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Abstract. Best approximation results provide an approximate solution to the fixed point
equation Tx = x, when the non-self mapping T has no fixed point. In particular, a well-
known best approximation theorem, due to Fan [6], asserts that if K is a nonempty compact
convex subset of a Hausdorff locally convex topological vector space E and T : K → E is
a continuous mapping, then there exists an element x satisfying the condition d(x, Tx) =
inf{d(y, Tx) : y ∈ K}, where d is a metric on E. Recently, Hussain et al. (Abstract and
Applied Analysis, Vol. 2014, Article ID 837943) introduced proximal contractive mappings
and established certain best proximity point results for these mappings in G-metric spaces.
The aim of this paper is to introduce certain new classes of auxiliary functions and proximal
contraction mappings and establish best proximity point theorems for such kind of mappings
in G-metric spaces. As consequences of these results, we deduce certain new best proximity
and fixed point results in G-metric spaces. Moreover, we present certain examples to illustrate
the usability of the obtained results.
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1. Introduction

Best proximity point evolves as a generalization of the concept of best approximation. A
best approximation theorem guarantees the existence of an approximate solution, a best
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proximity point theorem is contemplated for solving the problem to find an approximate
solution which is optimal. Given nonempty closed subsets A and B of E, when a non-
self-mapping T : A → B has not a fixed point, it is quite natural to find an element x∗

such that d(x∗, Tx∗) is minimum. Best proximity point theorems guarantee the existence
of an element x∗ such that d(x∗, Tx∗) = d(A,B) := inf{d(x, y) : x ∈ A and y ∈ B};
this element is called a best proximity point of T . Moreover, if the mapping under
consideration is a self-mapping, best proximity point theorem reduces to a fixed point
result. For some results in this direction, we refer to [1, 5, 8, 10, 19, 22] and references
therein.

On the other hand, Mustafa and Sims introduced the notion of G-metric and investi-
gated the topology of such spaces. The authors also characterized some celebrated fixed
point result in the context of G-metric space. Following this initial paper, a number of
authors have published so many fixed point results on the setting of G-metric space (see
[3, 7, 12, 15, 17, 18, 20] and references therein). Samet et al. [21] and Jleli and Samet
[11] reported that some published results can be considered as a straight consequence of
the existence theorem in the setting of usual metric space. More recently, Asadi et al.
[2] proved some fixed point theorems in the framework of G-metric space that cannot be
obtained from the existence results in the context of associated metric space. G-metric
spaces proved to be rich for fixed point theory but the best proximity problem remains
open. In this paper we prove certain new best proximity point results using auxiliary
functions and as consequence we deduce some recent fixed point results as corollaries.

First we recollect some necessary definition and results in this direction. The notion
of G-metric spaces is defined as follows:

Definition 1.1 (See [13]) Let X be a non-empty set, G : X×X×X → R+ be a function
satisfying the following properties :
(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y) for all x, y ∈ X with x ̸= y,
(G3) G(x, x, y) ⩽ G(x, y, z) for all x, y, z ∈ X with y ̸= z,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables),
(G5) G(x, y, z) ⩽ G(x, a, a) +G(a, y, z) (rectangle inequality) for all x, y, z, a ∈ X.

Then the function G is called a generalized metric, or, more specifically, a G-metric
on X, and the pair (X,G) is called a G-metric space.

Note that every G-metric on X induces a metric dG on X defined by

dG(x, y) = G(x, y, y) +G(y, x, x), for all x, y ∈ X. (1)

For a better understanding of the subject we give the following examples of G-metrics:

Example 1.2 Let (X, d) be a metric space. The function G : X × X × X → [0,+∞),
defined by

G(x, y, z) = max{d(x, y), d(y, z), d(z, x)},

for all x, y, z ∈ X, is a G-metric on X.

Example 1.3 (See e.g. [13]) Let X = [0,∞). The function G : X ×X ×X → [0,+∞),
defined by

G(x, y, z) = |x− y|+ |y − z|+ |z − x|,



A. H. Ansari et al. / J. Linear. Topological. Algebra. 06(01) (2017) 73-89. 75

for all x, y, z ∈ X, is a G-metric on X.

In their initial paper, Mustafa and Sims [13] also defined the basic topological concepts
in G-metric spaces as follows:

Definition 1.4 (See [13]). Let (X,G) be a G-metric space, and let {xn} be a sequence
of points of X. We say that {xn} is G-convergent to x ∈ X if

lim
n,m→+∞

G(x, xn, xm) = 0,

that is, for any ε > 0, there exists N ∈ N such that G(x, xn, xm) < ε, for all n,m ⩾ N .
We call x the limit of the sequence and write xn → x or lim

n→+∞
xn = x.

Proposition 1.5 (See [13]). Let (X,G) be a G-metric space. The following are equiva-
lent:
(1) {xn} is G-convergent to x,
(2) G(xn, xn, x) → 0 as n→ +∞,
(3) G(xn, x, x) → 0 as n→ +∞,
(4) G(xn, xm, x) → 0 as n,m→ +∞.

Definition 1.6 (See [13]). Let (X,G) be a G-metric space. A sequence {xn} is called a
G-Cauchy sequence if, for any ε > 0, there exists N ∈ N such that G(xn, xm, xl) < ε for
all m,n, l ⩾ N , that is, G(xn, xm, xl) → 0 as n,m, l → +∞.

Proposition 1.7 (See [13]). Let (X,G) be a G-metric space. Then the followings are
equivalent:
(1) the sequence {xn} is G-Cauchy,
(2) for any ε > 0, there exists N ∈ N such that G(xn, xm, xm) < ε, for all m,n ⩾ N .

Definition 1.8 (See [13]) A G-metric space (X,G) is called G-complete if every G-
Cauchy sequence is G-convergent in (X,G).

Definition 1.9 Let (X,G) be a G-metric space. A mapping F : X×X×X → X is said
to be continuous if for any three G-convergent sequences {xn}, {yn} and {zn} converging
to x, y and z respectively, {F (xn, yn, zn)} is G-convergent to F (x, y, z).

Mustafa [16] extended the well-known Banach Contraction Principle Mapping in the
framework of G-metric spaces as follows:

Theorem 1.10 (See [16]) Let (X,G) be a complete G-metric space and T : X → X be
a mapping satisfying the following condition for all x, y, z ∈ X:

G(Tx, Ty, Tz) ⩽ kG(x, y, z), (2)

where k ∈ [0, 1). Then T has a unique fixed point.

Theorem 1.11 (See [16]) Let (X,G) be a complete G-metric space and T : X → X be
a mapping satisfying the following condition for all x, y ∈ X:

G(Tx, Ty, Ty) ⩽ kG(x, y, y), (3)

where k ∈ [0, 1). Then T has a unique fixed point.

Remark 1 We notice that the condition (2) implies the condition (3). The converse is
true only if k ∈ [0, 12). For details see [16].
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Lemma 1.12 [16] By the rectangle inequality (G5) together with the symmetry (G4),
we have

G(x, y, y) = G(y, y, x) ⩽ G(y, x, x) +G(x, y, x) = 2G(y, x, x). (4)

2. Main Results

Recall that every G-metric on X induces a metric dG on X defined by

dG(x, y) = G(x, y, y) +G(y, x, x), for all x, y ∈ X. (5)

Let (X,G) be a G-metric space. Suppose that A and B are nonempty subsets of a
G-metric space (X,G). We define the following sets:

A0 = {x ∈ A : dG(x, y) = dG(A,B) for some y ∈ B}
B0 = {y ∈ B : dG(x, y) = dG(A,B) for some x ∈ A} (6)

where dG(A,B) = inf{dG(x, y) : x ∈ A, y ∈ B}.

Definition 2.1 Let (X,G) be a G-metric space and A and B be two nonempty subsets
of X. Then B is said to be approximatively compact with respect to A if every sequence
{yn} inB, satisfying the condition dG(x, yn) → dG(x,B) for some x inA, has a convergent
subsequence.

We assume that

Ψ = {ψ : [0,∞) → [0,∞) such that ψ is non-decreasing and continuous}

where ψ(t) = 0 if and only if t = 0, and

Φ = {ϕ : [0,∞) → [0,∞) such that ϕ is lower semi-continuous}

where ϕ(t) > 0, t > 0, and ϕ(0) ⩾ 0.

Definition 2.2 We say that f : [0,∞)2 −→ R is a function of C-class if f is continuous
and

(1)f(s, t) ⩽ s
(2) f(s, t) = s =⇒ s = 0 or t = 0
for all s, t ∈ R. Note that for some f we have that f(0, 0) = 0.

Example 2.3 Let s, t ∈ [0,∞), then

(1) f(s, t) = s− t, f(s, t) = s⇒ t = 0;
(2) f(s, t) = ks, 0<k<1, f(s, t) = s⇒ s = 0;
(3) f(s, t) = s

(1+t)r ; r ∈ (0,∞), f(s, t) = s ⇒ s = 0 or t = 0;

(4) f(s, t) = loga(t+ as)/(1 + t), a > 1, f(s, t) = s ⇒ s = 0 or t = 0;
(5) f(s, t) = loga(1 + as)/2, a > 1, f(s, t) = s ⇒ s = 0;
(6) f(s, t) = (s+ l)(1/(1+t)

r) − l, l > 1, r ∈ (0,∞), f(s, t) = s ⇒ t = 0;
(7) f(s, t) = s logt+a a, a > 1, f(s, t) = s⇒ s = 0 or t = 0;
(8) f(s, t) = s− (1+s2+s)(

t
1+t), f(s, t) = s⇒ t = 0;

(9) f(s, t) = sβ(s), β : [0,∞) → [0, 1), f(s, t) = s⇒ s = 0;
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(10) f(s, t) = s− t
k+t , f(s, t) = s⇒ t = 0;

(11) f(s, t) = s − φ(s), f(s, t) = s ⇒ s = 0, here φ : [0,∞) → [0,∞) is a continuous
function such that φ(t) = 0 ⇔ t = 0;

(12) f(s, t) = sh(s, t), f(s, t) = s ⇒ s = 0, here h : [0,∞) × [0,∞) → [0,∞)is a
continuous function such that h(t, s) < 1 for all t, s > 0;

(13) f(s, t) = s− (2+t1+t)t, f(s, t) = s⇒ t = 0.

Definition 2.4 Let A and B be two nonempty subsets of a G-metric space (X,G). Let
T : A −→ B be a non-self mapping. We say T is a G-ψ-ϕ-f -proximal contractive mapping
if for x, y, u, u∗, v ∈ A

dG(u, Tx) = dG(A,B)
dG(u

∗, Tu) = dG(A,B)
dG(v, Ty) = dG(A,B)

 =⇒ ψ(G(u, u∗, v)) ⩽ f(ψ(G(x, u, y)), ϕ(G(x, u, y))) (7)

holds where ψ ∈ Ψ and ϕ ∈ Φ.

Following is our first main result.

Theorem 2.5 Let A,B be two nonempty subsets of a G-metric space (X,G) such that
(A,G) is a complete G-metric space, A0 is nonempty and B is approximatively compact
with respect to A. Assume that T : A −→ B is a G-ψ-ϕ-f -proximal contractive mapping
such that T (A0) ⊂ B0. Then T has a unique best proximity point i.e., there exists unique
z ∈ A such that dG(z, Tz) = dG(A,B).

Proof. Since the subset A0 is not empty, we take x0 in A0. Taking Tx0 ∈ T (A0) ⊆ B0

into account, we can find x1 ∈ A0 such that dG(x1, Tx0) = dG(A,B). Further, since
Tx1 ∈ T (A0) ⊆ B0, it follows that there is an element x2 in A0 such that dG(x2, Tx1) =
dG(A,B). Recursively, we obtain a sequence {xn} in A0 satisfying

dG(xn+1, Txn) = dG(A,B) for all n ∈ N ∪ {0} (8)

This show that

dG(u, Tx) = dG(A,B),
dG(u

∗, Tu) = dG(A,B),
dG(v, Ty) = dG(A,B)

where x = xn−1, u = xn, u
∗ = xn+1 and

y = xn, v = xn+1. Therefore from (7) we have,

ψ(G(xn, xn+1, xn+1)) ⩽ f(ψ(G(xn−1, xn, xn)), ϕ(G(xn−1, xn, xn)))
⩽ ψ(G(xn−1, xn, xn))

(9)

which implies G(xn, xn+1, xn+1) ⩽ G(xn−1, xn, xn). So the sequence {G(xn, xn+1, xn+1)}
is decreasing sequence in R+ and thus it is convergent to t ∈ R+. We claim that t = 0.
Suppose, to the contrary, that t > 0. Taking limit as n→ ∞ in (9) we get,

ψ(t) ⩽ f(ψ(t), ϕ(t))

which implies ψ(t) = 0 or ϕ(t) = 0. That is, t = 0 which is a contrary. Hence, t = 0. i.e.,

lim
n→∞

G(xn, xn+1, xn+1) = 0.
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We shall show that {xn}∞n=0 is a G-Cauchy sequence.
Suppose, to the contrary, that there exists ε > 0, and a sequence {xn(k)} of {xn} such

that

G(xm(k), xm(k)+1, xn(k)) ⩾ ε (10)

with n(k) ⩾ m(k) > k. Further, corresponding to m(k), we can choose n(k) in such a
way that it is the smallest integer with n(k) > m(k) and satisfying (10). Hence,

G(xm(k), xm(k)+1, xn(k)−1) < ε (11)

By Proposition 1.5 (iii) and (G5) we have

ε ⩽ G(xm(k), xm(k)+1, xn(k)) = G(xn(k), xm(k), xm(k)+1)

⩽ G(xn(k), xn(k)−1, xn(k)−1) +G(xn(k)−1, xm(k)+1, xm(k))

⩽ G(xm(k), xm(k)+1, xn(k)−1) + 2sn(k)−1

⩽ ε+ 2sn(k)−1.

(12)

Letting k → ∞ in (26) we derive that

lim
k→∞

G(xm(k), xm(k)+1, xn(k)) = ε. (13)

Also, by Proposition 1.5 (iii) and (G5) we obtain the following inequalities

G(xm(k), xm(k)+1, xn(k)) ⩽ G(xm(k), xm(k)−1, xm(k)−1) +G(xm(k)−1, xm(k)+1, xn(k))

= G(xm(k), xm(k)−1, xm(k)−1) +G(xn(k), xm(k)−1, xm(k)+1)

⩽ G(xm(k), xm(k)−1, xm(k)−1) +G(xn(k), xn(k)−1, xn(k)−1)

+G(xn(k)−1, xm(k)−1, xm(k)+1)

⩽ 2sm(k)−1 + 2sn(k)−1 +G(xn(k)−1, xm(k)−1, xm(k)+1)
(14)

and

G(xn(k)−1, xm(k)−1, xm(k)+1) ⩽ G(xn(k)−1, xn, xn) +G(xn(k), xm(k)−1, xm(k)+1)

= G(xn(k)−1, xn, xn) +G(xm(k)−1, xm(k)+1, xn(k))

⩽ G(xn(k)−1, xn, xn) +G(xm(k)−1, xm(k), xm(k))

+G(xm(k), xm(k)+1, xn(k))

= sn(k)−1) + sm(k)−1 +G(xm(k), xm(k)+1, xn(k)).

(15)
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Letting k → ∞ in (14) and (15) and applying (27) we find that

lim
k→∞

G(xn(k)−1, xm(k)−1, xm(k)+1) = ε. (16)

Again by Proposition 1.5 (iii) and (G5) we have,

G(xn(k)−1, xm(k)−1, xm(k)+1) = G(xm(k)+1, xm(k)−1, xn(k)−1)

= G(xm(k)+1, xm(k)−1, xn(k)−1)

⩽ G(xm(k)+1, xm(k), xm(k)) +G(xm(k), xm(k)−1, xn(k)−1)

= G(xm(k)+1, xm(k), xm(k)) +G(xm(k)−1, xm(k), xn(k)−1)

⩽ 2sm(k) +G(xm(k)−1, xm(k), xn(k)−1)
(17)

and

G(xm(k)−1, xm(k), xn(k)−1) = G(xm(k)−1, xm(k), xn(k)−1)

⩽ G(xm(k)−1, xm(k)+1, xm(k)+1) +G(xm(k)+1, xm(k), xn(k)−1)

⩽ G(xm(k)−1, xm(k), xm(k)) +G(xm(k), xm(k)+1, xm(k)+1)

G(xm(k)+1, xm(k), xn(k)−1)

= sm(k)−1 + sm(k) +G(xm(k)+1, xm(k), xn(k)−1)

= sm(k)−1 + sm(k) +G(xm(k), xm(k)+1, xn(k)−1)

< sm(k)−1 + sm(k) + ε.
(18)

Taking limit as k → ∞ in (17) and (18) and applying (16) we have,

lim
k→∞

G(xm(k)−1, xm(k), xn(k)−1) = ε. (19)

By (7) with x = xm(k)−1, u = xm(k)−1, u
∗ = xm(k), y = xn(k)−1, v = xn(k) we have,

ψ(G(xm(k), xm(k)+1, xn(k))) ⩽ f(ψ(G(xm(k)−1, xm(k), xn(k)−1)), ϕ(G(xm(k)−1, xm(k), xn(k)−1))).

Taking limit as k → ∞ in the above inequality we have,

ψ(ε) ⩽ f(ψ(ε), ϕ(ε))

so ψ(ε) = 0 or ϕ(ε) = 0 which implies ε = 0 which is a contradiction. Thus,

lim
m,n→∞

G(xm, xm+1, xn) = 0.
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That is {xn}∞0 is a Cauchy sequence. Since, (A,G) is a complete G-metric space, so there
exists z ∈ A such that xn → z as n→ ∞. On the other hand, for all n ∈ N, we can write

dG(z,B) ⩽ dG(z, Txn)

⩽ dG(z, xn+1) + dG(xn+1, Txn)

= dG(z, xn+1) + dG(A,B).

Taking the limit as n→ +∞ in the above inequality, we get

lim
n→+∞

dG(z, Txn) = dG(z,B) = dG(A,B). (20)

Since, B is approximatively compact with respect to A, so the sequence, {Txn} has a
subsequence {Txnk} that converges to some y∗ ∈ B. Hence,

dG(z, y
∗) = lim

n→∞
dG(xnk+1, Txnk) = dG(A,B)

and so z ∈ A0. Now, since, Tz ∈ T (A0) ⊆ B0, there exists w ∈ A0 such that dG(w, Tz) =
dG(A,B).

From (7) with x = xn, u = xn+1, u
∗ = xn+2, y = z and v = w we have,

ψ(G(xn+1, xn+2, w)) ⩽ f(ψ(G(xn, xn+1, z)), ϕ(G(xn, xn+1, z))).

Taking limit as n→ ∞ we get,

ψ(G(z, z, w)) ⩽ f(ψ(0), ϕ(0)) ⩽ ψ(0) = 0.

ThenG(z, z, w) = 0. i.e., w = z. Thus dG(z, Tz) = dG(A,B). Therefore T has a best prox-
imity point. To prove uniqueness, suppose that p ̸= q, such that dG(p, Tp) = dG(A,B)
and dG(q, T q) = dG(A,B). Now by (7) with x = u = u∗ = p and y = v = q we get,

ψ(G(p, p, q)) ⩽ f(ψ(G(p, p, q)), ϕ(G(p, p, q)))

which implies ψ(G(p, p, q)) = 0 or ϕ(G(p, p, q)) = 0. i.e., p = q. ■

Example 2.6 Let X = [0,∞) and G(x, y, z) = 1
4(|x−y|+ |y−z|+ |x−z|) be a G-metric

on X. Then dG(x, y) = |x− y|. Let A = {3, 4, 5, 6, 7} and B = {9, 10, 11, 12, 13}. Define
T : A −→ B by

T (x) =

{
9, if x = 7
x+ 6, otherwise

Also define ψ, ϕ : [0,∞) −→ [0,∞) by ψ(t) = t, ϕ(t) = a
t

2 for a > 0 and , f :
[0,∞)2 −→ R, f(s, t) = loga

t+as

1+t .
Clearly, dG(A,B) = 2, A0 = {7}, B0 = {9} and TA0 ⊂ B0. Let dG(u, Tx) =

dG(A,B) = 2 and
dG(v, Ty) = dG(A,B) = 2. Then (u, x), (v, y) ∈ {(7, 7), (7, 3)}.
Also, if dG(u

∗, Tu) = dG(A,B) = 2, then u∗=7. Therefore, if
dG(u, Tx) = dG(A,B)
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dG(u
∗, Tu) = dG(A,B)

dG(v, Ty) = dG(A,B)
then u = u∗ = v = 7, so ψ(G(u, u∗, v)) = 0.
Hence,

ψ(G(u, u∗, v)) = 0 ⩽ 1
2G(x, u, y) = loga

a
1
2
G(x,u,y)+aG(x,u,y)

1+a
1
2
G(x,u,y)

= loga
ϕ(G(x,u,y))+aψ(G(x,u,y))

1+ϕ(G(x,u,y)) .

That is,
dG(u, Tx) = dG(A,B)
dG(u

∗, Tu) = dG(A,B)
dG(v, Ty) = dG(A,B)
⇓
ψ(G(u, u∗, v)) ⩽ loga

ϕ(G(x,u,y))+aψ(G(x,u,y))

1+ϕ(G(x,u,y)) .

Thus T is a G-ψ-ϕ-f -proximal contractive mapping. All conditions of Theorem 2.5
hold true and T has a unique best proximity point. Here, z = 7 is unique best proximity
point of T .

If in Theorem 2.5 we take ψ(t) = t, f(s, t) = rs where 0 ⩽ r < 1, then we deduce the
following corollary.

Corollary 2.7 Let A,B be two nonempty subsets of a G-metric space (X,G) such that
(A,G) is a complete G-metric space, A0 is nonempty and B is approximatively compact
with respect to A. Assume that T : A→ B is a non-self mapping such that T (A0) ⊆ B0

and for x, y, u, u∗, v ∈ A,

dG(u, Tx) = dG(A,B)
dG(u

∗, Tu) = dG(A,B)
dG(v, Ty) = dG(A,B)

 =⇒ G(u, u∗, v) ⩽ rG(x, u, y)

holds where 0 ⩽ r < 1. Then T has a unique best proximity point. i.e., there exists
unique z ∈ A such dG(z, Tz) = dG(A,B).

If in Theorem 2.5 we take f(s, t) = s− t, we obtain following corollary.

Corollary 2.8 (Theorem 16 of [9]) Let A,B be two nonempty subsets of a G-metric
space (X,G) such that (A,G) is a complete G-metric space, A0 is nonempty and B is
approximatively compact with respect to A. Let T : A −→ B be a non-self mapping such
that T (A0) ⊂ B0. If for x, y, u, u

∗, v ∈ A

dG(u, Tx) = dG(A,B)
dG(u

∗, Tu) = dG(A,B)
dG(v, Ty) = dG(A,B)

 =⇒ ψ(G(u, u∗, v)) ⩽ ψ(G(x, u, y))− ϕ(G(x, u, y))

holds where ψ ∈ Ψ and ϕ ∈ Φ. Then T has a unique best proximity point i.e., there
exists unique z ∈ A such that dG(z, Tz) = dG(A,B).

If in Theorem 2.5 we take f(s, t) = s
1+t , we obtain following corollary.

Corollary 2.9 Let A,B be two nonempty subsets of a G-metric space (X,G) such that
(A,G) is a complete G-metric space, A0 is nonempty and B is approximatively compact
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with respect to A. Let T : A −→ B be a non-self mapping such that T (A0) ⊂ B0. If for
x, y, u, u∗, v ∈ A

dG(u, Tx) = dG(A,B)
dG(u

∗, Tu) = dG(A,B)
dG(v, Ty) = dG(A,B)

 =⇒ ψ(G(u, u∗, v)) ⩽ ψ(G(x, u, y))

1 + ϕ(G(x, u, y))

holds where ψ ∈ Ψ and ϕ ∈ Φ. Then T has a unique best proximity point i.e., there
exists unique z ∈ A such that dG(z, Tz) = dG(A,B).

If in Theorem 2.5 we take f(s, t) = s logt+a a, a > 1, we obtain;

Corollary 2.10 Let A,B be two nonempty subsets of a G-metric space (X,G) such that
(A,G) is a complete G-metric space, A0 is nonempty and B is approximatively compact
with respect to A. Let T : A −→ B be a non-self mapping such that T (A0) ⊂ B0. If for
x, y, u, u∗, v ∈ A

dG(u, Tx) = dG(A,B)
dG(u

∗, Tu) = dG(A,B)
dG(v, Ty) = dG(A,B)

 =⇒ ψ(G(u, u∗, v)) ⩽ ψ(G(x, u, y)) loga+ϕ(G(x,u,y)) a

holds where a > 1, ψ ∈ Ψ and ϕ ∈ Φ. Then T has a unique best proximity point i.e.,
there exists unique z ∈ A such that dG(z, Tz) = dG(A,B).

If in Theorem 2.5 we take f(s, t) = log(t + as)/(1 + t), a > 1, we obtain following
corollary.

Corollary 2.11 Let A,B be two nonempty subsets of a G-metric space (X,G) such that
(A,G) is a complete G-metric space, A0 is nonempty and B is approximatively compact
with respect to A. Let T : A −→ B be a non-self mapping such that T (A0) ⊂ B0. If for
x, y, u, u∗, v ∈ A

dG(u, Tx) = dG(A,B)
dG(u

∗, Tu) = dG(A,B)
dG(v, Ty) = dG(A,B)

 =⇒ ψ(G(u, u∗, v)) ⩽ loga
ϕ(G(x,u,y))+aψ(G(x,u,y))

1 + ϕ(G(x, u, y))

holds where a > 1, ψ ∈ Ψ and ϕ ∈ Φ. Then T has a unique best proximity point i.e.,
there exists unique z ∈ A such that dG(z, Tz) = dG(A,B).

Definition 2.12 Let A and B be two nonempty subsets of a G-metric space (X,G). Let
T : A∪B −→ A∪B be a non-self mapping such that T (A) ⊂ B,T (B) ⊂ A. We say T is
generalized G-ψ-ϕ-f -proximal cyclic weak contractive mapping if for x, u, u∗ ∈ A, v, y ∈
B
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dG(u, Tu
∗) = dG(A,B)

dG(u
∗, Tx) = dG(A,B)

dG(v, Ty) = dG(A,B)

 =⇒ ψ(G(u∗, u, v)) ⩽ f(ψ(M(x, v, y)), ϕ(M(x, v, y))) (21)

holds where ψ ∈ Ψ, ϕ ∈ Φ and M(x, v, y) = max{G(x, v, y), G(x, Tx, Tx), G(y, Ty, Ty)}.

Theorem 2.13 Let A,B be two nonempty subsets of a G-metric space (X,G) such that
(A,G), (B,G) are complete G-metric spaces, A0 is nonempty and B is approximatively
compact with respect to A. Assume that T : A ∪ B −→ A ∪ B is a G-ψ-ϕ-f -proximal
cyclic weak contractive mapping such that T (A) ⊂ B, T (B) ⊂ A and T (A0) ⊂ B0. Then
T has a best proximity point.

Proof. If x0 in A0, then x1 = Tx0 ∈ T (A0) ⊆ B, so dG(x0, Tx0) = dG(x0, x1) =
dG(A,B). Further, since x2 = Tx1 ∈ T (B0) ⊆ A, it follows that dG(x1, Tx1) =
dG(x1, x2) = dG(A,B). Recursively, we obtain a sequence {xn} in A ∪B satisfying

dG(xn, xn+1) = dG(A,B) for all n ∈ N ∪ {0} (22)

This implies that

dG(u
∗, Tx) = dG(A,B),

dG(u, Tu
∗) = dG(A,B),

dG(v, Ty) = dG(A,B)
where x = xn−1, u = xn+1, u

∗ = xn+1 and

y = xn, v = xn. Therefore from (21) we have,

ψ(G(xn+1, xn+1, xn)) ⩽ f(ψ(M(xn−1, xn, xn)), ϕ(M(xn−1, xn, xn)))
⩽ ψ(M(xn−1, xn, xn))

where

M(xn−1, xn, xn) = max{G(xn−1, xn, xn), G(xn−1, Txn−1, Txn−1), G(xn, Txn, Txn)}

= max{G(xn−1, xn, xn), G(xn−1, xn, xn), G(xn, xn+1, xn+1)}

= max{G(xn−1, xn, xn), G(xn, xn+1, xn+1)}.

If

M(xn−1, xn, xn) = G(xn, xn+1, xn+1)

then we have that

ψ(G(xn, xn+1, xn+1)) = ψ(G(xn+1, xn+1, xn)) ⩽ f(ψ(G(xn, xn+1, xn+1)), ϕ(G(xn, xn+1, xn+1)))

therefore ψ(G(xn, xn+1, xn+1)) = 0 or ϕ(G(xn, xn+1, xn+1) = 0. Thus we obtain that
G(xn, xn+1, xn+1) = 0 therefore xn = xn+1 and this implies that each xn is fixed point,
that is a contradiction.

Hence we have that
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M(xn−1, xn, xn) = G(xn−1, xn, xn)

so

ψ(G(xn, xn+1, xn+1)) ⩽ f(ψ(G(xn−1, xn, xn)), ϕ(G(xn−1, xn, xn)) ⩽ ψ(G(xn−1, xn, xn)

which implies G(xn, xn+1, xn+1) ⩽ G(xn−1, xn, xn). So the sequence
{G(xn, xn+1, xn+1)} is decreasing sequence in R+ and thus it is convergent to
t ∈ R+. We claim that t = 0. Suppose, to the contrary, that t > 0. Taking limit as
n→ ∞ in above we get,

ψ(t) ⩽ f(ψ(t), ϕ(t))

which implies ψ(t) = 0 or ϕ(t) = 0. That is, t = 0 which is a contrary. Hence, t = 0. i.e.,

lim
n→∞

G(xn, xn+1, xn+1) = 0. (23)

We shall show that {xn}∞n=0 is a G-Cauchy sequence. Suppose, to the contrary, that there
exists ε > 0, and a sequence {xn(k)} of {xn} such that

G(xm(k), xn(k), xn(k)) ⩾ ε (24)

with n(k) ⩾ m(k) > k. Further, corresponding to m(k), we can choose n(k) in such a
way that it is the smallest integer with n(k) > m(k) > k and satisfying (24). Hence,

G(xm(k), xn(k)−1, xn(k)−1) < ε (25)

By Proposition 1.5 (iii) and (G5) we have

ε ⩽ G(xm(k), xn(k), xn(k))

⩽ G(xm(k), xn(k)−1, xn(k)−1) +G(xn(k)−1, xn(k), xn(k))

< ε+G(xn(k)−1, xn(k), xn(k))
(26)

Letting k → ∞ in (26) we derive that

lim
k→∞

G(xm(k), xn(k), xn(k)) = ε. (27)

Observe that for every k ∈ N ; there exist s(k) satisfying 0 ⩽ s(k) ⩽ m such that

n(k)−m(k) + s(k) ≡ 1mod m. (28)
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Therefore for large enough values of k we have r(k) = m(k)− s(k) > 0 and xr(k) and
xn(k) lie in the set A and B respectively.

Next using (21) with x = xr(k), u = xn(k)+1, u
∗ = xr(k) , y = xn(k) and v = xn(k)

ψ(G(xr(k), xn(k)+1, xn(k))) ⩽ f(ψ(M(xr(k), xn(k), xn(k))), ϕ(M(xr(k), xn(k), xn(k))))
⩽ ψ(M(xr(k), xn(k), xn(k)))

(29)

where

M(xr(k), xn(k), xn(k)) = max{G(xr(k), xn(k), xn(k)), G(xr(k), Txr(k), Txr(k)), G(xn(k), Txn(k), Txn(k))}

= max{G(xr(k), xn(k), xn(k)), G(xr(k), xr(k)+1, xr(k)+1), G(xn(k), xn(k)+1, xn(k)+1)}.

Employing rectangle inequality repeatedly, we obtain

G(xr(k), xn(k), xn(k)) ⩽ G(xr(k), xr(k)+1, xr(k)+1) +G(xr(k)+1, xn(k), xn(k))

⩽ G(xr(k), xr(k)+1, xr(k)+1) +G(xr(k)+1, xr(k)+2, xr(k)+2) +G(xr(k)+2, xn(k), xn(k))

⩽ [

m−1∑
i=r

G(xi(k), xi(k)+1, xi(k)+1)] +G(xm(k), xn(k), xn(k))

or

G(xr(k), xn(k), xn(k))−G(xm(k), xn(k), xn(k)) ⩽
m−1∑
i=r

G(xi(k), xi(k)+1, xi(k)+1)

On letting k → ∞ and using (23), (29) we deduce that

lim
k→∞

G(xr(k), xn(k), xn(k)) = lim
k→∞

G(xm(k), xn(k), xn(k)) = ε. (30)

Using rectangle inequality again, we have

G(xr(k), xn(k)+1, xn(k)) ⩽ G(xr(k), xn(k)+1, xn(k)+1) +G(xn(k)+1, xn(k)+1, xn(k)).

On letting k → ∞ and using (30), we deduce that

lim
k→∞

G(xr(k), xn(k)+1, xn(k)) = ε. (31)

Now passing to limit as k→ ∞ in (29) and using (23), (30), (31), we get

ψ(ε) ⩽ f(ψ(max{ε, 0, 0}), ϕ(max{ε, 0, 0})) = f(ψ(ε)), ϕ(ϵ))
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and hence ψ(ε)) = 0 or ϕ(ϵ) = 0, therefore ϵ = 0 which contradicts the assumption
that {xn} is not G-Cauchy. Thus {xn} is a Cauchy sequence.

Since A and B is complete there exist z ∈ A ⊂ A ∪B such that xn → z as n→ ∞.
On the other hand for each n ∈ N , we have

dG(z,B) ⩽ dG(z, Txn) = dG(z, xn+1) ⩽ dG(z, xn) + dG(xn, xn+1

⩽ dG(z, xn) + dG(A,B) ⩽ dG(z, xn) + dG(z,B).

Taking limit as n→ ∞ in above inequality, we get

dG(z,B) ⩽ lim
n→∞

dG(z, Txn) = dG(z,B) = dG(A,B).

Since, B is approximatively compact with respect to A, so the sequence, {Txn} has a
subsequence {Txnk} that converges to some y∗ ∈ B ⊂ A ∪B.

Hence

dG(z, y
∗) = lim

n→∞
dG(xnk , Txnk) = dG(A,B)

and so z ∈ A0. Now, since, Tz ∈ T (A0) ⊆ B0, there exists w ∈ A0 such that dG(w, Tz) =
dG(A,B).

From (21) with x = xn−1, u = w, u∗ = z, y = xn and v = xn we have,

ψ(G(z, w, xn)) ⩽ f(ψ(M(xn−1, xn, xn)), ϕ(M(xn−1, xn, xn))) =

f(ψ(max{G(xn−1, xn, xn), G(xn−1, xn, xn), G(xn−1, xn, xn)}),

ϕ(max{G(xn−1, xn, xn), G(xn, xn+1, xn+1), G(xn, xn+1, xn+1)}))

Taking limit as n→ ∞ we get,

ψ(G(z, w, z)) ⩽ f(ψ(0), ϕ(0)) ⩽ ψ(0) = 0.

Then G(z, z, w) = 0. i.e., w = z. Thus dG(z, Tz) = dG(A,B). Therefore T has a best
proximity point. ■

Example 2.14 Let X = [0,∞) andG(x, y, z) = 1
4(|x−y|+ |y−z|+ |x−z|) be a G-metric

on X. Then dG(x, y) = |x− y|.
Let A = {0, 4, 8} and B = {2, 6, 10}. Define T : A ∪B −→ A ∪B by
T (x) = 0, if x = 10
x+ 2, otherwise.
Also define ψ, ϕ : [0,∞) −→ [0,∞) by ψ(t) = t, ϕ(t) = a

t

2 and, f : [0,∞)2 −→ R,
f(s, t) = loga

t+as

1+t .
Clearly, dG(A,B) = 2, and TA ⊂ B, TB ⊂ A, then T is a generalized G-ψ-ϕ-f -

proximal cyclic weak contraction for u = u∗ = 4, x = 0 ∈ A, and v = 2, y = 10 ∈ B, we
have

ψ(G(u∗, u, v)) = G(u∗, u, v) = 1,
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and

M(x, v, y) = max{G(x, v, y), G(x, Tx, Tx), G(y, Ty, Ty)}

= max{G(0, 2, 10), G(0, 2, 2), G(10, 0, 0)} = 5

so

ψ(G(u∗, u, v)) = 1 ⩽ 1

2
M(x, v, y) = loga

a
1

2
M(x,v,y) + aM(x,v,y)

1 + a
1

2
M(x,v,y)

= loga
ϕ(M(x, v, y)) + aψ(M(x,v,y))

1 + ϕ(M(x, v, y))
.

Thus

dG(u
∗, Tx) = dG(A,B)

dG(u, Tu
∗) = dG(A,B)

dG(v, Ty) = dG(A,B)

⇓

ψ(G(u, u∗, v)) ⩽ loga
ϕ(M(x, u, y)) + aψ(M(x,u,y))

1 + ϕ(M(x, u, y))
.

Hence T is a generalized G-ψ-ϕ-f -proximal cyclic weak cyclic contractive mapping. All
conditions of Theorem 2.13 hold true and T has a best proximity point. Here, z = 0 is
best proximity point of T .

If in Theorem 2.13, we take f(s, t) = s− t, we obtain following corollary.

Corollary 2.15 Let A,B be two nonempty subsets of a G-metric space (X,G) such that
(A,G), (B,G) are complete G-metric space, A is nonempty and B is approximatively
compact with respect to A. Assume that T : A ∪B −→ A ∪B is a such that T (A) ⊂ B,
T (B) ⊂ A and T (A0) ⊂ B0. If for x, u, u

∗ ∈ A, v, y ∈ B
dG(u

∗, Tx) = dG(A,B)
dG(u, Tu

∗) = dG(A,B)
dG(v, Ty) = dG(A,B)
⇓
ψ(G(u∗, u, v)) ⩽ ψ(M(x, v, y))− ϕ(M(x, v, y))

holds where ψ ∈ Ψ and ϕ ∈ Φ.,M(x, v, y) = max{G(x, v, y), G(x, Tx, Tx), G(y, Ty, Ty)}
Then T has a unique best proximity point.

If in Theorem 2.13, we take f(s, t) = s
(1+t)r , r ∈ (0,∞), we obtain following corollary.

Corollary 2.16 Let A,B be two nonempty subsets of a G-metric space (X,G) such that
(A,G), (B,G) are complete G-metric spaces, A is nonempty and B is approximatively
compact with respect toA. Assume that T : A ∪ B −→ A ∪ B is a such that T (A) ⊂ B,
T (B) ⊂ A and T (A0) ⊂ B0. If for x, u, u

∗ ∈ A, v, y ∈ B
dG(u

∗, Tx) = dG(A,B)
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dG(u, Tu
∗) = dG(A,B)

dG(v, Ty) = dG(A,B)
⇓
ψ(G(u∗, u, v)) ⩽ ψ(M(x,v,y))

(1+ϕ(M(x,v,y)))r , r ∈ (0,∞)

holds where ψ ∈ Ψ and ϕ ∈ Φ, M(x, v, y) = max{G(x, v, y), G(x, Tx, Tx), G(y, Ty, Ty)}.
Then T has a best proximity point.

If in Theorem 2.13, we take f(s, t) = s logtr+a a, we obtain following corollary.

Corollary 2.17 Let A,B be two nonempty subsets of a G-metric space (X,G) such that
(A,G), (B,G) are a complete G-metric spaces, A is nonempty and B is approximatively
compact with respect toA. Assume that T : A ∪ B −→ A ∪ B is a such that T (A) ⊂ B,
T (B) ⊂ A and T (A0) ⊂ B0. If for x, u, u

∗ ∈ A, v, y ∈ B
dG(u

∗, Tx) = dG(A,B)
dG(u, Tu

∗) = dG(A,B)
dG(v, Ty) = dG(A,B)
⇓
ψ(G(u∗, u, v)) ⩽ ψ(M(x, v, y)) logϕ(M(x,v,y))r+a a, a > 1, r > 0

holds where ψ ∈ Ψ and ϕ ∈ Φ, M(x, v, y) = max{G(x, v, y), G(x, Tx, Tx), G(y, Ty, Ty)}.
Then T has a best proximity point.

Remark 2 Several more best proximity results can be obtained from Theorems 2.5 and
2.13 using the other functions f mentioned in Example 2.3, and/or some other concrete
choices of ψ ∈ Ψ and ϕ ∈ Φ.

3. Application to fixed point theory

In this section, as an application of our best proximity results we here derive certain
new fixed point results.

Note that if,

dG(u, Tx) = dG(A,B)
dG(u

∗, Tu) = dG(A,B)
dG(v, Ty) = dG(A,B)

 and A = B = X, then u = Tx, u∗ = Tu and

v = Ty. That is, u∗ = T 2x. Therefore, if in Theorem 2.5 we take A = B = X, we deduce
the following result.

Theorem 3.1 Let (X,G) be a complete G-metric space and T : X → X be a mapping
satisfying the following condition, for all x, y ∈ X where ψ ∈ Ψ and ϕ ∈ Φ,

ψ(G(Tx, T 2x, Ty)) ⩽ f(ψ(G(x, Tx, y)), ϕ(G(x, Tx, y))).

Then T has a unique fixed point.

If in Theorem 3.1, we take f(s, t) = s− t, then we obtain following fixed point result.

Theorem 3.2 (Theorem 2.3 of [2]) Let (X,G) be a complete G-metric space and T :
X → X be a mapping satisfying the following condition, for all x, y ∈ X where ψ ∈ Ψ
and ϕ ∈ Φ,

ψ(G(Tx, T 2x, Ty)) ⩽ ψ(G(x, Tx, y))− ϕ(G(x, Tx, y)).
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Then T has a unique fixed point.

If in Theorem 3.1 we take f(s, t) = s
1+t , we obtain following corollary.

Corollary 3.3 Let (X,G) be a complete G-metric space and T : X → X be a mapping
satisfying the following condition, for all x, y ∈ X where ψ ∈ Ψ and ϕ ∈ Φ,

ψ(G(Tx, T 2x, Ty)) ⩽ ψ(G(x, Tx, y))

1 + ϕ(G(x, Tx, y))
.

Then T has a unique fixed point.

Remark 3 Several more fixed point results can be obtained from Theorems 2.13 and 3.1
using other functions f mentioned in Example 2.3, and/or some other concrete choices
of ψ ∈ Ψ and ϕ ∈ Φ.
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