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Abstract. In addition to exploring constructions and properties of limits and colimits in
categories of topological algebras, we study special subcategories of topological algebras and
their properties. In particular, under certain conditions, reflective subcategories when paired
with topological structures give rise to reflective subcategories and epireflective subcategories
give rise to epireflective subcategories.
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Essentially a topological algebra is a universal algebra endowed with a topological
structure so that algebraic operations are continuous in all variables together. Wyler has
generalized the construction of categories of topological algebras (see [15]), by obtaining
from what he calls a “top” category (which is equivalent to the concept topological
category) Cs and an operational category A over a category C a new category Ar

which is “top” over A and operational over Cs, with a pullback property. Fay further
generalized the categories of topological algebras using a concept called topologically
algebraic situation (see [4]). Later Nel ([11]) and Koslowski ([9]) have given descriptions
that are adopted in our work. First, let us describe some concepts used in this work.
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1. Preliminaries

There are several definitions for the term “algebraic functor” in the literature, all of
which are equivalent in some special categories, but not in general. We choose to adopt
the following popular definition [8, page 243]. A functor U : X → Y is called algebraic
iff U has a left adjoint and preserves and reflects regular epimorphisms.

An algebraic functor is faithful ([8], 32.17). If U : X −→ Y is an algebraic functor and
the category X has coequalizers, then (X, U) is called an algebraic category over Y .
Algebraic category over Set is equivalent to regularly algebraic category over Set in the
sense of [1, 20.35, 23.38, 23.39]. The functor from the category Grp of groups into Set
is algebraic but not topological. It is known (see [7]) that every algebraic functor into
Set is topologically algebraic.

A functor U : A → X creates isomorphisms iff to each X-isomorphism
f : X −→ UA corresponds a unique A-morphism g : B −→ A such that Ug = f and g is an
A-isomorphism. A functor U : A → X is called (generating, monosource) - factoriz-
able if for every source (X, fi : X → UAi)i∈I there exists a generating map e : X → UA
(i.e., e is an X-morphism such that for any two X-morphisms r : UA −→ Y and s : UA
−→ Y , the equality r ◦ e = s ◦ e implies r = s) and a monosource (A,mi : A → Ai)i∈I
(i.e., for any two A-morphisms u : B −→ A and v : B −→ A, the equalities mi ◦u = mi ◦ v
for all i ∈ I implies u = v) such that the diagram

UA UAi
-

Umi

fi

@
@
@
@

@
@@R

X

?

e

commutes. A functor U : X −→ Y is said to be essentially algebraic [6] provided that
it creates isomorphisms and is (generating, monosource) - factorizable. If U : X −→ Y
is an essentially algebraic functor and faithfull, then (X, U) is called an essentially
algebraic category over Y .

A functor U : A −→ X is called uniquely transportable iff any X-isomorphism
f : X −→ UA can be lifted via U to a unique A-isomorphism g : A′ −→ A. For a later
use, we will formulate a result in the following Theorem, whose proof can be found in [1,
23.2].

Theorem 1.1
The following conditions are equivalent for a uniquely transportable

(generating, monosource) - factorizable functor U : X −→ Y .
(a) U is essentially algebraic.
(b) U reflects isomorphisms.
(c) U reflects limits.
(d) U reflects equalizers.
(e) U reflects extremal epimorphisms and is faithful.
(f) Every monosource in X is U -initial.

A family Ω = (nj)j∈J of natural numbers indexed by some set J is called a type. The
index set J is called the order of Ω. In the following, we let a type Ω = (nj)j∈J be fixed.
A pair (|A|, (ωj)j∈J) of a set |A| and a family ωj : |A|nj → |A| (j ∈ J) of mappings is
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called an Ω-algebra (see, for example, [3]). For the sake of simplicity, we write A instead
of the pair (|A| , (ωj)j∈J) and ωj,A for the nj-ary operation ωj on A. If the Ω-algebra A
is clear from the context, we drop the suffix A in denoting its nj-ary (j ∈ J) operation.
If A and B are Ω-algebras, then a mapping f : |A| → |B| is said to be an Ω-morphism
f : A → B iff for each j ∈ J , f ◦ ωj,A = ωj,B ◦ fn where n = nj and fn : |A|n → |B|n is
the mapping with the obvious definition (a1, . . . , an) → (fa1, . . . , fan).

The symbol Alg(Ω) denotes the category whose objects are Ω-algebras and whose
morphisms are Ω-morphisms. Alg(Ω) is algebraic over Set (see [1, 7.72 (3), 23.6 (1),
23E (a)]).

A subcategory of an algebraic category, in general, may not be algebraic. However, this
is guaranteed by several equivalent conditions for a special type of subcategory. To state
this result we need the definition of an isomorphism closed subcategory. A subcategory
A of B is called isomorphism closed iff every isomorphism in B whose domain or
codomain belongs to A is a morphism in A. We state two results in this direction whose
proofs can be found in the stated references.

Theorem 1.2 If (B, U) is an algebraic category and A is a full isomorphism closed
subcategory of B with embedding E : A ↪−→ B such that A is closed under the formation
of subobjects in B, then the following are equivalent [8, 38.2]:

(a) (A, U ◦ E) is algebraic.
(b) A is reflective in B.
(c) A is a complete subcategory of B.
(d) A is closed under the formation of products in B.

Theorem 1.3 An isomorphism closed full subcategory A of Alg(Ω) is epireflective in
Alg(Ω) iff A is closed under the formation of products and subalgebras ([7], [1, 20.18,
23.6(1), 23.12(1), 16.9]).

Now we can conclude, as a consequence of these two results, that a full isomorphism
closed epireflective subcategory A of Alg(Ω) is algebraic over Set and hence admits
free Ω-algebras and has regular factorizations because algebraic category over Set means
regularly algebraic category over Set in the sense of [1, 23.35,23.38, 23.39]. A full isomor-
phism closed epireflective subcategory of Alg(Ω) is usually referred to as an SP-class
or as a quasiprimitive category of algebras. A full subcategory A of the category
Alg(Ω) is a variety (in the sense of [3]) iff A is closed under subalgebras, homomor-
phic images and direct products. A variety is also called an HSP-class or a primitive
category of algebras.

A variety is an epireflective subcategory of Alg(Ω) (by Theorem 3) and is algebraic
over Set (by Theorem 2). Thus every nontrivial variety has free algebras. Since ev-
ery algebraic construct is topologically algebraic, both SP-classes and HSP -classes are
topologically algebraic over Set.

The following theorem, whose proof can be found in [1, 23.8, 23.13], sheds some light
on essentially algebraic subcategories of Alg(Ω).

Theorem 1.4
A concrete category (A, U) is essentially algebraic iff U creates isomorphisms, U is

adjoint, and A is (epi, monosource) - factorizable.
Every essentially algebraic construct is complete, cocomplete, and wellpowered.

Thus products, equalizers, coequalizers, intersections and free objects exist in any es-
sentially algebraic subcategory of Alg(Ω). Moreover, in such categories any monosource
is point separating (because essentially algebraic functors preserve monosources, see [1,
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23A]) and products are concrete (since any essentially algebraic functor preserves prod-
ucts). Since any category that has (epi, monosource) - factorizations is an (extremal epi,
monosource) - category (see [1, 15.10]), an essentially algebraic construct is an (extremal
epi, monosource) - category.

2. Paired Categories

Let X be a construct with finite concrete powers and A be a subcategory of Alg(Ω). By
a paired object (from X and A) is meant an ordered pair (X,A) where X and A are
objects in X and A respectively with the same underlying set such that, for each j ∈ J ,
the n(= nj)-ary operation ωj,A : |A|n → |A| on A is an X-morphism ωj,A : Xn → X. In
this case, we write ωj,X for the X-morphism from Xn to X whose underlying function is
ωj,A. If (X,A) and (X ′, A′) are two paired objects (from X and A), then an X-morphism
f : X → X ′ that is also an A-morphism f : A → A′ is called a paired morphism (from
X and A) and is denoted by f : (X,A) → (X ′, A′). The category of all paired objects
(from X and A) together with paired morphisms (from X and A) is called the paired
category (from X and A). We denote this category by X⋄A.

In this work, we assume that all subcategories are full isomorphism closed. The fact
that the most of the natural subcategories fall into this class justifies our assumption.
Unless otherwise stated, X and Y denote arbitrary constructs with finite concrete pow-
ers, and A represents any subcategory of Alg(Ω). For the sake of simplicity, we will
denote an object (X,A) in the paired category X⋄A (from X and A) either by X or by
A. We will use a similar identification for morphisms in the paired category.

To see some examples of paired categories, notice that the category of topological
groups with continuous homomorphisms is the paired category Top⋄Grp from Top and
Grp.

Example 2.1 The category Ab of abelian groups and group homomorphisms can be
viewed as the paired category from Grp and Grp.

Indeed, Suppose G is a set, and (G, ·,−1 ) and (G,⊙, ∗) are groups, the first operation
is group multiplication and the second operation is group inversion, such that

⊙ : (G, ·,−1 )× (G, ·,−1 ) −→ (G, ·,−1 )

and

∗ : (G, ·,−1 ) −→ (G, ·,−1 )

are group homomorphisms. If e and E are the identity elements in (G, ·,−1 ) and (G,⊙, ∗)
respectively, then e⊙e = e and e∗ = e, because (e, e) is the identity element in (G, ·,−1 )×
(G, ·,−1 ) and any group homomorphism maps the identity element in the domain group
to the identity element of the codomain group. Combining these two equalities, we have

E = e⊙ e∗ = e⊙ e = e.

For any x and x′ in G, since

⊙((x, e) · (e, x′)) = (x⊙ e) · (e⊙ x′),
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we have

x⊙ x′ = x · x′.

This shows that ⊙ = · and ∗ =−1. Consequently, the group inversion being a group
homomorphism, group (G, ·,−1 ) has to be abelian.

Example 2.2 Similarly the paired category Grp⋄Rng is nothing but Ab. (Note that,
in a ring, if (a+ b) · (c+ d) = a · c+ b · d, then, taking b = c = 0, a · d = 0 for all a and d.)

For the sake of simplicity, we assume that all the subcategories are isomorphism closed.
The fact that most of the natural subcategories fall into this class justifies our assump-
tion. We also use the convention that using the same symbol for morphisms in different
constructs indicates that their underlying functions are the same [thus underlying sets
for the domain objects (respectively, for the codomain objects) are the same]. However,
for the sake of clarity, in some instances we may use different symbols for morphisms in
different categories with the same underlying functions.

Unless otherwise stated, X and Y are assumed to be constructs admitting concrete
finite powers while A and B are subcategories of Alg(Ω).

3. Subcategories

Let us first discuss the construction of subcategories of X⋄A from subcategories of X
and of A. It is clear that if B is a subcategory of A, then X⋄B is a subcategory of
X⋄A. On the other hand, if Y is a subcategory of X then the category Y⋄A need not be
a subcategory of X⋄A because concrete powers in Y need not agree with the concrete
powers in X. Here is an example:

Example 3.1 The additive group IR of real numbers with its usual topology, i.e., with
the nearness structure

ξ := {A ∈ P 2(IR) : ∩{Ā : A ∈ A} ̸= ϕ}

constitutes a counterexample since IR is a topological group but not a nearness group:
The addition + : IR × IR −→ IR is not uniformly continuous with respect to the Near
product structure on IR× IR (for a detailed proof, see [2]).

However, we have the following result.

Theorem 3.2 If Y is a subcategory of X such that concrete powers in Y agree with
concrete powers in X then Y⋄A is a subcategory of X⋄A.

In particular, if Y is an epireflective subcategory of X, then Y⋄A is a subcategory of
X⋄A.

Proof. Let (Y,A) be any object in Y⋄A. For each j ∈ J , the nj-th product Y nj of Y in
the category Y is the same as the nj-th product of Y in the category X and the nj-ary
operation ωj,Y : Y nj −→ Y , being a morphism in Y , must be a morphism in X. Thus
(Y,A) is also an X⋄A-object. Obviously Y⋄A-morphisms are also morphisms in X⋄A.

If Y is an epireflective subcategory of X, then the products in Y do agree with those
in X so that Y⋄A is a subcategory of X⋄A by what was proved above. ■
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If Y is a coreflective subcategory of X, then any object in X⋄A is also in Y⋄A if its
first part is already in Y . In other words:

Theorem 3.3 If Y is a coreflective subcategory of X and the pair (X,A) is an object
in X⋄A such that X is an object in Y then (X,A) is also an object in Y⋄A.

Proof. We need to prove that each algebraic operation on A is a Y -morphism. Let j ∈ J
and n = nj . To avoid ambiguity, let us use the symbol Y to indicate X regarded as a
Y -object and write Y n and Xn for the products of X to itself n times in the categories Y
and X respectively. Since Y is coreflective in X, the Y -product Y n is the Y -coreflection
of the X-product Xn. Therefore, any X-morphism Xn −→ X is also a Y -morphism Y n

−→Y. In particular, the nj-ary operation on A being an X-morphism ωj,X : Xn −→ X is
indeed a Y -morphism ωj,Y : Y n −→Y. ■

Fay [4] proved, among other things, an (E,M)-topological version of Wyler’s taut
lift theorem (see [15]). Tholen (see [14]) generalized and discussed some applications of
Wyler’s theorem. In this section we will show another application, namely, an essentially
algebraic functor between two subcategories of Alg(Ω′) and Alg(Ω) can be extended to
the associated paired categories. We use (E,M)-topological version of Wyler’s taut lift
theorem due to Fay ([4, Theorem (5.3)]) restated here as a lemma in a slightly different
form using the hypothesis that is necessary so that the proof given by him works for the
lemma. The lemma as stated here is also a consequence of the proof of Theorem (4.1) in
[4]. Although it appears closer to Tholen’s Theorem (4.1) in [4], we chose to use Fay’s
result because of its notational advantage. First we will explain a concept.

If T : L −→ K is a functor and M is a class of sources in K, then MT denotes the
class of all T -initial sources (L, fi : L −→ Li)i∈I in L with (TL, Tfi : TL −→ TLi)i∈I a
source in M . A pair (g, L) of an L-object L and K-morphism g : K −→ TL is said to
be T-universal map for K ([8, 26.1]) iff for each L-object L′ and each K-morphism
f : K −→ TL′, there exists a unique L-morphism f̄ : L −→ L′ such that the triangle

K TL-g

f

@
@

@
@
@
@@R
TL′
?

T f̄

L

L′
?

f̄

commutes.

Lemma 3.4 Consider the following commutative square of categories and functors

R S-
H

L K-V

?

U

?

T

where R has (E,M) - factorizations, L has U -initial lifts for sources in M,M ′ is the
class of all sources in S which have T -initial lifts, H has a left adjoint, H sends M -sources
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to M ′-sources, and V sends MU - sources to (M ′)T - sources.
Then V has a left adjoint.
Moreover, if for each S-object S there exists an H-universal map (e,R) for S where

e : S −→ HR is an epimorphism in S, then for each K-object K there corresponds a
V -universal map (f, L) for K such that f : K −→ V L is an epimorphism in K.

Theorem 3.5 Suppose A and B are subcategories of Alg(Ω).
(a) If B is an essentially algebraic subcategory of Alg(Ω) that is reflective in a sub-

category A, then X⋄B is a reflective subcategory of X⋄A.
(b) If B is further epireflective in A, then X⋄B is an epireflective subcategory of X⋄A.

Proof. Let H : B −→ A be the inclusion map and define the concrete functor H̃ : X⋄B
−→ X⋄A by H̃(X,B) := (X,HB), for any X⋄B-object (X,B). We have the commutative
square diagram

B A-
H

X⋄B X⋄A-H̃

?

T

?

T ′

,

where T and T ′ are forgetful functors.
IfB is an essentially algebraic subcategory ofAlg(Ω) that is reflective in a subcategory

A, then H is essentially algebraic and hence H̃ is essentially algebraic (see [5, Theorem
3.2 (c)]), which proves X⋄B is a reflective subcategory of X⋄A.

The second part is a direct application of the Lemma 1. ■

4. Limits and Colimits

In [15]), Wyler shows, among other things, that if X is a topological category then
all categorical limits and colimits can be lifted from a category A of algebras to the
category X⋄A. In particular, if X is a topological category and A is complete and
cocomplete then X⋄A is complete and cocomplete. Since each monotopological category
is an epireflective subcategory of a topological category, similar results are true if X is a
monotopological category. In this section we intend to describe some limits and colimits
in the paired category X⋄A under the assumption that X is monotopological. We begin
with a Theorem that is very useful in our work.

Theorem 4.1 Suppose G : X −→ Y is a concrete functor which preserves concrete finite
powers, X is an X-object, ((Xi, Ai))i∈I is a family of X⋄A-objects,
((Y,A), fi : (Y,A) −→ (GXi, Ai))i∈I is a source in Y⋄A, and (X, gi : X −→ Xi)i∈I is a
G-initial source in X. If Y = GX and Ggi = fi as Y -morphisms for each i ∈ I, then
(X,A) is an X⋄A-object.

Proof. Since GX = Y , we have that |X| = |Y |(= |A|). Because X and A are objects
in the categories X and A respectively, we only have to show that for each j ∈ J , the
nj-ary operation ωj,A on A is a morphism in X. Fix j ∈ J and write n for nj . For any
i ∈ I, since fi : A −→ Ai is an A-homomorphism we have the commutative diagram of
Y -morphisms:
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Y Yi-
fi

Y n Y n
i

-fn
i

?

ωj,Y

?

Gωj,Yi

where Yi = GXi. Since G preserves concrete finite powers and GX = Y , we have Y n =
(GX)n = G(Xn) and Gωj,Xi

◦ fi = Gωj,Xi
◦ (Ggi)

n = Gωj,Xi
◦ G(gi) = G(ωj,Xi

◦ gi),
hence the above diagram can be viewed as the following:

G(X) G(Xi)-
Ggi

G(ωj,Xi
◦ gni )

@
@

@
@
@
@@R

G(Xn)

?

ωj,Yi

Since (X, gi : X −→ Xi)i∈I is G-initial there exists a unique X-morphism ω : Xn −→ X
such that Gω = ωj,Y and the diagram

X Xi
-

gi

ωj,Xi
◦ gni

@
@
@

@
@
@@R

Xn

?

ω

commutes. Since G is concrete, ω and ωj,Y have the same underlying functions. Thus
ωj,A is an X-morphism. This shows that (X,A) is an X⋄A-object. ■

As a consequence of this result we describe a construction of X⋄A-objects from sources
in the category A.

Corollary 4.2 Let ((Xi, Ai))i∈I be a family of objects in the category X⋄A and
(A, gi : A −→ Ai)i∈I be a source in A. If X is an object in X having the same un-
derlying set as A and is initial with respect to the source (X, gi : X −→ Xi)i∈I , then the
pair (X,A) lies in X⋄A.

In addition to the above hypothesis, if A is essentially algebraic and
(|A|, gi : |A| −→ |Ai|)i∈I is a monosource in Set, then ((X,A), gi : (X,A) −→ (Xi, Ai))i∈I
is initial in X⋄A.

Proof. Since G : X −→ Set is a concrete functor preserving concrete finite powers, the
first part follows from the above Theorem.

In order to prove the second part, let us assume that
((X ′, A′), fi : (X

′, A′) −→ (Xi, Ai))i∈I is an X⋄A-source and h : |A′| −→ |A| is a
function such that the diagram
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|A′| |Ai|-
fi

gi

@
@

@
@
@
@@R

|A|

?

h

commutes for each i ∈ I. Since any source in A that is a monosource in Set is initial
in A (see [1, 23.2(6)]), the source (A, gi : A −→ Ai)i∈I is initial in A so that h is an
A-morphism. It is also an X-morphism since (X, gi : X −→ Xi)i∈I is G-initial. Hence h
is an X⋄A-morphism. ■

The preceding corollary ensures, as shown in the following Theorem, the existence of
products, subobjects, equalizers and intersections in the category X⋄A which proves that
X⋄A is complete and is an (extremal epi, mono) - category, provided X is monotopo-
logical and A is an essentially algebraic subcategory of Alg(Ω).

Theorem 4.3 Suppose X is a monotopological category and A is a subcategory of
Alg(Ω). Then the following hold.

(a) For any family ((Xi, Ai))i∈I of objects in X⋄A such that the concrete product A of
(Ai)i∈I exists in A, then (X,A), where X is given the initial structure in X with respect
to the natural projections πi : A −→ Ai, is the product in X⋄A.

(b) If (X,A) is an object in X⋄A, A′ is an A-object which is an Ω-subalgebra of A
and X ′ is an X-object having the same underlying set as A′ with the initial structure
with respect to the inclusion u : X ′ ↪−→ X, then (X ′, A′) is an object in X⋄A which is a
subobject of (X,A).

(c) Suppose f : (X,A) −→ (X ′, A′) and g : (X,A) −→ (X ′, A′) are two morphisms such
that the pair f : A −→ A′ and g : A −→ A′ admits an equalizer (E, e) in A. Then, the
X-object Z, having the same underlying set as E, initial with respect to e : E −→ X
leads to an object (Z,E) in X⋄A and ((Z,E), e) is an equalizer of the pair of morphisms
f and g.

(d) If ((Xi, Ai))i∈I is a family of X⋄A-subobjects of (X,A) such that the intersection
∩Ai of (Ai)i∈I exists in A, then the X⋄A-object (∩Xi,∩Ai), where ∩Xi has the initial
structure with respect to inclusions into X ′

is, is the intersection of ((Xi, Ai))i∈I in X⋄A.
In particular,
(e) If A is an essentially algebraic subcategory of Alg(Ω), then the category X⋄A is

complete and is an (extremal epi, mono) - category.

Proof. In order to prove (a), first note that the source (|A|, πi : |A| −→ |Ai|)i∈I is point
separating and hence is a monosource in Set. Since X is monotopological, we can find
an X-object X, having the same underlying set as A, initial with respect to the source
(X,πi : X −→ Xi)i∈I . By Corollary 9, (X,A) is an X⋄A-object and is the product of
((Xi, Ai))i∈I .

Analogously, statements (b) − (d) follow from the observation that any inclusion is a
monosource in Set.

To establish statement (e), let us assume that A is an essentially algebraic subcat-
egory of Alg(Ω). Then, by Theorem 4 and the discussion following it, A is complete
and wellpowered, and A has concrete products. It is straight forward to see that X⋄A
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is wellpowered. Statements (a), (c), and (d) imply that X⋄A has arbitrary products,
equalizers, and intersections. Because any category having products and equalizers is
complete (see [8, 23.8]) and because every wellpowered finitely complete category having
intersections is an (extremal epi, mono) - category (see [8, 34.1]), X⋄A is complete and
is an (extremal epi, mono) - category. ■

If (X,A) is an object in X⋄A, X ′ is a quotient of X with respect to an X-epimorphism
f : X −→ X ′ and A′ is a quotient of A with respect to an A-epimorphism f : A −→ A′

then, in general, (X ′, A′) may not be a quotient of (X,A). In fact, it need not be an
object in the category X⋄A as is seen in the following example (where X is the category
Haus of Hausdorff topological spaces and A is the category Sgrp of semigroups) due
to Lawson and Madison [10]. After presenting the example, in Theorem 11 we establish
that an additional condition on the category X will eliminate the pathology.

Example 4.4 Let IR2 := IR × IR be the two dimensional Euclidean space with the
product topology inherited from the usual topology on the real line IR, IQ be the set of
all rational numbers, X be the subspace of IR2 defined by

X :=
{
(x1, x2) ∈ IR2 : x1 ∈ IQ and x2 ≥ 0

}
and

I :=
{
(x1, x2) ∈ IR2 : x1 ∈ IQ and x2 = 0

}
.

Define a multiplication · on X by the formula

(x1, x2) · (x′1, x′2) = (x1 + x′1,min(x2, x
′
2)),

where + is the usual addition of real numbers. Clearly X is a semigroup with multipli-
cation · and I is a closed ideal of X (i.e., X · I ⊆ I). Hence the so-called Rees congruence
θ on X relative to the ideal I, given by xθx′ iff either x = x′ or I contains both x and x′,
leads to the semigroup X/θ under the multiplication defined by (π(x), π(x′)) −→ π(x ·x′),
where π(z) is the θ-class containing z, i.e., π(z) := I whenever z ∈ I and π(z) := {z} for
any z ̸∈ I. Thus π : X −→ X/θ is a quotient map in Sgrp (see [13, page 9]).

We give X/θ the quotient topology induced by the natural map π : X −→ X/θ. It can
be shown that that X/θ is not a topological semigroup. In fact, the multiplication on
X/θ is not continuous at (π(0, 0), π(0, 0)) (see [10]).

Lemma 4.5 Suppose X has finitely productive quotients, (X,A) is an X⋄A-object,
f : A −→ A′ is an A-morphism, and f : X −→ X ′ is a quotient map in X. Then (X ′, A′)
is an X⋄A-object.

Proof. Let j ∈ J , n = nj and ω = ωj,A, ω
′ = ωj,A′ be n-ary operations on A and A′

respectively. Since X has finitely productive quotients, X ′n is a quotient of Xn with
respect to fn : Xn −→ X ′n. Thus ω′ is an X-morphism iff ω′ ◦ fn is an X-morphism.
However, because f is an Ω-homomorphism, we have the commutative diagram,
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|X ′n| |X ′|-
ω′

|Xn| |X|-ω

?

fn

?

f

,

which shows that ω′ ◦ fn, being equal to f ◦ω, is an X-morphism. This being true for
each j ∈ J , (X ′, A′) is an X⋄A-object. ■

Theorem 4.6 If X has finitely productive quotients, (X,A) is an object in X⋄A, f : X
−→ X ′ is a quotient map in X and f : A −→ A′ is a quotient map in A, then (X ′, A′) is
an object in X⋄A and f : (X,A) −→ (X ′, A′) is a quotient map in X⋄A.

Proof. By the virtue of Lemma 2, it remains to show that f : (X,A) −→ (X ′, A′) is
a quotient map in X⋄A. Let (X ′′, A′′) be any object in X⋄A and g : |X ′| −→ |X ′′| be a
function between the two sets such that g ◦ f is an X⋄A-morphism. Then g is an X-
morphism between X ′ and X ′′ because g ◦ f is one such and f : X −→ X ′ is a quotient
map in X. Similarly g is also an Ω-homomorphism. Thus g : (X ′, A′) −→ (X ′′, A′′) is an
X⋄A-morphism. ■

Thus we have proved that if X has finitely productive quotients then quotients of
objects in X and A with the same underlying set resulting from the same underlying
function can be paired to form quotients in the category X⋄A.

A similar construction is possible for coproducts under an additional condition that
final epi sinks are finitely productive in X (in particular, under the assumption that
X is well-fibred monotopological and cartesian closed, see [12]). As we will see later in
Theorem 12, one can give other sufficient conditions that coproducts exist in X⋄A.

First we need the following definitions. We say that final epi sinks are finitely
productive in X iff the product (fi × gk : Xi × Yk −→ X × Y,X × Y )i∈I,k∈K of any two
final epi sinks (fi : Xi −→ X,X)i∈I and (gk : Yk −→ Y, Y )k∈K in X is final in X. A class
F of functions is said to be Ω-admissible to an Ω-algebra A iff each function in F has
the codomain |A|, and for each j ∈ J , n = nj , f1, . . . , fn ∈ F ,

ωj,A ◦ (f1 × . . .× fn) ∈ F .

Lemma 4.7 Suppose final epi sinks are finitely productive in X, A is an A-object,
(Xi)i∈I is a family of X-objects, and (fi : |Xi| −→ |A|)i∈I is a class of functions Ω-
admissible to A. If X is an X-object with the same underlying set as A such that
(fi : Xi −→ X,X)i∈I is a final epi sink in X, then (X,A) is an X⋄A-object.

Proof. Since X has the final structure with respect to fi : Xi −→ X, for any positive
integer n, Xn has the final structure with respect to fi1 × . . . × fin , i1 ∈ I, .., in ∈ I,
by hypothesis. Let j ∈ J and n = nj . We have to show that ωj,A is an X-morphism.
However, ωj,A ◦ (fi1 × . . . × fin), i1 ∈ I, . . . , in ∈ I, being one of the f ′

is as (fi) is Ω-
admissible to A, is an X-morphism. Consequently, the nj-ary operation ωj,A on A is an
X-morphism ωj,x : Xn −→ X. This being true for each j ∈ J , (X,A) is an X⋄A-object.
■

Lemma 4.8 Suppose A is an Ω-algebra and (Ci)i∈I is a family of sets and (fi : Ci
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−→ |A|)i∈I is a class of functions. Then there exists the smallest class F of functions
containing (fi)i∈I that is Ω-admissible to A, i.e., there exists a class F of functions
containing (fi)i∈I such that F is Ω-admissible to A and any class of functions containing
(fi)i∈Ithat is Ω-admissible to A contains F .

Moreover, any member f of F has a domain of the form Ci1 × . . .×Cin (i1, . . . , in ∈ I)
and the codomain |A|.

Proof. Let F be the intersection of all classes of functions that are Ω-admissible to A
and contain (fi)i∈I . Clearly F has the property described in the lemma. If G is the family
of all functions of the form explained in the last statement of the lemma, G is certainly
Ω-admissible to A and contains (fi)i∈I so that F ⊆ G. ■

For example, if A is an Alg(1) -object with the unary operation u and
(fi : Ci −→ |A|)i∈I is a class of functions, then (un ◦ fi : Ci −→ |A|)i∈I,n≥0 is the smallest
Ω-admissible class containing (fi : Ci −→ |A|)i∈I . If A is a group with the multiplication
· and the inversion β1 and f : C −→ |A| is a function then write

fn,µ,σ :=
[
(βµ(1) ◦ f) · (βµ(2) ◦ f) · . . . · (βµ(n) ◦ f)

]
◦ rσ

where n is a positive integer, µ is a function from Nn := {1, 2, . . . , n} with values 0
and 1, σ is a bijection from Nn onto Nn, rσ is the function rσ : Cn −→ Cn given by
rσ(c1, . . . , cn) = (cσ(1), . . . cσ(n)), and β0 :=idA. The family (fn,µ,σ : Cn −→ |A|) is the
smallest Ω-admissible class containing f : C −→ |A|.

Theorem 4.9 Suppose final epi sinks are finitely productive in X, ((Xi, Ai))i∈I is a
family of X⋄A-objects, and (fi : Ai −→ A,A)i∈I is a coproduct in A.

Let (gk : |X ′
k| −→ |A|)k∈K be the smallest class of functions containing (fi)i∈I that

is Ω-admissible to A, where X ′
k is of the form Xi1 × . . . × Xin (i1, . . . , in ∈ I) for each

k ∈ K, the product being formed in the category X. Let X be an X-object with the
same underlying set as A such that (gk : X ′

k −→ X,X)k∈K is a final epi sink in X. Then
the pair (X,A) is an X⋄A-object and the sink (fi : (Xi, Ai) −→ (X,A), (X,A))i∈I is a
coproduct in X⋄A.

Proof. (X,A) is an X⋄A-object by Lemma 3. Since (gk)k∈K contains (fi)i∈I , fi :
(Xi, Ai) −→ (X,A) is an X⋄A-morphism for each i ∈ I. We now show that (fi)i∈I is
a coproduct in X⋄A. Let (X ′, A′) be any X⋄A-object and (f ′

i : (Xi, Ai) −→ (X ′, A′))i∈I
be a family of X⋄A-morphisms. Since (fi : Ai −→ A,A)i∈I is a coproduct in A, there
exists a unique A-morphism f̄ : A −→ A′ such that the diagram of A-morphisms

Ai A′-f ′
i

fi

@
@
@
@

@
@@R

A
?

f̄

commutes for each i ∈ I. We show that f̄ : X −→ X ′ is an X-morphism. Let H be the
family of all functions h : |Xi1 × . . .×Xin | −→ |A| (i1 ∈ I, . . . , in ∈ I) such that f̄ ◦ h is
an X-morphism. H contains (fi)i∈I because f̄ ◦ fi = f ′

i is an X-morphism for each i ∈I.
Assume j ∈ J, n = nj , and h1 ∈ H, . . . , hn ∈ H. Then
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f̄ ◦ [ωj,A ◦ (h1 × . . .× hn)]
= (f̄ ◦ ωj,A) ◦ (h1 × . . .× hn)
= (ωj,A′ ◦ f̄n) ◦ (h1 × . . .× hn), since f̄ is an A-morphism,
= ωj,A′ ◦ [f̄n ◦ (h1 × . . .× hn)]
= ωj,X′ ◦ (f̄ ◦ h1 × . . .× f̄ ◦ hn).

Since f̄ ◦ h1, . . . , f̄ ◦ hn, and ωj,X′ are X-morphisms, f̄ ◦ [ωj,A ◦ (h1 × . . .× hn)] is an
X-morphism. Thus

ωj,A ◦ (h1 × . . .× hn) ∈ H.

This shows that H is Ω-admissible to A containing (fi)i∈I . Since F is the smallest
such class, we conclude that gk ∈ H, i.e., f̄ ◦ gk is an X-morphism for each k ∈ K. Since
(gk)k∈K is final in X, f̄ is an X-morphism. Thus we have the commutative diagram of
X⋄A-objects and X⋄A-morphisms:

(Xi, Ai) (X ′, A′)-f ′
i

fi

@
@
@
@
@

@@R
(X,A)

?

f̄

Of course, f̄ is unique. ■

Acknowledgments

The author wishes to acknowledge thanks to Prof. H. Lamar Bentley for his helpful
suggestions.

References
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