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Abstract 

A straightforward and affordable way to improve the power factor and account for reactive power (RP) in the distribution 

network (DN) is to employ switched capacitor banks (SCBs). The optimal placement of these capacitors helps to reduce costs 

and power losses in the network. This essay offers a hybrid algorithm by combining the Harris Hawks Optimization algorithm 

(HHO) and the Non-dominated Sorting Genetic Algorithm Type 2 (NSGA-II) to arrange the switched capacitors (SCs) in the 

DN in the best possible location and scheduling. Power plant active and reactive power (ARP) generation, capacitor bank (CB) 

capital expenditure (CapEx) and maintenance costs, ARP losses in DN, and switching costs of SC are all factored into the 

proposed objective function. 

 Furthermore, the load uncertainty in this study is modeled using the normal distribution function. Finally, the proposed 

optimization problem is implemented on IEEE standard 33-bus networks, and the performance of the suggested hybrid 

approach is compared with other commonly used multi-objective optimization algorithms. The simulation results show the 

higher performance of the proposed algorithm in terms of convergence speed and the objective function value. 
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1. Introduction 

In a DNs, loss reduction is one of the main 

goals since it is both economically and technically 

profitable and can be achieved using power 

compensation methods. [1] RP consumption by non-

linear loads in the system reduces the active power 

(AP) transmission capacity in distribution and 

transmission networks and directly affects AP losses 

in the network [2]. In addition, RP consumption on 

the demand side leads to voltage drop in distribution 

feeders. In order to compensate for the RP consumed 

by the demand side and reduce the power losses in 

the distribution and transmission systems, various 

compensation models have been presented in the 

literature. One of the simplest and most economical 

methods is utilizing CBs which are still used in 

many DNs [3]. SCs applications are voltage profile 

improvement, power factor correction and 

compensating RP in the distribution system. If these 

capacitors are optimally placed and scheduled, 

power losses and maintenance costs could be 

minimized [4], [5]. 

In recent studies, the optimal placement of 

SCBs in the DN is of great interest. In [6], a hybrid 

method for optimal placement and determining the 

optimal size of switching capacitors in the DN is 

presented, which is determined based on a dual 

objective function, and a hybrid optimization 

algorithm is used to solve this problem. In this paper, 

the proposed objective function consisting of ARP 

factors, CapEx and maintenance costs, and ARP 

losses in the DN and transformers is minimized. The 

effect of the load model on the placement and sizing 

of switching capacitors has also been investigated. 

  The allocation of switching capacitors in 

unbalanced systems has been examined using the 

three-level optimization model in [7]. The primary 
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objective of the optimization problem is to minimize 

energy losses. In the first step, the interior point 

method is used to solve the problem of optimal 

power distribution. This problem is solved with two 

scenarios of heavy load and light load. By solving 

the problem, the amount of RP and the number of 

fixed and SCBs are obtained. In the second step, the 

location of CBs is determined using the genetic 

algorithm. Finally, in the third step, the switching 

state of the SCs is specified with a binary 

optimization method. 

In [8], an integer-mixed linear programming 

model is used to optimally place CBs in DNs. The 

problem of rearranging the DN and optimal 

placement of CBs in this system is defined in order 

to minimize losses, increase reliability and improve 

the voltage profile in electricity DNs. The main goal 

is to determine the optimal size and location of 

switching capacitors in order to control the RP in the 

system. A review of RP compensation methods 

based on optimal placement and sizing of 

compensation devices in the DN has been done in 

[9]. In this paper, reduction of power losses, 

improvement of voltage stability, increase of voltage 

profile and improvement of load capacity in the 

network is considered. Various RP compensation 

devices have been investigated, including FACTS 

devices, CBs, etc. Compensation methods have been 

categorized based on analytical, traditional, and 

innovative methods. 

In [10], various shunt compensation 

technologies are inspected in order to compensate 

and schedule the RP in the DN. Mechanically SCBs, 

static VAR compensation (SVC), and static 

synchronous compensation (STATCOM) are 

examples of shunt compensation devices. This paper 

utilized the genetic algorithm to solve the mixed-

integer non-linear programming problem. Finally, 

according to the IEEE standard in England, the 

proposed method was implemented on a real 

distribution system. The optimal placement of multi-

mode switching capacitors in radial DNs has been 

investigated in [11]. This research developed a 

strategy for the optimal allocation of multi-mode 

SCs in the radial DN, with the objective of 

minimizing energy losses and enhancing the voltage 

profile. In the proposed method, each planning 

period was divided into several sections, and the 

number of sections (NOS) was defined. Finally, the 

optimization problem is solved to optimize 

increasing or decreasing capacity steps. 

In [12], the problem of integrating solar 

system, energy storage system and SCBs in a weak 

DN is investigated. In order to optimally allocate 

these three parts in the DN, Slime Mold Algorithm 

(SMOA) is used. The purpose of the optimization 

model is to simultaneously minimize two objective 

functions: the first objective is the AP loss in the 

DN, and the second objective is the annual 

investment costs related to the network equipment. 

Finally, the proposed model was implemented on 

IEEE 33 bus network. 

Switching SCBs in the DN causes 

transient fluctuations in low and medium-pressure 

distribution systems. These fluctuations vary based 

on different characteristics, which can cause severe 

damage to electronic network equipment. In [13], a 

method is presented to identify the transient state 

fluctuations caused by the switching of SCs in the 

distribution system. 

To identify these fluctuations, methods such as 

Notch filter, wavelet transform and methods based 

on mathematical processing were used. [14] 

explored the optimal arrangement of capacitors in a 

DN using Remora's mathematical optimization 

algorithm, considering operating cost and load 

conditions. The main goal of the optimization 

problem is to determine the optimal size and 

location of capacitors in the DN. The optimal 

performance of the SCs under varying loads was 

defined as the objective function, coupled with 

minimizing losses, purchasing, and installation costs 

in the distribution system. 

To find the best location for distributed energy 

resources (D.E.Rs) and CBs in DNs, the authors of 

[15] propose a two-stage approach. The main aim is 

to determine the optimal size and location of DERs 

and SCs in the distribution system in the form of a 

two-objective problem. The Bat algorithm is used to 

solve the optimization problem. The main goal is to 

minimize voltage deviation, maximize voltage 

stability index (VSI) and reduce AP losses. The 

optimal placement of voltage regulators and SCs to 

increase the efficiency of DNs based on fuzzy logic 

is presented in [16]. An optimization method based 

on fuzzy logic is investigated to determine the 

optimal location of voltage regulators and SCs in the 

distribution system. The paper investigated a real 

DN in Ethiopia. Power losses indices and voltage 

profile indices are modeled using fuzzy membership 

functions and optimized by the proposed method. 

In [17], the optimal placement of fixed and 

SCBs in distribution systems is presented based on 

the Monkey search algorithm. The main goals of this 

article are to minimize power losses, improve 

voltage levels and reduce greenhouse gas emissions. 

Monkey Search Algorithm is a metaheuristic 

method inspired by behavior of monkeys in 

searching for food. In the proposed optimization 

problem, different load levels, voltage constraints 

and generation costs of each generation unit are 

considered along with the greenhouse gas emission 

coefficients of each unit. The optimal placement 

strategy of SCs in smart distribution networks is 

investigated in [18]. First, an analysis step of the 

network parameters is performed to determine 
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whether the switching of the SCs causes fluctuations 

in the system or not. Then, the indices of ARP 

increase in the network are calculated in order to 

determine the candidate buses for connecting SCs. 

In this case, the exact location and the exact capacity 

of the SCBs in the system were determined. 

[19] investigated the optimal location of SCs in 

the distribution system. The main objective of the 

CBs in the system was to increase the reliability of 

the network, improve the power factor, and increase 

the transmission capacity in the system. These 

capacitors were switched at the end of the network 

path according to the amount of connected load. 

This paper compares the measured data in the DN in 

the case where the SCBs are installed downstream 

with the case where they are installed upstream and, 

in this way, determines the optimal location for 

installing these capacitors. In [20], the authors 

proposed a method to control and coordinate SCs 

and voltage regulating transformers in the DN. The 

main objective is to maintain voltage levels within 

the standard range, minimize system losses and limit 

the number of SCs in the network. Determining the 

optimal location of SCBs in distribution systems 

using ANFIS is presented in [21]. 

 In this study, a new index based on network 

transient flows is used for ANFIS training, which is 

obtained offline based on system data and online 

based on real-time simulations. The proposed 

method only used the transient current waveform 

before and after capacitor switching. For this reason, 

this method was simple and implemented online. 

Wavelet transform is also used to determine the 

switching times of capacitors. In this study, in order 

to optimally place and plan SCs in a DN, a multi-

objective hybrid optimization algorithm is proposed 

by combining Shahin-Harris optimization (HHO) 

and non-dominated sorting genetics type 2 (NSGA-

II) algorithms. The optimization problem consists of 

several objectives, including ARP of generation 

units, investment and maintenance costs of CBs, 

ARP losses, and switching cost of SCs, that should 

be optimized simultaneously. Also, in order to 

investigate the effect of load on the result of the 

optimization problem, load uncertainty is modeled 

using the normal distribution function. Finally, the 

proposed optimization problem is tested on the IEEE 

33-bus system. 

The novelties of the article can be expressed as 

follows: 

− Modeling load uncertainty in the multi-

objective optimization problem and 

investigating the effect of different loads on the 

optimal placement of SCs 

− Proposing a hybrid optimization algorithm with 

higher performance that can be used for single-

objective and multi-objective objective 

functions 

− Optimal scheduling of CB switching based on 

the system load pattern 

Considering the comprehensive, objective 

function, including CapEx and maintenance costs, 

power losses, power generation and switching costs, 

the rest of this paper is structured as follows: In the 

second section, the optimization problem, including 

the proposed objective functions, is defined. In the 

third section, the proposed optimization algorithm is 

described. Software simulations and 

implementation of the optimization problem on the 

IEEE standard 33 bus system are done in the fourth 

section, and finally, the fifth section explains the 

conclusion of the study. 

2. Formulation of the optimization problem 

In this section, the proposed objective function 

in the optimization problem is described. The 

objective function is defined as the minimization of 

ARP generation costs of generation units, CapEx 

and maintenance costs of CBs, ARP losses costs, 

and switching costs of SCs. The objective function 

is in the form of Eq.  (1). 

𝑀𝑖𝑛 (𝐶𝑔𝑒𝑛
𝑝

+ 𝐶𝑔𝑒𝑛
𝑞

+ 𝐶𝑂𝑆𝑇𝑐𝑎𝑝 + 𝐶𝑠𝑤)                   (1) 

In (1)  𝐶𝑔𝑒𝑛
𝑝

 and 𝐶𝑔𝑒𝑛
𝑞

 are the annual generation 

costs of ARP, respectively, and 𝐶𝑂𝑆𝑇𝑐𝑎𝑝 is the 

CapEx and maintenance cost of CBs. Also, 𝐶𝑠𝑤  is 

the switching cost of the total SCs. Each of these 

factors is defined below. 

𝑀𝑖𝑛 (𝐶𝑔𝑒𝑛
𝑝

+ 𝐶𝑔𝑒𝑛
𝑞

+ 𝐶𝑂𝑆𝑇𝑐𝑎𝑝 + 𝐶𝑠𝑤)                   (2) 

In Eq. (2), a, b and c are the coefficients of the 

AP generation cost function. 𝑃𝑔,ℎ,𝑠  is the total AP 

produced at hour h of season s, which is defined as 

follows: 

𝑃𝑔,ℎ,𝑠 = ∑(𝑃𝑑,ℎ,𝑠,𝑖) + 𝑃𝑙𝑜𝑠𝑠ℎ,𝑠
𝑙𝑖𝑛𝑒 + 𝑃𝑙𝑜𝑠𝑠ℎ,𝑠

𝑡𝑟𝑎𝑛𝑠,          ℎ

𝑛

𝑖=1

= 1,2, … ,24     ,     𝑠 = 1,2,3,4               
(3) 

In (3), 𝑃𝑑,ℎ,𝑠 is the AP demand in the i-th bus at 

hour h and in season s. In Eq. (3), the amount of 

power demand is an uncertain parameter, which is 

modeled using the normal distribution function. 

Also, 𝑃𝑙𝑜𝑠𝑠ℎ,𝑠
𝑙𝑖𝑛𝑒  and 𝑃𝑙𝑜𝑠𝑠ℎ,𝑠

𝑡𝑟𝑎𝑛𝑠 are AP losses in 

lines and transformers of the studied DN at hour h 

and in season s, respectively. The annual generation 

cost of RP, 𝐶𝑔𝑒𝑛
𝑞

, is also calculated from Eq. (4): 

𝐶𝑔𝑒𝑛
𝑞

= ∑ (90 × ∑(𝑎′𝑄𝑔,ℎ,𝑠
2 + 𝑏′𝑄𝑔,ℎ,𝑠 + 𝑐′)

24

ℎ=1

)

4

𝑠=1

                (4) 

In (4), 𝑎′, 𝑏′ and 𝑐′are coefficients of RP 

generation cost function, which are respectively 

equal to: 𝑎′ = 𝑎 × 𝑠𝑖𝑛2(𝜃ℎ,𝑠), 𝑏′ = 𝑏 × 𝑠𝑖𝑛2(𝜃ℎ,𝑠) 

and𝑐′ = 𝑐. Also, 𝑠𝑖𝑛(𝜃ℎ,𝑠) is calculated based on the 

ratio of active and RPs according to Eq. (5): 
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𝑠𝑖𝑛(𝜃ℎ,𝑠) =
𝑄𝑔,ℎ,𝑠

√𝑄𝑔,ℎ,𝑠 + 𝑃𝑔,ℎ,𝑠

 (5) 

In the following 𝑄𝑔,ℎ,𝑠 the total RP generated 

in the network at hour h and in season s is defined as 

Eq. (6): 

𝑄𝑔,ℎ,𝑠 = ∑(𝑄𝑑,ℎ,𝑠,𝑖) + 𝑄𝑙𝑜𝑠𝑠ℎ,𝑠
𝑙𝑖𝑛𝑒

𝑛

𝑖=1

+ 𝑄𝑙𝑜𝑠𝑠ℎ,𝑠
𝑡𝑟𝑎𝑛𝑠

− ∑ 𝑄ℎ,𝑠,𝑘
𝑐𝑜𝑚𝑝

𝑚

𝑘=1

,

ℎ = 1,2, … ,24,     𝑠
= 1,2,3,4 

        

(6) 

where, 𝑄𝑑,ℎ,𝑠,𝑖 is the RP demanded by the i-th 

bus at hour h and in season s. 𝑄𝑙𝑜𝑠𝑠ℎ,𝑠
𝑙𝑖𝑛𝑒  and 

𝑄𝑙𝑜𝑠𝑠ℎ,𝑠
𝑡𝑟𝑎𝑛𝑠 are the total RP losses in lines and 

transformers of the DN at hour h and in season s, 

respectively . 𝑄ℎ,𝑠,𝑘
𝑐𝑜𝑚𝑝

 is the value of RP compensated 

in bus k at hour h and season s. In fact, this RP is 

generated by the SCB connected to bus k. In 

addition, in all the above equations, n is the number 

of buses of the entire network, and m is the number 

of buses compensated by CBs . The third parameter 

in the proposed objective function (1) is 𝐶𝑂𝑆𝑇𝑐𝑎𝑝, 

which is defined as follows: 

𝐶𝑂𝑆𝑇𝑐𝑎𝑝 = ∑(𝐶𝑐𝑎𝑝,𝑘 × 𝑖𝑛𝑣𝑐𝑎𝑝 × 𝑐𝑟𝑓)

𝑚

𝑘=1

 (7) 

𝑐𝑟𝑓 =
𝑖(𝑖 + 1)𝑦

𝑖(𝑖 + 1)𝑦 − 1
 (8) 

 In (7) and (8), 𝐶𝑐𝑎𝑝,𝑘 is the capacity of the 

capacitor connected to bus k, 𝑖𝑛𝑣𝑐𝑎𝑝 is the 

investment cost of the capacitor connected to bus k, 

and 𝑐𝑟𝑓 also represents the conversion factor of the 

initial cost to annual cost. i is the interest rate, and y 

is the number of years . And finally, the fourth 

parameter of the proposed objective function, 

namely 𝐶𝑠𝑤, is defined as follows: 

𝐶𝑠𝑤 = ∑ (90 × ∑ (∑ 𝐶𝑠𝑤
𝑓𝑖𝑥

× 𝑥ℎ,𝑠,𝑘

𝑚

𝑘=1

)

24

ℎ=1

)

4

𝑠=1

 (9) 

     In (9), 𝐶𝑠𝑤
𝑓𝑖𝑥

 is the fixed switching cost of the 

SC and is a constant value. 𝑥ℎ,𝑠,𝑘 ∈ {0,1}  is also a 

binary variable that indicates the switching of the 

CB connected to the compensation bus k at hour h 

in season s. This variable is determined according to 

the following conditions: 

𝑥ℎ,𝑠,𝑘

= {
1   𝑖𝑓 𝑄𝑔,ℎ,𝑠 − (𝑄𝑙𝑜𝑠𝑠ℎ,𝑠

𝑙𝑖𝑛𝑒 + 𝑄𝑙𝑜𝑠𝑠ℎ,𝑠
𝑡𝑟𝑎𝑛𝑠) < 𝑄𝑑,ℎ,𝑠

0   𝑖𝑓  𝑄𝑔,ℎ,𝑠 − (𝑄𝑙𝑜𝑠𝑠ℎ,𝑠
𝑙𝑖𝑛𝑒 + 𝑄𝑙𝑜𝑠𝑠ℎ,𝑠

𝑡𝑟𝑎𝑛𝑠) ≥ 𝑄𝑑,ℎ,𝑠

 (10) 

Eq. (10) shows that if the RP generated minus 

the losses of the RP of the lines and network 

transformers provides the required RP on the 

demand side, then the switching of the SC does not 

happen otherwise for every bus, If the first condition 

is met, switching occur, and the cost of this 

switching should be calculated based on (9). 

The constraints of the proposed optimization 

problem (1) are defined below. 

𝑄𝑔,ℎ,𝑠 + ∑ 𝑄ℎ,𝑠,𝑘
𝑐𝑜𝑚𝑝

𝑚

𝑘=1

= ∑(𝑄𝑑,ℎ,𝑠,𝑖) + 𝑄𝑙𝑜𝑠𝑠ℎ,𝑠
𝑙𝑖𝑛𝑒

𝑛

𝑖=1

+ 𝑄𝑙𝑜𝑠𝑠ℎ,𝑠
𝑡𝑟𝑎𝑛𝑠,

ℎ = 1,2, … ,24,     𝑠 = 1,2,3,4 

(11) 

𝑃𝑔,ℎ,𝑠 = ∑(𝑃𝑑,ℎ,𝑠,𝑖) + 𝑃𝑙𝑜𝑠𝑠ℎ,𝑠
𝑙𝑖𝑛𝑒

𝑛

𝑖=1

+ 𝑃𝑙𝑜𝑠𝑠ℎ,𝑠
𝑡𝑟𝑎𝑛𝑠,

ℎ = 1,2, … ,24,     𝑠
= 1,2,3,4 

(12) 

𝐶𝑐𝑎𝑝,𝑘 ≤ 𝐶𝑚𝑎𝑥 ,     𝑘 = 1,2, … , 𝑚 (13) 

√(𝑃ℎ,𝑠,𝑗
𝑙𝑖𝑛𝑒)

2
+ (𝑄ℎ,𝑠,𝑗

𝑙𝑖𝑛𝑒 )
2

< 𝑆𝑚𝑎𝑥,𝑗  ,     𝑗 = 1,2, … , 𝑛 − 1 (14) 

√(𝑆ℎ,𝑠,𝑖
𝑡𝑟𝑎𝑛𝑠)

2
< 𝑆𝑚𝑎𝑠,𝑖

𝑡𝑟𝑎𝑛𝑠 ,     𝑖 = 1,2, … , 𝑛 (15) 

Eqs. (11) and (12) are associated with the 

balance of ARP in the DN. Constraint (13) is the 

maximum allowed capacity of the CB, and (14) and 

(15) are related to the power capacity of lines and 

network transformers, respectively. In the above 

equations, 𝐶𝑚𝑎𝑥  is the maximum allowed capacity 

of the SC, 𝑃ℎ,𝑠,𝑗
𝑙𝑖𝑛𝑒 and 𝑄ℎ,𝑠,𝑗

𝑙𝑖𝑛𝑒  are the ARP transmission 

from line j at hour h and in season s, respectively. , 

𝑆𝑚𝑎𝑥,𝑗 is the maximum apparent power that can be 

transmitted from line j, 𝑆ℎ,𝑠,𝑖
𝑡𝑟𝑎𝑛𝑠 is the apparent power 

of the transformer connected to bus i at hour h and 

in season s, and finally 𝑆𝑚𝑎𝑠,𝑖
𝑡𝑟𝑎𝑛𝑠 shows the maximum 

apparent power capacity of the transformer 

connected to bus i. 

3. The proposed optimization algorithm 

In this paper, in order to optimize the proposed 

objective function (1), a combination of the Harris 

Hawk Optimization algorithm (HHO) and the 

NSGA-II is used. Shahin-Harris algorithm is 

reputable for its fast convergence and excellent 

ability to avoid local optimum points [22]. Also, the 

NSGA-II algorithm is prominent for solving multi-

objective optimization problems [23]. Due to the 

fact that this algorithm produces a set of solutions in 

each execution of the algorithm, each objective 

function is calculated independently for each 

individual from the initial population, and finally, 

the set of optimal solutions is obtained .   

A) Harris Hawks Optimization (HHO) 

Algorithm  
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In this algorithm, several hawks 

simultaneously attack a prey, usually a rabbit, to tire 

and confuse it. This phase of the algorithm is called 

the exploration phase. Based on the behavior of the 

prey, the hawks change the type of attack in order to 

overcome it finally. This phase is also called the 

exploitation phase. According to the prey energy 

defined in Eq. (16), this transferring of the algorithm 

is between the exploration and exploitation phases. 

𝐸 = 2𝐸0 (1 −
𝑖𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥

) (16) 

In Eq. (16), 𝐸0 is the initial energy of the prey 

in each iteration, iter is the iteration number of the 

algorithm, and Itermax is the termination condition 

of the algorithm based on the maximum number of 

iterations. If |E|≥1, the algorithm enters the 

exploration phase, and the hawks’ position will be 

updated according to (17), and if |E|<1, the 

algorithm enters the exploitation phase. 

𝑋(𝑡 + 1)

= {
𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)|                      𝑞 ≥ 0.5

[𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑋𝑚(𝑡)] − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵))  𝑞 < 0.5
 (17) 

In (17), 𝑋(𝑡 + 1) is the position of the hawk at 

the next moment, 𝑋𝑟𝑎𝑛𝑑(𝑡) is a randomly selected 

hawk from the population of hawks, 𝑋(𝑡)  is the 

current position of the hawk, 𝑋𝑝𝑟𝑒𝑦(𝑡)  is the current 

position of the prey and 𝑋𝑚(𝑡) represents the 

average positions of the current population of 

hawks. Also, 𝐿𝐵 and 𝑈𝐵 are the minimum and 

maximum distance of the hawk to the prey, 

respectively [24]. Similar to the HHO algorithm 

pseudo-code is presented in “Algorithm 1”. In the 

first step, the initial population of hawks is 

determined, then the values of E and E0 are 

calculated for each hawk, and based on the value of 

E, exploration or extraction steps are implemented. 

This process continues until the termination 

condition of the algorithm is met. 

B) Non-Dominated Sorting Genetic Algorithm 

Type 2 (NSGA-II) 

NSGA-II is one of the multi-objective forms of 

the traditional GA algorithm which has unique 

features in terms of convergence and optimization 

speed. The steps of this algorithm can be 

summarised as follows [23] 

− Initializing the population  

− Calculating the criterion or fitness function 

− Sorting the population based on the conditions 

of dominance 

− Calculating crowding distance (CD) operator 

− Compositing initial population and new 

population generated during the process of 

mutation and mating 

− Replacing the parents with the best individuals 

of the new composite population. In the first 

step, the members whose fitness criterion is 

lower during ranking are replaced by the 

previous parent and then sorted by the crowding 

distance (CD) operator. The initial population 

and the population resulting from the 

application of mutation and mating operators 

are ranked in the first stage, and then those with 

a lower fitness criterion are eliminated. In the 

next step, the remaining population will be re-

ranked according to the population distance. 

− Iterating this process until the algorithm 

termination condition is met. The termination 

condition is determined either based on the 

limitation of the iteration number of the 

algorithm or based on the fitness criterion. 

It should be noted that the population distance factor 

is a parameter that is used to select solutions from 

the set of feasible solutions. The following 

assumptions apply to CD. The CD between the 

beginning and end points of the set of feasible 

solutions is assumed to be infinite. For each assumed 

point in the set of feasible solutions, the CD is 

determined based on (18) 

 𝐶𝐷𝑖 =
𝑓𝑚

𝑖+1−𝑓𝑚
𝑖−1

𝑓𝑚
𝑚𝑎𝑥−𝑓𝑚

𝑚𝑖𝑛 (18) 

 In (18), 𝐶𝐷𝑖 is the crowding distance 

corresponding to the i-th individual on the solution 

set of F. 𝑓𝑚
𝑖+1 and 𝑓𝑚

𝑖−1 are respectively the values of 

the mth objective function corresponding to the 

(i+1)th and (i-1)th individual on the solution set 

F𝑓𝑚
𝑚𝑎𝑥 and 𝑓𝑚

𝑚𝑖𝑛 show the maximum and minimum 

values of the mth objective function, respectively. 

Among the set of possible solutions in its iteration, 

the set with the largest CD is determined as the 

global solution of the multi-objective optimization 

problem.  

4. Simulation Results 

In this section, in order to properly evaluate the 

proposed optimization model, including the 

objective function, optimization constraints and the 

multi-objective hybrid algorithm HHO-NSGA-II, it 

is implemented for the IEEE standard 33-bus 

system. This system is shown in Fig. 1, where the 

maximum allowed capacity of the SCB per unit, 

namely, C_max, is assumed equal to 1 MVAr. Also, 

the base values for voltage and power are assumed 

to be 100 kW and 12660 V, respectively. The 

maximum and minimum system bus voltages are 

1.02 p.u and 0.95 p.u. In order to model the load 

uncertainty, the normal distribution function is used, 

which is defined as follows: 

𝑌 = 𝐹(𝑥|𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒

−(𝑥−𝜇)2

2𝜎2  (19) 

In Eq. (19), x, μ and σ are the average value 

and the standard deviation of the ARP profile, 
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respectively. In this study, the actual data of the ARP 

consumption profile in the network is obtained 

based on load distribution, and its uncertainty is 

calculated with a 10% error probability according to 

Eq. (19). Finally, the ARP seasonal consumption 

profile of the studied system is obtained by 

considering the uncertainty in Figs. 2. and 3. Also, 

the stepwise price of AP consumption is also 

presented in Table 1 [25]. The value of resistance 

and reactance of the studied distribution system 

transformers is considered to be 0.01 p.u and 0.005 

p.u, respectively. Seven CBs are considered in the 

system, where investment and maintenance costs of 

them are 12 $/kVAr and 8 $/kVAr, respectively 

[26]. Each CB consists of 30 SCs, and the capacity 

of each unit is assumed to be 100 kVAr. The optimal 

capacity of each CB is determined based on the 

switching scheduling of the SCs, which is one of the 

objectives of the optimization problem. Also, the 

optimal location of the switching capacitors is 

determined based on the RP profile of the demand 

side, which is presented in Fig. 4. The coefficients a, 

b, and c in Eq.  (2) are determined as 0.00482, 7.97, 

and 78, respectively, according to [26], and the 

interest rate is assumed to be 0.1. 

A) Optimization results 

By implementing the optimization problem on 

the 33-bus system, the simulation results are 

presented in this section. In Fig. 5, the optimal 

switching process of the SCs related to the first CB 

in winter is shown. In this CB, which consists of 30 

SCs with a capacity of 100 kVAr, each SC is 

switched according to the optimal pattern obtained 

from the implementation of the optimization 

algorithm. Likewise, similar patterns are obtained 

for 6 other CBs in each season. By determining the 

number of switched SCs at each hour, the optimal 

RP generation schedule of each CB is determined at 

each scheduling hour. Fig. 6 shows this optimal 

schedule for winter. Similarly, for each season, an 

optimal daily program corresponding to each CB is 

calculated, and the optimal capacity of each CB is 

obtained based on the highest amount of RP among 

the four seasons of the year. In Table 2, the optimal 

location and optimal capacity of each CB are 

obtained. To evaluate the performance of the 

optimization algorithm, two traditional genetic and 

particle swarm algorithms in multi-objective form 

(MOGA and MOPSO, respectively) are applied to 

the optimization problem, and the results are 

presented in Table 2. 

 

 
Fig. 1. IEEE standard 33 bus system 

Fig. 7 shows the hourly winter’s profile of 

network bus voltage in a state where compensation 

by SCBs is not done. By solving the optimization 

problem and adding CBs with optimal capacity 

(based on the values obtained by the proposed HHO-

NSGA-II algorithm) to the studied distribution 

system, the hourly profiles of network bus voltage in 

winter are obtained as shown in Fig. 8. 

 
Fig. 2. AP consumption profiles in the studied system for four 

sea 

 
Fig. 3. RP consumption profiles in the studied system for four 

seasons 

 
Fig. 4. Load side RP profile in IEEE 33-bus system 

Table.1. 
The stepwise cost of AP generation  

AP generation (kW) Price ($/kWh) 

Power <50 0.1 

50 >Power ≥100 0.105 
100 >Power ≥150 0.11 

150 >Power ≥200 0.115 

Power ≥250 0.12 

19    20    21    22    26    27    28    29    30    31    32    33

7     8      9     10    11    12    13    14    15    16    17    183     4       5      6 1      2 

23    24    25
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Fig. 5. SCs optimal scheduling of the first CB in winter 

 
Fig. 6. RP generation optimal scheduling of each CB in winter 

Table.2. 
Optimal placement and capacity of CBs(kVAt) by applying 

MOGA, MOPSO and HHO-NSGA-II  

CB HHO-NSGA-II MOPSO MOGA 
 Capacity location 

(bus) 

Capacity location 

(bus) 

Capacity location 

(bus) 

CB 1 2.1 24 3.1 18 3.2 33 
CB 2 2.2 30 2.0 17 2.2 32 

CB3 1.9 8 2.2 12 2.3 18 
CB4 1.8 4 2.0 15 2.0 17 
CB5 2.0 25 1.9 14 2.1 24 
CB6 1.9 7 1.8 23 1.9 25 
CB7 1.8 32 2.5 24 2.7 19 

Total capacity 13.7 - 15.5 - 16.4 - 

 

As can be seen in Table 2, the total capacity of 

the CBs using the proposed HHO-NSGA-II 

algorithm is equal to 13.7 kVAr, which is 

significantly reduced compared to the MOGA and 

MOPSO algorithms. The capability of the proposed 

algorithm in complete search of initial solutions and 

avoiding the trap of local solutions make the final 

optimization solution, which is the set of four cost 

factors in (1), to be less, and as a result, less 

compensation capacity is needed for the CBs. 

Fig. 9 shows the optimization results over 100 

iterations by applying the proposed HHO-NSGA-II 

algorithm and the conventional MOGA and 

MOPSO algorithms. As can be seen, the proposed 

HHO-NSGA-II optimization algorithm performs 

better in minimizing the objective function with 

fewer iterations. This is due to its high capability to 

avoid the trap in locally optimal solutions in the first 

phase of the algorithm, i.e., HHO, and the ability to 

comprehensively search for possible solutions in the 

second phase, i.e., NSGA-II. By combining these 

two algorithms as a hybrid algorithm to solve multi-

objective optimization problems, the advantages of 

these two algorithms can be used simultaneously. 

Also, for a better comparison, the final value of the 

objective function, the total system losses, the 

minimum value of the hourly bus voltage profile, the 

total cost of power generation and the total cost of 

switching in the studied period (one year) using 

different algorithms in Table 3 are presented. 

 

 
Fig. 7. Hourly voltage profile of network buses in winter 

before optimal placement of SCBs 

 
Fig. 8. Hourly voltage profile of network buses in winter after 

optimal placement of SCBs 

As can be seen in Fig. 8. and Fig. 9., with the 

optimal placement of SCs in the studied system 

using the HHO-NSGA-II algorithm, the voltage 

profile of the network buses are significantly 

improved. This is due to the compensation of the RP 

on the load side by using SCs and the modification 

of the power factor in the studied network. 

 
Fig. 9. The numerical value of the objective function during 

100 iterations of the proposed HHO-NSGA-II algorithm 

and the traditional MOGA and MOPSO algorithms 

As Fig. 9. shows, the proposed HHO-NSGA-II 

algorithm is able to give a more optimal solution in 

a smaller number of iterations. Table 3 shows the 

comparison between the final value of the objective 

function and other optimization parameters using 

three optimization algorithms. As Table 3 shows, the 

proposed HHO-NSGA-II algorithm is able to reduce 

the final value of the objective function to a greater 

extent. By reducing the objective function that 

consists of cost factors, the cost of system losses and 
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the required compensation capacity will be 

significantly reduced. With the optimal placement of 

SCBs in the studied distribution system and the 

implementation of load spreading, the hourly bus 

voltage profile is obtained according to Fig. 9. The 

comparison of the minimum value of the resulting 

voltage profile using three optimization algorithms 

in Table 3 shows the better performance of the 

HHO-NSGA-II algorithm in improving the network 

voltage profile and correcting its power factor. 

Table.3. 
Comparison of optimization results 

With SCs 

Without 

SC 

 
Optimization 

method 

HHO-

NSGA-

II 

MOPSO MOGA 

131.44 135.12 138.48 210.97 Total losses (kW) 

 

13.7 15.5 16.4 - Total compensation 

capacity (kVAr) 

0.9723 0.9635 0.9589 0.9540 Min of voltage profile 

(p.u) 

18935 22564 25879 35443 Total annual expenses 

($/year) 

5. Conclusion 

In this paper, a hybrid algorithm is presented 

by combining HHO and non-dominant sorting 

NSGA-II for optimal placement and scheduling of 

SCs in the DN. The proposed objective function 

includes four cost parameters, namely: generation 

costs of ARP of generation units, investment and 

maintenance costs of CBs, cost of ARP losses, and 

switching cost of SCs. Also, load uncertainty is 

modelled as an ARP profile using a normal 

distribution function. 

By implementing the proposed optimization 

problem on the IEEE 33-bus system, the 

performance of the hybrid HHO-NSGA-II algorithm 

in solving the optimization problem is evaluated. 

The simulation results show that the optimization 

algorithm is able to reach a better optimal solution 

compared with other multi-objective algorithms 

with a limited number of iterations. Also, due to the 

comprehensiveness of the proposed objective 

function, the location, capacity and optimal 

switching process of SCs are obtained by solving the 

optimization problem. Total losses, total annual cost 

and total compensation capacity using the proposed 

algorithm are obtained as 131.44 kW, 18953$/year 

and 13.7 kVAr, respectively, which are significantly 

reduced compared to the results of MOGA and 

MOPSO algorithms. 

Also, with the optimal placement of SCs in the 

studied distribution system, the minimum value of 

the system bus voltage profile increases from 0.9540 

p.u in the case without capacitive compensation to 

0.9723 p.u, which is a significant value. Therefore, 

the proposed hybrid optimization algorithm 

performs better than other multi-objective 

algorithms in solving the optimization problem. 
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