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Abstract 

Microgrid (MG) is considered as a feasible solution to integrate the distributed energy sources. In this paper, optimal 

scheduling of a grid-connected MG is investigated considering different power sources as combined heat and power (CHP) 

units, only power and heat generating units, and battery storage systems. Two different feasible operating regions are 

considered for the CHP units. In addition, heat buffer tank and the CHP units are used to meet heat demand of the MG. In 

order to investigate the impact of demand response programs on the optimal scheduling of the MG, time-of-use (TOU) and 

real-time pricing (RTP) rates of demand response programs (DRP) are implemented. To do so, the problem is solved in three 

case studies as RTP-DRP, TOU-DRP, and without DRP. Based on the obtained results, total energy procumbent cost of the 

MG is reduced about 2.54% and 6.66% after applying the TOU and RTP demand response programs in comparison with the 

without DRP case., respectively. The problem is formulated as MILP and solved under CLPX solver in the GAMS software. 
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1. Introduction 

Microgrid (MG) is defined as a cluster of 

loads and distributed energy resources (DERs), 

which may include wind turbines, photovoltaic 

systems, and energy storage systems (EESs) etc. 

[1]. The concept of MG can be considered as an 

effective tool for integration of distributed 

dispatchable generators and energy storage devices 

in current power systems [2].  

A) Literature review  

Optimal scheduling of an MG is studied and 

investigated by considering different issues. Energy 

management of an MG is pursued by using 

artificial intelligence techniques based on the 

generalized formulation in [3]. A new method 

based on the improved real-coded genetic 

algorithm and enhanced mixed integer linear 

programming is proposed to unit commitment and 

economic dispatch of MG units in [4]. Scheduling 

power sources in a typical MG, in the presence of 

electric vehicles, is investigated in [5]. Optimal 

dispatch of MG’s generating units is studied in 

[6],[7], by taking cost and emission into account 

and defining the multi-objective function. The non-

dominated sorting genetic algorithm II is used for 

the optimal scheduling of ESSs in MG to deal with 

the multi-objective optimization problem in [8]. By 

minimizing energy costs, pollutant emissions, and 

maximizing penetration of renewable energy, green 

energy management investigated in [9]. 

Combined heat and power (CHP) units can be 

used in MG in order to reduce thermal energy 

generation cost. CHP units can provide heat and 

power at the same time by using wasted heat in 

power generation process [10]. Economic dispatch 

problem of CHP-based MG is well studied in  

[11],[12]. 

As an effective tool to reduce operating cost, 

demand response programs (DRP) can be used in 

MG scheduling problem [13]. According to US 

Department of Energy, DRPs is defined as changes 

in end-user clients’ electric consumption patterns in 

reaction to electricity price changes over time or to 

incentive the consumers to decrease the 
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compensations at peak periods or when the system 

reliability problems occur [14]. Integration of 

renewable energy resources such as wind power, 

solar, small hydro, biomass and CHP is presented 

in [15] in the presence of DRPs. The pricing and 

operation strategy for a retailer in the presence of 

DRP are investigated in [16]. 

B) Novelty and contributions 

In this paper, scheduling of CHP-based MG is 

pursued the presence of DRPs such as real-time-

pricing (RTP) and time-of-use (TOU). Different 

generation unit as CHP, power-only unit, heat only 

unit, heat buffer tank, and storage is considered to 

supply load demand. The impact of TOU and RTP 

is investigated and compared with the without DRP 

case. 

C) Paper organization 

The rest of this paper is organized as follows: 

model of MG components and DRPs are presented 

in Section II. The simulation method is introduced 

in Section III. Section IV provides the information 

of the case study. Finally, the paper is concluded in 

Section V. 

2. Problem Formulation 

The considered MG model contains two CHP 

units, battery storage system, power and heat only 

units, and heat buffer tank. In this work, optimal 

power is investigated by taking total cost as the 

objective variable. DRPs are considered to flatten 

the load curve and reduce demand at high price 

periods, which will result reduction in the operating 

cost of the MG. 

A) Objective Function 

Total operating cost is defined as objective 

function (1) including  a set of terms such as the 

cost of purchased power from the grid, operating 

cost of units, degradation cost of storage, and 

revenue of selling power to the grid [17].  
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where h , is the price of power at time h in 

($/MWh), 
,G sell

hP  /
,G buy

hP   is the amount of 

electricity sold/bought to/from the network at time 

h (MWh), , ,( , )CHP CHP

i h i hC P H , (P )PO

hC , and 

(H )PO

hC are the CHP, power only, heat only units 

cost function, respectively, ,j SUC and ,j SDC are 

startup/shutdown cost of generation facility in $ 

respectively, 
j

hSU and 
j

hSD are binary variables of 

start-up and shut-down status for the units at time 

h, deg

kC is cost for battery degradation in $/kWh, 

,

C

k hP  and ,

disc

k hP are charge and discharging power of 

battery in kW respectively. 

B) Power balance 

With consideration of DRPs, generated power 

should meet the load demand at each hour [18]. 

This issue is expressed in Eq. (2). 
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(2) 

where   
  , is the electric load demand after 

applying DR program at h.th load level. 

C) CHP unit’s model 

Two types of CHP units are considered in the 

MG model which each unit has different feasible 

operating regions (FORs). The first type of CHPs is 

characterized by Eqs. (2)-(7) [4]. 
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According to [19], the FOR of the second 

type of CHP is characterized by Eq. (8)-(16). In 

order to apply conventional formulation, the gray 

region (FEG) would not be considered. Therefore, 

this area is divided into two sub-section as sub-

section I and II, using binary variables 
1,hX   

and
2,hX .  
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Each of the abovementioned equations, 

describes some part of the FOR in the second type 

of CHP units. 

Total operation cost of a CHP is modeled by 

Eq. (17) as presented in [20]. 
2

2
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where a, b, c, d, e and f are cost function 

coefficients of CHP units. 

D)   Power-only and heat-only model 

Operation constraints of power-only and heat-

only units are presented by Eq. (18) and Eq. (19). 
min maxPO PO PO PO PO

h h h h hP V P P V       (18) 
min maxb b b b b

h h h h hH V H H V      (19) 

Eq. (20) and Eq. (21) describe the cost 

functions of power-only and heat only units. 

( )PO PO

h PO hC P P    (20) 

( )b b

h b hC H H   (21) 

E) Electrical energy storage model 

Charge and discharge limits are imposed by 

Eq. (22) and Eq. (23) [21].  
,max0 ,c c c

h h hP b P    
,max0 disc disc disc

h h hP b P    
(22) 

min max

,k h s kE E E   (23) 

where
c

hb and
disc

hb are binary variables of 

charging/discharging state, ,h sE is the capacity of 

the battery (kWh), 
min

kE /
max

kE  is 

minimum/maximum energy stored in the battery 

(kWh). Eq. (24) is applied to avoid charging and 

discharging at the same time. 

1,c disc

h hb b   , {1,0}c disc

h hb b   (24) 

The dynamic energy model of the battery is 

stated by Eq. (25). 
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F) Heat buffer tank 

The heat buffer tank is used for heat storage 

and modeled based on [20]. The total generated 

heat is calculated by Eq. (26).  

,
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By using gain /
loss which are heat generation 

loss/excess for the CHP unit during 

startup/shutdown period, heat losses can be 

modeled as Eq. (27).  

. . ;i i

h h loss h gain hH H SU SD    i CHP   (27) 

The available heat capacity in each time 

interval in the heat buffer tank 
hB  is expressed as 

Eq. (28). 

1(1 ) load

h h h hB B H H        (28) 

where    is heat loss rate for the heat buffer 

tank. 

By using Eq. (29), the maximum available 

capacity of heat storage can be limited. 

min maxhB B B    (29) 

where 
minB /

maxB , is minimum/maximum 

heat buffer tank capacity in MW. 

Equation (30) and (31) are applied to model 

the ramping up/down rates for the heat storage 

system. 
arg

1 max

ch e

h hB B B    (30) 
arg

1 max

disch e

h hB B B    (31) 

where 
arg

max

ch eB /
arg

max

disch eB is the maximum 

charge/discharge rate of the storage MWth. 

G)  Startup and shutdown status 

The startup and shutdown status of each unit 

can be modeled by Eq. (32) and Eq. (33). 

1(1 ),i i i

h h hSU V V     ,i CHP PO  (32) 

1(1 ) ,i i i

h h hSD V V    ,i CHP PO  (33) 

H) Electric load with demand response 

By applying DR programs load is transferred 

from high price periods to low price periods which 

according to [22] will avoid unnecessary capital 

investments and costly energy procurement. In this 

paper, TOU and RTP are applied to show their 

impact on final results. 

 TOU-DR formulation 

TOU-DRP is one the most important and 

common used DRPs, which is formulated by Eq. 

(34) [23]. 
DR D

h h hP P ldr    (34) 
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where hldr is the shifted load from another 

load level to the h.th load level. hldr is calculated 

by using Eq. (35). 
D

h h hldr DR P    (35) 

where hDR  is the participation factor of the 

load in the DRP at h.th load level and D

hP is the base 

electric load at h.th load level in MWh. 

As expressed in Eq. (36), the total shifted load 

over the period is assumed to be zero [24].  
24

1

0h

h

ldr


   
(36) 

Note that the should be limited at each 

time period, which is shown in Eq. (37). 
min max

h h hDR DR DR    (37) 

In this paper 
min

hDR is assumed to be equal -

30% and
max

hDR  to be equal +30%. 

I) RTP-DR programing 

The RTP model is developed according to the 

predicted data for electricity demand and this 

model will be used to implement the demand 

response program. 
24
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d h
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T P

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In Eq. (38), dT is the total load demand of the 

MG. Thereby, the average electricity demand, avP , 

can be formulated as Eq. (39). 

24

d
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T
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(39) 

The float factor of RTP, h , can be 

considered as Eq. (40). 
D

h

h

av

P

P
    

(40) 

The RTP model can be expressed as follows: 

.RTP h TOU     (41) 
Min Max

RTP RTP RTP     (42) 

where TOU is the benchmark price which is 

the time-of-use pricing in this paper. 
Min

RTP and 

Max

RTP are the minimum and maximum limits of the 

RTP, respectively. 

With considering the RTP of DRP, the load 

demand can be formulated as Eq. (43). 

.RTP h TOU     (43) 
Min Max

RTP RTP RTP     (44) 

where the E  is the demand-price elasticity 

coefficient. It should be denoted that E  is 

determined by analyzing the customer types and 

historical demand data. According to [20], E can 

take values in the interval [-0.5, 0]. In this paper, 

the E is considered equal to - 0.5. 

3. Solution Method 

In this paper, the optimal scheduling problem 

of a MG is formulated as mixed integer linear 

programming to minimize the total energy 

procurement cost of the MG. the problem is solve 

under CLPX solver in the GAMS optimization 

software.  

4. Case Study 

A)  Input data 

All the required information for the 

simulation such as base load, CHP units 

coefficients etc. are derived from [1]. 

B)  Simulation Result 

As said before, by applying demand response 

programs the load is shifted from peak periods to 

off-peak periods. According to the obtained results, 

total cost of energy precedent of the MG is equal to 

$5,088.077, $4,958.927, and $4,749.380 for 

without DRP, TOU-DRP, and RTP-DRP, 

respectively. It is obvious that by applying DRPs 

the total cost is reduced. By applying TOU-DRP, 

2.54% reduction in the total energy procurement 

cost of the MG is achieved. In addition, the RTP-

TOU has reduced procurement cost about 6.66%. 

Base on the abovementioned descriptions, by 

implementing the RTP better results can be 

obtained in comparison with the TOU-DRP. A 

summary of the obtained results are presented in 

TABLE I. The load profile under RTP and TOU 

rates of DRP is depicted in Fig. 1. It is obvious that 

the load profile is more flattened under RTP-DRP. 

Also, it should be noted that shifted load in the 

TOU-DRP is limited on 30% of the base load. 

Exchanged power between the MG and 

upstream grid is illustrated in Fig. 2 for considered 

case studies. Note that at each hour, procured 

power from the grid is presented by positive values 

while negative values present sold power to the 

grid. As it can be seen, 2.091, 3.158, and 1.988 

MW are the maximum purchased power from the 

grid for RTP-TOU, TOU-DRP, and without DRP 

cases recorded at hours 2, 22, and 22, respectively. 

In addition, the maximum sold power to the grid 

are reported as 1.199, 2.598, and 2.526 MW for 

RTP-TOU, TOU-DRP, and without DRP cases, 

respectively. Fig. 3 illustrates the power production 

of the CHP units in the considered three cases. 

Obtained results show the produced power by the 

CHPs is same in RTP-DRP and without DRP cases. 

The maximum produced power by the CHP units is 

equal to 3.408 MW in all cases. Also, the minimum 

amount of generated power of the CHP in RTP-

hDR
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DRP is obtained as 0.4 MW while this number is 

equal to 1.792 MW in RTP-DRP and without DRP 

cases. Heat generation of the CHP units is 

presented in Fig. 4. As said before, heat and power 

generation of CHP units are dependent to each 

hour. Therefore, as was expected, heat generation 

of the CHP units is same for TOU-DRP and 

without DRP cases. It should be noted that 

produced heat by the CHP is used to meet heat 

demand of the MG. 

The power production of the power-only unit, 

which is considered to meet power demand of the 

MG, is depicted in Fig. 5. Note that the maximum 

capacity of the MG is equal to 1 MW. The 

production of the power-only unit is in accordance 

with the load profile and power price. 

Table.1. 
Summery of obtained results 

Case study Total cost ($) Cost reduction due 

to DRP (%) 

Without DRP 5,088.077 ---- 

TOU-DRP 4,958.927 2.54 

RTP-DRP 4,749.380 6.6 

 

Fig. 1. The Load demand after applying demand response 

programs 

 

Fig. 2. Exchanged power with the MG and upstream grid 

 

Fig. 3. Generated power by the CHP units 

 

Fig. 4. Generated power by the CHP units 

 

Fig. 5. Generated power by the power-only unit 

The battery storage system is used to store 

electricity power during the off-peak period and 

use stored energy during the peak periods. The 

stored energy in the battery storage system is 

depicted in Fig 6. As was expected, the battery is 

discharged at peak load demand periods in the 

considered cases. 

Figure 7 depicts the charging or discharging 

states of the battery during 24-hour for the three 
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case studies. It should be noted that positive values 

show charged power and negative values present 

the discharged power. According to the Fig. 7, in 

the RTP-TOU, the battery is charged during hours 

2-4 and discharged during hours 1 and 14-15. In 

addition, in the other cases the battery is discharged 

at hour 14. 

The heat buffer tank is considered to meet the 

heat demand of the MG. available heat energy in 

the heat buffer tank is depicted in Fig. 8 for three 

cases in the time horizon of the study. The 

maximum stored energy in the heat buffer tank is 

equal to 4 MWth for TOU-DRP and without DRP 

cases. In the RTP-DRP, the maximum and 

minimum stored energy are recorded as 3.921 and 

0 MWth. 

5. Conclusion 

In this paper, the short-term scheduling of a 

CHP-based MG is investigated under demand 

response programs. In order to assess the impact of 

demand response programs on the scheduling of 

the MG, time-of-use and real-time pricing rates of 

demand response programs are implemented and 

the problem is solve in three cases as with TOU-

DRP, RTP-DRP, and without DRP. By applying 

demand response programs the load is shifted from 

peak periods to off-peak periods which result 

reduction in total energy procurement cost. 

According to the obtained results, total cost of 

energy precedent of the MG is equal to $5,088.077, 

$4,958.927, and $4,749.380 for without DRP, 

TOU-DRP, and RTP-DRP, respectively. Based on 

the abovementioned results, 2.54% and 6.66% 

reduction is obtained by applying TOU-DRP and 

RTP-TOU, respectively. The operation of the 

different generating units of the MG is analyzed in 

the three case studies for the time horizon of the 

study. 

 

 

Fig. 6. Stored energy in the battery storage system 

 

Fig. 7. Charging/discharging state of the battery storage 

system 

 

Fig. 8. Available heat in the heat buffer tank 
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