to the right 2 units and keep going on like this until the element ends diagonally.
Then go up and continue from the least significant digit. Go down and move to the left 2
units until the element ends diagonally again. Then move to the left 1 unit do the same
procedures of going up and down. This ordering will also define a top element for A(n).
For instance if we would like to find the top element N3, we go from 8 to 12 and 12 to
4. Then we go up and go to the right 2 units, 14. there are no more moves to go up and
move to the right 2 units so we go up and continue from 15. Then go down and move to
the left 2 units, 6. There is no move remained for going down and moving to the left 2
units so move left on the same line, 2. Then go up again, move to the right two units, 7.
Since it’s not impossible to go up/down, move to the left again, 3, and continue to move
to the left, 1.

For instance,

N1 = Sq2Sq3Sq1

N2 = Sq4Sq6Sq2Sq7Sq3Sq1

N3 = Sq8Sq12Sq4Sq14Sq15Sq6Sq2Sq7Sq3Sq1.
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Figure 3. N1, N2 and N3

Theorem 3.1 If we order the atomic numbers as shown in the figures then Nn is the top
element of A(n) and the set of 2(n+1)(n+2)/2 monomials obtained by selecting all subsets
of atomic factors in Nn, in the given order, is an additive basis for A(n).

To prove the theorem, we use some results obtained by Wood in [10]. Taking i = 2a−1,
j = 2b − 1 in the Adem relations, the following theorem was proved by Lucas theorem.

Theorem 3.2 [10] For a ⩽ b

Sq2
a−1Sq2

b−1 =
∑

0<c<a

Sq2
a+2b−2c−1Sq2

c−1.

Theorem 3.3 [10] For any monomial in the Steenrod squares having at least one factor
with odd superfix can be written as a sum of monomials in each of which the last factor
has odd superfix.

Theorem 3.4 [10] If n is odd, then Sqn can be written as a sum of monomials in each
of which the last factor has superfix of the form 2k − 1.

Suppose I = (n1, n2, ..., nk) is the finite sequence of nonnegative integers and

SqI = Sqn1Sqn2 ...Sqnk

be the monomials corresponding to I. Also, let Sq2I is the monomial obtained by SqI

by duplication. Wood [10] states that Adem relation defined on Sq2I has the same effect
as defined on the corresponding relation on SqI modulo terms which have at least one
factor with the odd superfix.
Proof of Theorem 3.1 We must show that the theorem is true for the grading n + 1
while it is true for n > 0. Take a monomial SqI in grading n+ 1 where

I = (n1, n2, ..., nk).

If ni is an even number for all 1 ⩽ i ⩽ k, then the grading of the monomial SqI/2 is
less than or equal to n+ 1. By the inductive hypothesis, SqI/2 is an N -basis element so
the duplication of it is again N -basis element. So assume that there exists a component
in the sequence I which is an odd number. By Theorem 3.3 and Theorem 3.4, we can
iterate this odd component to the last component nk in I as 2j − 1 for j ⩾ 1. Then the
monomial SqI can be written as

SqJSq2
k−1
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where the grading of SqJ is less than or equal to n. If all the components of J is even
then we are done because in this case SqI becomes an N -basis monomial. If there exists
a component in the sequence J which is an odd number, then by Theorem 3.3 and
Theorem 3.4, we can iterate this odd component to the last component of J which is of
the form 2m − 1 for m ⩾ 1. Now the monomial SqI can be written as

SqLSq2
m−1Sq2

k−1.

If m > k then we are done again. Otherwise Theorem 3.2 is applied to the iterated
squares Sq2

m−1Sq2
k−1 and this yields that SqI can be written as a sum of monomials of

the form

SqKSq2
ℓ−1

where ℓ < k. This entire process is repeated unless k = 1 and this completes the proof.
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