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Abstract 

In this study, a novel sliding mode adaptive controller is developed for three-link PUMA robot, regards to high-gain fuzzy 

observer in an uncertainty condition. The studied system has uncertain nonlinear functions, multiple inputs and outputs, and 

non-measurable scenarios, and therefore requires an observation design. To design the controller, fuzzy systems were initially 

utilized to approximate non-linear uncertain functions, and then a supposable observer is available to estimate non-measurable 

system states. Finally, by combining the adaptive fuzzy controller and feedback linearization method, a high-gain observer-

based fuzzy control was developed. In order to this approach is used as enhance performance indicators of the control system. 

Fuzzy Takagi-Sugeno systems were employed to find the control gain. In the proposed control method, the convergence of 

tracking the desired reference signal of the system can be guaranteed by designing the adaption's parameters. The simulation 

results demonstrated the validity of the control method. 
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1. Introduction 

Robots have profound impacts on human life, 

they can perform multiple tasks on industry [1,2]. 

Nowadays, people need to produce high-quality, and 

high productive materials by using robot in widely 

range [3,4]. In this process robot should be operated 

uniformly, reliably, and impunity. But, Robotic 

manipulators perforce numerous problematics 

including uncertainties, because of unknown 

dynamic models, nonlinear static phrases, outside 

disturbances, or external noise. Studied have shown 

that tracking control of robot is essential factor, and 

need to great degree of inaccuracy in hypothetical 

and functional claims [5,6].In 1940, Khalil showed 

control assumption about High-gain observers as an 

essential instrument for the propose of output 

feedback control in nonlinear systems. This design 

was not completely useful in some general 

conditions [7,8]. 

High-gain observers were used earlier by 

Wang, Chen, and Shi for designing robust observers 

in linear systems [9]. Two years later, wang 

provided an accreted technique that was flourished 

individually by a large group of researchers [10]. 

They progress an approach that control by sliding 

mood adaptive fuzzy controller for nonlinear system 

[11]. At the same time, guan designed adaptive 

fuzzy mechanism to estimate the unknown 

uncertainties in the model, and high-gain terms to 

refund the approximation errors [12].  

In recent years designing the observers and 

estimating the states and internal variables in 

nonlinear systems are among the most important and 

challenging issues in the control field [13,14]. 

Although several papers have explored the design of 

non-linear observers [15,16], in many real-life 

applications, it is not possible for designer to 

measure state variables completely, this method is 

uneconomically [17,18].  For example, all variables 

in the state may be non-physical, or it may be 

difficult to measure them because of their large size 
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[19,20]. In some situations, measurements made for 

feedback may not be appropriate due to excessive 

noise [21]. Therefore, it is mandatory to estimate 

state variables. In this case, observers or estimators 

should be applied, which are measured using the 

input signal and output, and estimate the unknown 

parameters along with a dynamic model of the 

system [22]. A major problem in the design of the 

observer in practical applications is the uncertainty 

in the model due to changes in its constant 

parameters [23]. Fuzzy observers have been 

suggested to solve this problem [24]. Fuzzy 

observers have the ability to simultaneously 

estimate the vector variables of the state and vector 

of parameters [25]. Some design methods include a 

nonlinear observer of the method including the 

Lyapunov theory, a high-gain observer, a developed 

Kalman filter, design techniques based on state-

dependent Riccati equation, and a method of 

feedback linearization [26]. A solution to this 

problem is the linearization of the observer error 

equations around the equilibrium point of the system 

[27].  

Another method for estimating the states for 

non-linear systems is to find the transformation that 

allocates the existing technique to be outlook as the 

original form of the design and simplify the design 

of the observer. The problem with both of these 

methods is that the nonlinear parts of the system are 

combined directly or indirectly with the observer 

dynamics [28,29]. For the decomposition and 

design, the Takagi-Sugeno fuzzy model system is 

introduced, which is a desirable demonstration for a 

particular category of nonlinear systems. A fuzzy 

system is a general estimator for nonlinear systems 

[30,31]. Researchers have examined the 

comparative observer. In general, the convergence 

of the parameters required the realization of the 

conditions of the system's stimulating signal, which 

is typically faced with problems [32,33]. When 

discussing a hybrid observer, the dependence on the 

convergence of parameters is an important problem. 

In order to solve this problem, the comparator-mode 

observer will pay special attention to estimating 

system states despite the convergence of the 

parameter error. In this case, to consider the new 

conditions of the non-linear system, it is necessary 

to estimate the state variables despite the lack of 

convergence and uncertainty of the system 

parameters [34]. 

High-gain observer is professional technique 

to design nonlinear output feedback control. This 

method was innovated into control output feedback 

for a group of nonlinear systems. Subsequently 

Long and Zhao proposed a modern structure for 

high-gain observers, which was suitable for 

stabilizing linearizable systems with an unknown 

parameter [35]. 

In this study, we addressed a new high-gain 

observer by using T-s method and develop this 

scheme by combining a novel adaptive law and 

sliding mode controller for robot. Robot dynamics 

are containing uncertainties in environmental 

disturbances, and sliding mode control has a great 

many appealing aspects including unknown 

parameters which are robustness and they are not 

insensitivity into unknown external disturbance. On 

the other hand, this technique brings many 

limitations including chattering phenomena. By 

combining Adaptive control with sliding mode 

method, we are able to overcome to parameter 

variations.    

The main contributions of this paper can be 

highlighted as follows: 

1) Robot dynamics are containing unknown 

and unavailable external disturbances, that high gain 

observer estimated them by using T-s control 

Model, and put tracking error near zero. 

2) The adaptive laws are able to update 

adaptive parameters, and estimate uncertainly, and 

external disturbances. Adaptive control can enhance 

close- looped system robustness. 

3) By using Lyapunov’s method control 

system are able to guarantee boundless of control 

system. 

The remainder of this paper is organized as 

follows. In section II the mathematical robot's model 

and dynamic are designed. In Section III, the sliding 

mode control view as a powerful method to control 

robot' position. In Section IV the adaptive sliding 

mode control are designed, in this section adaptive 

parameters are designed true and false. Section V the 

adaptive sliding mode control regards to output 

feedback control are designed by using T-s system 

to estimate unknown parameters in robot dynamics, 

and unknown time-variant external disturbances, the 

velocities of robot are not available. Section VI 

Finally, the conclusions are drawn in.  

 

2. Robot modeling 

Control of mobile robot is currently among the 

main subjects of scientific research in robotic area. 

Robot manipulators are containing mechanical 

part with serial or parallel links. The dynamical 

structure of the three-link PUMA rigid robot 

manipulator with unstructured uncertainty is 

formulated by following equations that famous to 

Euler-Lagrange lemma [36,37]:  

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝑈    (1) 

Where q(t)R3*1 is an angular joint positions 

vector, it is assumed that this vector is unavailable 

to measurement. Moreover, q̇R3*1 and q̈R3*1 

denote joints angular, velocities, and accelerations; 



211                             International Journal of  Smart Electrical Engineering, Vol.12, No.3, Summer 2023                     ISSN:  2251-9246  

EISSN: 2345-6221 

 

M(q)R3*3 represents the link inertia matrix; 

C(q,q̇,q̈)q̇R3*3 is the Coriolis's vector or 

centripetal torques; and G(q)R3*1 is gravitational 

torque's vector. Also, UR3*3 control inputs vector 

with an indefinite structure. The outputs to be 

controlled are the angular positions. In the 

functional implementation of the adaptive law, 

external uncertainty, including errors in system 

structure, parametric uncertainty, and estimation 

errors, must be taken into consideration when 

modeling the robot. Readers are referred to main 

article for further information on robot's structure. 

(Chen at al., 2016). 

{
‖𝐶(𝑞, �̇�)‖ ≤ ℑ‖�̇�‖

𝑠𝑇(�̇�(𝑞) − 2𝐶(𝑞, �̇�))𝑠 = 0
   (2) 

Uncertainties in this system, including error 

can be added by (.) to the nominal value, and 

symbolize by (.)0, to achieve the actual evaluate of 

system elements. Therefore, in following equation 

the matrices are rewritten as: 

{

𝑀(𝑞)�̈� = 𝑀0(𝑞)�̈� + 𝛥𝑀�̈�
𝐶(𝑞, �̇�)�̇� = 𝐶0(𝑞, �̇�)�̇� + 𝛥𝐶�̇�

𝐺(𝑞) = 𝐺0(𝑞) + 𝛥𝐺
  (3) 

Moreover, the friction Fr(t)R3, considered as 

an un-modeled quantity, where b(t)R3 is 

disturbances, and it can be added to the robot model 

(1). It becomes 

(𝑀0(𝑞) + 𝛥𝑀)�̈� + (𝐶0(𝑞, �̇�) + 𝛥𝐶)�̇� + 𝐺0(𝑞) +
𝛥𝐺 + 𝐹𝑟(𝑡) = 𝑈 + 𝑏  

(4) 

Then, after a little mathematical simplification, 

robot model structure is given by (5), and  is 

uncertainty in robot model and defined by: 

{
𝑀0(𝑞)�̈� + 𝐶0(𝑞, �̇�)�̇� + 𝐺0(𝑞) = 𝑈 + 휂(�̈�, �̇�, 𝑞, 𝑏)

휂 = −[𝛥𝑀�̈� + 𝛥𝐶�̇� + 𝛥𝐺 + 𝐹𝑟 − 𝑏]
  (5) 

where  is contained unmolded parameters, 

uncertainties in structure, and environmental dist-

urbances. 

3. Sliding-Mode Control design for the PUMA 

Robot 

A sliding mode controller comprises two parts: 

the sliding surface, and the off-surface dynamics. 

The first step to derive this controller is to decide the 

expression of error. s should only be a function of e 

and its first derivative ė.The simplest function that 

guarantees e→0 and t→ is (6). The sliding surface 

is not singular and it is chosen for 3-link robot as (6).  

Consequently, if s is driven near zero, then e 

will be driven to zero, where λ is a positive constant, 

and e is tracking error. 

{
𝑠 = �̇� + 𝜆𝑒

𝜆 = 𝑑𝑖𝑎𝑔[𝜆1, 𝜆2, 𝜆3], 𝜆 ≥ 0
 (6) 

 

Where q,q̇,q̈n1 are respectively symbolize 

the position vector, velocity vector, and acceleration 

vector of the robot's joints. Where qd is input 

trajectory or robot position vector, to control the 

robot position or trajectory of robot, q must be 

following qd, where e, ė and ë, are defined as 

dynamic error in equation (6) can be rewritten as (7) 

[38]: 

{
𝑒 = 𝑞 − 𝑞𝑑 , 𝑒 ∈ 𝑅

3∗1

�̇� = �̇� − �̇�𝑑
�̈� = �̇� − �̈�𝑑

  (7) 

Speed and velocity are describing as: 

{
�̇�𝑟 = �̇� − 𝑠 = �̇�𝑑 − 𝜆𝑒
�̈�𝑟 = �̈� − �̇� = �̈�𝑑 − 𝜆�̇�

  (8) 

Proof: The closed-loop system is uniformly 

ultimately bounded (UUB), where KR3*3 is 

defined as a positive and constant vector. 

Furthermore, where M̂(q̂) and  Ĉ(q̂, q̂)̇ are 

respectively estimated value of robot arm mass, and 

vector of the Coriolis. Where Ĝ(q̂) is also the 

estimated value of the vector of gravitational torques 

[39].  

𝑈 = �̂�(�̂�)�̈�𝑟 + �̂�(�̂�, �̇̂�)�̇�𝑟 + �̂�(�̂�) − 𝐾𝑠𝑖𝑔𝑛(𝑠)  (9) 

Stability analyze is approved in two main 

parts, and Û and Us are defined as follows:  

{

𝑈 = 𝑈 − 𝑈𝑠
𝑈 = �̂�(�̂�)�̈�𝑟 + �̂�(�̂�, �̇̂�)�̇�𝑟 + �̂�(�̂�)

𝑈𝑠 = 𝐾𝑠𝑖𝑔𝑛(𝑠)

  (10) 

By placing relations (8) in (9), we will have: 

𝑈 = �̂�(�̂�)(�̈̂� − �̇�) + �̂�(�̂�, �̇̂�)(�̇̂� − 𝑠) + �̂�(�̂�) − 𝐾𝑠𝑖𝑔𝑛(𝑠)  (11) 

By placing Relations (11) in (1), we will have: 

�̂�(�̂�)�̈̂� − 𝑀(𝑞)�̈� + �̂�(�̂�, �̇̂�)�̇̂� − �̂�(𝑞, �̇�)�̇� + �̂�(�̂�) −

𝐺(𝑞) − �̂�(�̂�)�̇� − �̂�(�̂�, �̇̂�)𝑠 − 𝐾𝑠𝑖𝑔𝑛(𝑠) = 0  
(12) 

By placing the relations (5) and (11) in (13), 

we will have: 

�̂�(�̂�)�̇� = 휂 − �̂�(�̂�, �̇̂�)𝑠 − 𝐾𝑠𝑖𝑔𝑛(𝑠)  (13) 

By choosing the following Lyapunov 

candidate based on errors in the closed-loop system 

and consider sustainability: 

𝑉 =
1

2
𝑠𝑇�̂�(�̂�)𝑠  (14) 

V̇  is the time derivative of V or Lyapunov 

function that defined in (15).  

�̇� = 𝑠𝑇(휂 − 𝐶(�̂�, �̇̂�)𝑠 − 𝐾𝑠𝑖𝑔𝑛(𝑠) +
1

2
𝑠𝑇�̇̂�(�̂�)𝑠

= 𝑠𝑇𝑠 + 𝑠𝑇(휂 − 𝐾𝑠𝑖𝑔𝑛(𝑠))

+ 𝑠𝑇 (
1

2
�̇̂�(�̂�) − �̂�(�̂�, �̇̂�)) 𝑠 

 
1

2
�̇̂�(�̂�) − �̂�(�̂�, �̇̂�) = 0 

(15) 
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By placing Relations (15) in (13), and by 

considering the anti-symmetry property of (2), we 

will have: 

{
�̇� = −𝑠𝑇𝑠 + ∑ 𝑠𝑖

3
𝑖=1 (휂 − 𝐾𝑖𝑠𝑖𝑔𝑛(𝑠))
𝐾 ≥ 휂

  (16) 

Where V̇ is negative semi definite, and close 

loop system being asymptotic stability.  

Where S is robust control surface and it is 

available to estimate the unavailable states of 

systems. The stability analysis is maintaining to 

demonstrate the stability of control system, quick 

adaptation, excellent robustness, and effective input 

chattering reduction. Therefore, the development 

control design are able to retain the sliding-mode 

error near the sliding surface. 

4. Fuzzy Adaptive Robust Controller Structure 

In this section, we addressed a new Takagi-

Sugeno fuzzy model for nonlinear systems. 

Consequently, there are two main methods for 

creating Takagi-Sugeno fuzzy models: (1) 

identification, and (2) derivation structure that used 

to make nonlinear equations. In this article we used 

to second method.  

휂(�̈�, �̇�, 𝑞, 𝑏) = 𝛥 + ∑ 휃𝑖
∗𝑇𝜑𝑖(�̂�, �̇̂�, �̈̂�𝑟)

3
𝑖=1   (17) 

The η(q̈, q̇, q, b) is approximated using the 

Takagi-Sugeno fuzzy systems. In (18), *T  is a 

fuzzy optimal vector matrix, 

(•)=[1(•),2(•),3(•)] is a fuzzy regress or 

vector,  and =[1,2,3] is the vector of minimum 

fuzzy modeling error assumed positive and 

vounded. The vector of the fuzzy modeling error () 

is assumed to be below a boundary with fixed and 

indeterminate boundaries.  

  

(18) 

Now, the Lyapunov function is defined 

according to (19). After investigating the function’s 

stability, the appropriate adaptation law is obtained 

for making asymptotic stability conditions and the 

tracking error. 

𝑉 =
1

2
𝑠𝑇�̂�(�̂�)𝑠 + ∑

1

2

3
𝑖=1 휃̃𝑖

𝑇
𝐹−1휃̃𝑖   (19) 

V̇  is the time derivative of V or  Lyapunov 

function that follow as:  

�̇� =
1

2
�̇�𝑇�̂�(�̂�)𝑠 +

1

2
𝑠𝑇�̂�(�̂�)�̇� +

1

2
𝑠𝑇�̇̂�(𝑞)𝑠 +

1

2
∑ 휃̇̃𝑖

𝑇
𝐹−1휃̃𝑖 + 휃̃𝑖

𝑇
𝐹−1휃̇̃𝑖

3
𝑖=1 = 𝑠𝑇�̂�(�̂�)�̇� +

1

2
𝑠𝑇�̇̂�(𝑞)𝑠 +

∑ 휃̃𝑖
𝑇
𝐹−1휃̇̃𝑖

3
𝑖=1   

(20) 

where θ̃ is the matrix error of adaption 

parameters, θ̃ is estimation error of the adaption 

parameter and * is the efficiency matrix. In 

addition, the matrix of F=FT0 is the gain of 

adaption. We now have a derivative of the Lyapunov 

function by considering the anti-symmetry property 

of: 

*T T

i

*T T

T

T

ˆ

0

F F 0

 −   

 =  −

  


= 

  

(21) 

{
 
 

 
 �̇� = 𝑠𝑇(휂 − �̂�(�̂�, �̇̂�)𝑠 − 𝐾𝑠𝑖𝑔𝑛(𝑠) +

1

2
𝑠𝑇�̇̂�(�̂�)𝑠 +∑휃̃𝑖

𝑇
𝐹−1휃̇̃𝑖

3

𝑖=1

= 𝑠𝑇(휂 − 𝐾𝑠𝑖𝑔𝑛(𝑠)) + 𝑠𝑇(
1

2
�̇̂�(�̂�) − �̂�(�̂�, �̇̂�))𝑠 +∑휃̃𝑖

𝑇
𝐹−1휃̇̃𝑖

3

𝑖=1

 (22) 

By placing (17) in (22) and considering the 

anti-symmetry property of (2), (23) is obtained: 

{
�̇� = 𝑠𝑇(휂 − �̂�(�̂�, �̇̂�)𝑠 − 𝛽) +

1

2
𝑠𝑇�̇̂�(�̂�)𝑠 + ∑ 휃̃𝑖

𝑇
𝐹−1휃̇̃𝑖

3
𝑖=1 =

�̇� = 𝑠𝑇𝑠 + 𝑠𝑇(휂 − 𝛽) + 𝑠𝑇(
1

2
�̇̂�(�̂�) − �̂�(�̂�, �̇̂�))𝑠 + ∑ 휃̃𝑖

𝑇
𝐹−1휃̇̃𝑖

3
𝑖=1

  (23) 

Where V̇  is negative semi definite function, 

and closed-loop system is also asymptotic stability. 

Because all signals in this assumption control 

system are bounded. Now, the input control and low 

control are achieved as follows:      

{

𝛤 = −𝛾𝑠 − ∑ 휃̂𝑖
𝑇
𝜑𝑖(�̂�, �̇̂�, �̈̂�𝑟)

3
𝑖=1

휃̇̂𝑖 = 𝐹[∑ 𝜑𝑖(�̂�, �̇̂�, �̈̂�𝑟)
3
𝑖=1 𝑠 − ∑ 𝛿휃̂𝑖

3
𝑖=1 ]

𝛽𝑖 = 휃𝐵𝑖
𝑇𝜑𝜂𝑖(�̂�, �̇̂�, �̈̂�𝑟) + 휃𝐵𝑖

𝑇𝜑𝜂𝑖(�̂�, �̇̂�, �̈̂�𝑟)

  (24) 

where , F=FT>0 and =T>0 are the control 

gain adaption matrix gain and sigma factor 

correction, respectively. By placing (24) in (23), we 

will have: 

3 3

T T 1 T 1 T 1

i i r i i i i r id i r

i 1 i 1

3

T T 1

i i i i r

i 1

T 1 T 1

i i i r id i r

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆV s s F (q,q,q ) s ( F (q,q,q ) F (q,q,q ))

ˆ ˆ ˆ ˆs s s ( F (q,q,q )

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆs F (q,q,q ) F (q,q,q )

− − −

   

= =

−

 

=

− −

   

= − −   +  −  +  

=

− +  −  +

+ −   +  

 


3 3

i 1 i 1

3 3

T T 1 T

i i i r i i

i 1 i 1

3

T T 1

i i i i r

i 1

3

T T 1 T

i i i r i i

i 1

3

T T 1

i i id i r

i 1

T

i i

ˆ ˆ ˆ ˆs (q,q,q ) F

ˆ ˆ ˆ ˆs s s ( F (q,q,q )

ˆ ˆ ˆs (q,q,q ) F

ˆ ˆ ˆ ˆs s s ( F (q,q,q )

[ s

= =

−

   

= =

−

 

=

−

   

=

−

 

=



+

−   +   =

− +  − 

+ −   +  

− +  −  +

 − 

 

 






3

i r i

i 1

ˆ ˆ ˆ(q,q,q ) ] 

=





























+ 



  

  

(25) 

 

Yang's inequality is as follows [40,41]: 

𝑥𝑇𝑦 ≤
1

2
‖𝑥‖2 +

1

2
‖𝑦‖2   (26) 
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{
  
 

  
 𝑠𝑇𝛥 ≤ ‖𝑠‖‖𝛥‖ ≤

1

2
𝑠𝑇𝑠 +

1

2
𝜌∗2

휃̇̃𝐵𝑖 = 𝑠𝑖
𝑇𝛾𝑠𝑖𝜑𝜂𝑖(�̂�, �̇̂�, �̈̂�𝑟)

∑ 휃̃𝑖
𝑇
𝛿휃̂𝑖

3

𝑖=1

=∑휃̃𝑖
𝑇
𝛿(휃𝑖

∗ − 휃̃𝑖)

3

𝑖=1

≤∑(
𝛿

2
‖휃𝑖

∗‖2 −
𝛿

2
‖휃̃𝑖‖

2
)

3

𝑖=1

 

Using Young’s inequality and (25), we will 

have: 

�̇� = −𝑠𝑖
𝑇𝛾𝑠𝑖 −∑𝑠𝑖(휂𝑖 − 휃̂𝛽𝑖

𝑇
𝜑𝜂𝑖(�̂�, �̇̂�, �̈̂�𝑟)

3

𝑖=1

) 

|휂𝑖 − 휃̂𝛽𝑖
𝑇
𝜑𝜂𝑖(�̂�, �̇̂�, �̈̂�𝑟)| ≤ 𝛿𝑖 ≤ 𝛾𝑖|𝑠𝑖| 

= 𝑠𝑖 |휂𝑖 − 휃̂𝛽𝑖
𝑇
𝜑𝜂𝑖(�̂�, �̇̂�, �̈̂�𝑟)| ≤ 𝛾𝑖|𝑠𝑖|

2 = 𝛾𝑖𝑠𝑖
2 

�̇� ≤ 𝑠𝑇𝑠 +∑𝛾𝑖𝑠𝑖
2

3

𝑖=1

 

(27) 

For simplification and avoiding complexity  

and  are assumed as follows: 

T

3
2

* *2

i

i 1

3

2 2 T

i i

i 1

1 1
min s ( I)s, (F)

2 2

1

2 2

V ( s ) s (I )s 0

I

=

=

  
 =  −   

 
 
 =  + 


  − +  = − −  


 





  

(28) 

Barbalat’s Lemma [42]: where φ(t) is defined 

as a uniformly continuous valid function. For𝑡 ≥ 0, 

presume that 𝑙𝑖𝑚
𝑡→∞

∫ 𝜙(𝜏)𝑑𝜏
𝑡

0
  already is existed and 

limited. Then, φ(t)→0, t→t. Lyapunov lemma can 

be achieve by Using Barbalat’s lemma. 

Lemma Rayleigh-Ritz theorem: where A 

∈R×n is a valid, symmetric, positive-definite matrix; 

where λmin is minimum and λmax is maximum 

eigenvalues of A vector and all these vectors are 

positive and valid. Then for ∀x ∈ Rn, we have 

λmin||x||2 ≤ xT Ax ≤ λmax||x||2, where || · || denotes 

the standard Euclidean norm. 

Lyapunov - Lemma: where 𝑣  is scalar 

function, lower bound of  V̇ is a negative semi-

definite function. V̇ is uniformly continuous in time 

(The A is an adequate position, that V̈ is bounded); 

𝑣 →0 then, t →∞.  

Given Ritz's relationship, we will have: the 

control system is designed as semi-continuous and 

bounded, and the whole of closed-loop signals are 

fainted. By choosing the appropriate design 

parameters, the traceability error convergence can 

be set to a very small field around zero [43]. 

t
t

3

T T T T T T T

i i i i i i i i i r i i i r i i i r

i 1

lim V V 0, lim V 0

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆV s s s s s (s (q,q,q )) s (q,q,q ) s (q,q,q )

→
→

     

=

  − +  =



 = −  −  −  +   −   −  




  

(29) 

𝑙𝑖𝑚
𝑡→∞

‖𝑒‖2 = 0 

𝑙𝑖𝑚
𝑡→∞

𝑠 = 𝑙𝑖𝑚
𝑡→∞

(�̇� + 𝜆𝑒) = 0 

𝑙𝑖𝑚
𝑡→∞

�̂� = �̇�𝑑 

(30) 

The control system is designed as a semi-

continuous boundary finite, and all closed-loop 

signals are infinite. Therefore, by selecting the 

appropriate design parameters, the traceability error 

convergence can be set to a very small field around 

zero. 

5. Constructive Adaptive Controlling Design 

Based on Output Feedback 

In this part, we enhance a new adaptive fuzzy 

controller in the previous part, it was assumed that 

we could quickly access each of the three robot arms 

in addition to the position of the robot arms. This 

will increase the limits and also the cost of the 

designed control system. The fifth assumption [44]: 

In this part of the paper, it is assumed that the control 

system is not capable of measuring the velocity of 

Puma's arms. 

 In addition, to conquer this complication in the 

Adaptive controlling design, a high-gain observer 

can be designed to compute the uncertain speeds in 

PUMA robot. The robot's position vector is not 

available and the robot’s velocity vector is not 

accessible, therefore we must be used high-gain 

observer, to estimate these inaccessible vectors in 

robot's dynamic, including unknown and external 

disturbances. In the following equation there is a 

lemma about the high-gain observer (32). Where 

y(t)  is system's output , and assumed that first n-1 

derivatives are infinite, that is, y(k)yk (k=1, 2, 

…, n-1). Where yk is a positive and constant [45].   

{
휀�̇̂�𝑖 = �̂�𝑖+1, 𝑖 = 1,2, … , 𝑛 − 1

휀�̇̂�𝑛 = −�̄�1�̂�𝑛 − �̄�2�̂�𝑛−1 −⋯− �̄�𝑛−1�̂�2 − �̂�1 + 𝑞1
|�̇� ≤ 𝑄|  (31) 

In previous equation where   assumed small 

positive constant, and  i (i=1, 2, …, n) are the state 

variables of the observer. Selecting 1, 2, …., n-

1 parameters in the polynomial (33). This equation 

is Hurwitz, and it is containing following properties 

[46]:  

𝑠𝑛 + �̄�1𝑠
𝑛−1+. . . +�̄�𝑛−1𝑠 + 1  (32) 

휀�̇�𝑖 = 𝜋𝑖+1, 𝑖 = 1,2, . . . , 𝑛 − 1 
휀�̇�𝑛 = −�̄�1𝜋𝑛 − �̄�2𝜋𝑛−1 −⋯− �̄�𝑛−1𝜋2 − 𝜋1 + 𝑥1(𝑡) 

𝜉𝑘 =
𝜋𝑘
𝜉𝑘−1

− 𝑥1
(𝑘−1) = −휀�̄�(𝑘), 𝑘 = 1, . . . , 𝑛 − 1 

||𝜉𝑘|| ≤ 휀ℎ𝑘 , 𝑡 ≥ 𝑡∗ 

𝜓 = 𝜋𝑛 + �̄�1𝜋𝑛−1 +⋯+ �̄�𝑛−1𝜋𝑛 

휁𝑘 =
�̂�𝑘+1
휀𝑘−1

− 𝑞1
(𝑘) = −휀𝜓(𝑘+1) 

𝑘 = 1,… , 𝑛 − 1 

(33) 

 

 where t* and bk  are positive constants 

which related  on Yk-1,  (k=1,2,…,n) and i 

(i=1,2,…,n-1) we assumption that for all tt*,  
|ψ(k)| ≤ bk and |ξk+1| ≤ ϵk Converges to |y(k)| 
with infinite  error if y and its first the derivatives 
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are bounded; thus, q̂/ϵk+1 (k=1,2,…,n) this factor 

can be estimated unmeasured derivatives of the 

output up to the(𝑛 − 1) th order.  

Furthermore, U does not include information 

about mathematical model of robot structure It has 

contain unavailable states, that depends on the 

available output signals in robot system. High-gain 

observers are able to estimate these parameters. It is 

appeal to design the output feedback control design 

for a group of nonlinear systems with uncertain 

dynamics and external disturbances. 

𝑈 = �̂�(�̂�)(�̈̂� − �̇�) + �̂�, . (�̂�, �̇̂�)(�̇̂� − 𝑠) + �̂�(�̂�) − 𝛽  (34) 

Proof: closed-loop technique is defined as (35), 

in which   is the upper bound of the uncertainties 

and defined as (36):  

𝛽𝑖 = 휃𝑖
𝑇𝜑𝑖(�̂�, �̇̂�, �̈̂�𝑟)  (35) 

�̂�(�̂�)�̈̂� − 𝑀(𝑞)�̈� + �̂�(�̂�, �̇̂�)�̇̂� − 𝐶(𝑞, �̇�)�̇� + �̂�(�̂�) −

𝐺(𝑞) − �̂�(�̂�)�̇� − �̂�(�̂�, �̇̂�)𝑠 − 𝐾𝑠𝑖𝑔𝑛(𝑠) = 0  
(36) 

ased on (37) and (7), (38) defined as:  

�̂�(�̂�)�̇� = 휂 − �̂�(�̂�, �̇̂�)𝑠 − 𝛽 (37) 

where 𝐿 is a positive design parameter. The 

fuzzy regress or vector is bounded. 

{
‖𝜑(�̂�, �̇̂�, �̈̂�𝑟)‖

2
≤ 𝐿

|휂 − 휃𝑇𝜑(�̂�, �̇̂�, �̈̂�𝑟)| ≤ 𝛿
  (38) 

The adaptation error is as the following 

relation: 

*

T

1 2 2

i i i 2,i i i

n

1 1

n

2 1

l n

1

ˆ

ˆˆ ˆs k s s(z)

ˆ ˆ ˆˆ(s (z)

s R , s D

D
s R , s

min(M)

D
R ,

min( )

C
D 2(V(0) )



−

 = −

  = − − + 

 = −  +  

  



 
 


  

 

 = +



  

(39) 

where D defined as D = 2 (V (0) + C/ρ), ρ and 

C are positive and constants parameters. A positive 

definite function is constructed as: 

{
𝑉 =

1

2
𝑠1
𝑇𝑠1 +

1

2
𝑠2
𝑇�̂�(�̂�)𝑠2 +

1

2
∑ 휃̃𝑖

𝑇
𝛤−1휃̃∗𝑖

3
𝑖=1

𝑠 ≠ 0
  (40) 

The time derivative of V becomes: 

�̇� ≤ −𝑠1
𝑇𝑘1𝑠1 − 𝑠2

𝑇(𝑘2 −
1

2
𝐼)𝑠2 − 𝑠2

𝑇𝑘2�̃�2 +

∑ 𝑠2,𝑖[휃̂𝑖
𝑇
𝑠𝑖(�̂�) − 휃

∗
𝑖

3
𝑖=1 𝑠𝑖(𝑧)] − ∑ [휃̃𝑖

𝑇
𝑠2,𝑖𝑠𝑖(�̂�) +

3
𝑖=1

𝛿𝑖휃̃
𝑇
𝑖휃̂𝑖] +

1

2
‖휀‖2   

(41) 

Based on (32) and (34), (39), Equation (43) 

becomes: 

𝜉 =
𝜋2
휀
− �̇�1 = −휀𝜓

(2) 

‖𝜉2‖ ≤ 휀ℎ2 
𝜓 = 𝜋2 + 𝜆1𝜋1 

�̃�2 = �̂�2 − 𝑠2 =
𝜋2 − 𝐹(𝑞) − �̇�1 + 𝐹(𝑞) = 𝜉2   

(42) 

According to Young lema: 

�̇� ≤ −𝑠1
𝑇𝑘1𝑠1 − 𝑠2

𝑇(𝑘2 −
1

2
𝐼)𝑠2 − 𝑠2

𝑇𝑘2�̃�2

−∑𝑠2,𝑖휃̃𝑖
𝑇
𝑠𝑖(�̂�) −

3

𝑖=1

∑휃∗𝑖
𝑇𝑠2,𝑖

3

𝑖=1

+∑
𝛿𝑖
2
‖휃̃𝑖‖

2
3

𝑖=1

+
1

2
‖휀‖2

+∑
𝛿𝑖
2
‖휃̃𝑖‖

2
3

𝑖=1

 

 

(43) 

∑𝑠2,𝑖휃
∗
𝑖
𝑇

3

𝑖=1

≤
1

2
𝑠2
𝑇𝑠2 +∑

‖휃∗𝑖‖
2휀2‖𝑠𝑡𝑖‖

2

2

3

𝑖=1

−∑휃̃𝑇𝑠𝑖(�̂�𝑖)

3

𝑖=1

= 

−∑
√𝛿𝑖휃̃𝑖

√2

3

𝑖=1

√2

√𝛿𝑖
𝑠𝑖(�̂�)𝑠2,𝑖

≤∑
𝛿1‖휃̃𝑖‖

2

4

3

𝑖=1

+∑
2‖𝑠𝑖(�̂�𝑖)‖

2

𝛿𝑖

1

2

3

𝑖=1

𝑠2
𝑇𝑠2 

(44) 

Based on (42) and (43), Equation𝑠2
𝑇𝑘2�̃�2 ≤

1

2
𝑠2
𝑇𝑠2 + (𝑘2�̃�2)

𝑇𝑘2�̃�2 becomes: 

�̇� ≤ −𝑠1
𝑇𝑘1𝑠1 − 𝑠2

𝑇(𝑘2 − 𝐼)𝑠2 − 𝑠2
𝑇𝑘2�̃�2

+∑
𝛿𝑖‖휃̃𝑖‖

2

4
−∑(

휀2

2
‖𝑠𝑡𝑖‖

2

3

𝑖=1

3

𝑖=1

+
𝛿𝑖
2
)‖휃∗𝑖‖

2 

∑
2

𝛿𝑖
‖𝑠𝑖(�̂�)‖

2 1

2

3
𝑖=1 𝑠2

𝑇�̃�2 +
1

2
‖휀‖2   

(45) 

�̇� ≤ −𝑠1
𝑇𝑘1𝑠1 − 𝑠2

𝑇(𝑘2 −
3

2
𝐼)𝑠2 −

1

2
‖휀‖2

−∑
𝛿𝑖‖휃̃𝑖‖

2

4
+

3

𝑖=1

 

𝜆𝑚𝑎𝑥 (𝑘2
𝑇𝑘2 + 𝑑𝑎𝑖𝑔[

2𝑙𝑖
𝛿𝑖
]

+
1

2
휀𝑇ℎ2

2 1

2
∑(휀2‖𝑠𝑡𝑖‖

2

3

𝑖=1

+ 𝛿𝑖)‖휃
∗
𝑖‖
2
≤ −𝜌𝑉 + 𝑐 

(46) 

where ρ and C are two constants defined as 

1

2
i

1

i

min(2 min(k ),

3
2 min(k I)

2 ,min( )
max 2 max −

 = 

 −


  

  

(47) 
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Now, by rewriting the control relationship 

(control law, and adaptive law) obtained in the 

previous section for design regards on the output 

feedback. The property of the principle of equality 

and the principle of reparability: 

Where K1 and K2 are control gains, and select 

to satisfy (48) equation, and ρ > 0 is positive.   

𝑐 =
1

2
∑(휀2
3

𝑖=1

‖𝑠𝑡𝑖‖
2 + 𝛿𝑖)‖휃

∗
𝑖‖
2 + 

𝜆𝑚𝑎𝑥 (𝑘2
𝑇𝑘2 + 𝑑𝑎𝑖𝑔[

2𝑙𝑖
𝛿𝑖
]
1

2
휀𝑇ℎ2

2 +
1

2
‖휀2‖2 

𝜆𝑚𝑖𝑛 (𝑘1) ≥ 0 

𝜆𝑚𝑖𝑛 (𝑘2 −
3

2
𝐼) ≥ 0  

(48) 

�̇�is a negative semi-definite, and the closed-

loop system has asymptotic stability. According to 

the Lasal lemma, the vector of the sliding surface 

converges to zero.  
𝑙𝑖𝑚
𝑡→∞

𝑠 = 𝑙𝑖𝑚
𝑡→∞

(�̇� + 𝜆𝑒) = 0 

{
𝑙𝑖𝑚
𝑡→∞

�̇̂� = �̇�𝑑

𝑙𝑖𝑚
𝑡→∞

�̂� = 𝑞𝑑
  

(49) 

As mentioned earlier, the fuzzy system used in 

this paper has two inputs and one output and consists 

of five trapezoidal triangle membership functions 

with the names 

BP, SP, Zero, BN, SN  (50) 

An error derivative is defined for input. It is 

noteworthy that the range of changes is also 

considered for fuzzy membership functions for the 

interval. In addition, the non-fuzzy maker is also 

used in control system. In this study, we addressed 

(17) fuzzy rules, that they are contain the number of 

it, then rules. Exit membership functions describe 

the gain control behaviour. Membership functions 

were considered on a [-30, + 30] interval. The inputs 

of the fuzzy system are considered, thus 

representing the trace error vector and the derivative 

of the trace error.  

6. Simulation Results 

In this paper, the robot has three degrees of 

freedom. Consequently, three controllers are used 

for their control and identification. The structure of 

the three controllers is exactly the same. As shown 

in fig. 1, there is a large fuzzy interest observer 

inside each controller. The PUMA robot is in an 

uncertain presence (parametric-nonparametric). In 

the first part of the simulation, the simulation 

assumes that the probes are manually tested and 

error-free, and the speed and position of the robot 

arm are available. In the second part, it is assumed 

that the robot arm speed is not available and is 

obtained by the observer of large interest. In the final 

section, using the slip-mode control method, a 

robust adaptive fuzzy observer has great interest in 

estimating the speed of the robot arm. 

In figs. 2, 3, and 4, q1, q2 and q3 outputs of the 

robot are investigated in the sliding mode. In less 

than 6 seconds, the desired and real outputs 

converge to each other. 

Figs. 5, 6 and 7 plot tracking error of q1, q2 

and q3 arms of the robot in the sliding mode in the 

existence of uncertainty. The error has a small 

boundary around zero. In the Simulation Results, the 

tracking error has been shown to converge and join 

a diminutive neighbourhood of the base. 

 

Fig. 1. Internal controller structure 

 

Fig. 2. Output of q1 sliding mode 

 

Fig. 3. Output of q2 sliding mode 

 

Fig. 4. Output of q3 sliding mode 

 

Fig. 5. Tracking error of q1  
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Fig. 6. Tracking error of q2 sliding mode in uncertainty 

 

Fig. 7. Tracking error of q3 sliding mode in uncertainty 

If the remaining error is proper to be minor, it 

can be decrease including C/ρ in two Theorems 1 

and 2 reduce. By developing K1, K2 the reduction is 

attained, to estimate accuracy of the adaptive 

parameters, and the high-gain observer, the real 

amount of   1/ε is positive and constant. In figs. 8, 9, 

and 10, the k1, k2 and k3 parameters are shown in the 

sliding mode control figs, 11, 12, and 13, the λ1, 

𝜆2and 𝜆3parameters are shown in the sliding mode 

control. 

 Figs. 14, 15, and 16 demonstrate the robot 

outputs for q1, q2 and q3 angles and the tracing error 

has a large boundary. Plot the output based on the 

control law in (24). It shows that the associated 

position error remains in the prescribed bound (32) 

to claim the containment control with the prescribed 

accomplishment (35) development in part 4. 

Fig. 17 shows the control input without fuzzy 

adaption in which the input is turbulent. In fig. 18, 

the error has a large boundary.  

In fig. 19, at second 8, adaptive parameters are 

detected and the output reaches the desired value. 

The position of shoulder joint and elbow joint using 

fuzzy adaptive controller are shown in figs. 20, 21 

and 22.  

The tracking errors in every one joints are 

elucidated in Fig. 23. Control inputs have shown in 

Fig. 24. The evolution of the adaptive parameters is 

elucidated in fig. 25 is considerably stable. In fig 26, 

we can also visit the real positions that are 

converged to the desired trajectories. Input torques 

are shown in fig. 27, they are limited and permanent. 

 

 

 

 

 

 

 

 

Fig. 8. Parameter k1 in the sliding mode 

 

Fig. 9. Parameter k2 in the sliding mode 

 

Fig. 10. Parameter k3 in the sliding mode 

 

Fig. 11. Parameter λ1 in the sliding mode 

 

Fig. 12. Parameter λ2 in the sliding mode 

 

Fig. 13. . Parameter λ3 in the sliding mode 

 

Fig. 14. Output of q1 without fuzzy adaption 
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Fig. 15.  Output of q2 without fuzzy adaption 

 

Fig. 16. Output of q3 without fuzzy adaption 

 

Fig. 17. Control input signal 

 

Fig. 18. Tracking errors without observer 

 

Fig. 19. Adaptive parameters without observer 

 

Fig. 20. Output of q1 fuzzy adaption 

 

Fig. 21. Output of q2 fuzzy adaption 

 

Fig. 22. Output of q3 fuzzy adaption 

 

Fig. 23. Tracking error- based adaptive law design 

 

Fig. 24. Control input signal 
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Fig. 25. Adaptive Parameters fuzzy adaption 

 

Fig. 26. Tracking errors without observer 

 

Fig. 27. Cartesian path 

Figs. 20-22 elucidated control output, it is 

stable and the tracking performance is acceptable 

during lack of data about the velocity in 

measurement tools. The proper controller is more 

functional rather than controller without fuzzy 

adaption, by reason of, its more economical, do not 

need to velocity measurement sensors. 

This study addressed a novel sliding-mode 

adaptive fuzzy controller for nonlinear systems with 

uncertainty, and unknown control directions with 

input saturation, lack of full state measurements. A 

high-gain fuzzy observer was designed to estimate 

unknown parameters in system. The Adaptive fuzzy 

controller guaranteed the semi-global uniform 

ultimate bounded-ness (SGUUB) the whole of 

signals in the closed-loop are bonded, and the 

tracking error in output can be converted to a small 

neighbourhood of the origin by the appropriate 

selection in the design parameters. 

The tracking error are elucidated to converge, 

it remained in small neighbourhood of the base. The 

remaining error is appropriated to be minimum. In 

fig. 26 the tracking performance in closed-loop 

system for 3 joints robot is shown. According to this 

figure, tracking is successfully done and the system 

error is converging to a small value near to zero. On 

the other hand, to design controller we need to 

totally-known structure in control system, which is 

hard to achieve in profession. By looking on the 

simulation consequence also indicate that the fuzzy 

adaption can be estimated the unknown parameters 

in system and guarantee the control performance. 

The tracking error is reduced conform to expand in 

the fuzzy adaptation gains. The simulation 

consequence proves that bounded-ness of the 

adaptation gains with increased convergence rate. 

The control inputs are shown in fig. 24. They getting 

influenced by the Gaussian noise, it is appearing in 

oscillation on the control inputs. Specifically, the 

high-gain observer cannot be increased the control 

inputs, thus offering an adequacy method to design 

the output feedback control. 

It is observed about Figs that the control 

simulation performance in the three different 

controllers for the same robot are not resembling. 

Table I obviously displays that the adaptive fuzzy 

controller demonstrates greater transient and steady-

state accomplishment for the robot. Because 

adaptive fuzzy controller manipulates to estimate 

the uncertain speeds of the PUMA robot. 

The proposed controller in this paper is able to 

recompense uncertainties in robot structure 

including un-modelled dynamics or external 

disturbances by using the adaptive fuzzy controller, 

by combining the adaptive law estimate disturbance 

bound, whereas High- Gain adaptive fuzzy 

controller is created regards to estimate the robot 

dynamic with unknown parameters without the 

adaptive skill to change parameters. These 

obviously illustrate the adaptive ability and the 

robustness of our adaptive output to the parameter 

changes and external disturbances. 

Table.1. 
Time and Control Performance Comparison of the Three 

Methods 

Control 

parameters 

Sliding 

Mood 
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observer 
Without 

observer 

Percentage of 
permanent mode 

error 

0.5 0.3 3 

Time (s) 0.2 0.5 2.5 

 

7. Conclusion 

In this study, a robust adaptive fuzzy high gain 

estimation observer is created for continuous-time 

systems with exact (Takagi-Sugeno) representations 

with uncertainty, unmeasured states, and external 

disturbance. Using the Lyapunov function and 

robust adaptive fuzzy algorithms, the parameters 

were estimated. Therefore, the results can be 

extended to the measurement of disturbances. Our 
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design method is general in the sense that the same 

design procedure is applied for any fault vector. The 

simulation consequences revealed that the 

convergence of the state observation errors was 

ensured step by step in finite time for three 

observers. Finally, it was demonstrated through an 

example that the efficiency of the sliding-mode 

observer overcomes the occurrence of the chattering 

phenomenon. 
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