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Abstract 

In this paper, we propose a new multi-resolution wavelet based mesh free method for numerical analysis of electromagnetic 

field problems. In problems with variable object geometries or mechanical movements, the mesh free methods yield more 

accurate simulation results compared to the finite element approach in solving the inverse problem, because they are based on 

a set of nodes without using the connectivity of the elements. The wavelet based mesh free method requires effectively no 

local integration in the vicinity of nodes in numerical implementations. Moreover, wavelets give a more efficient 

approximation using multi-resolution analysis. On the other hand, boundary condition constraints are difficult to be applied 

on the wavelet based mesh free method. In order to apply boundary and interface conditions, we utilize a new form of jump 

functions in the set of basic functions. The boundary and interface conditions are applied effectively using the suggested slope 

jump functions. The simulation results of the proposed method using two different jump functions in solving some simple 

boundary problems are compared. The results are validated by analytical solutions. The results of this study can be used in 

future for inverse problem of Magnetic resonance electrical impedance tomography (MREIT) studies as an imaging technique 

for reconstructing the cross-sectional conductivity distribution of a human brain or body using EIT technique integrated with 

the MRI. 

Keywords: Mesh Free Method, Wavelet Method, Multi-Resolution Analysis, Galerkin Method 

Article history: Received 03-Nov-2021; Revised 19-Nov-2021; Accepted 20-Nov-2021. Article Type: Research paper 

© 2022 IAUCTB-IJSEE Science. All rights reserved 

 

1. Introduction 

The finite element method (FEM) is a 

conventional analysis approach that has been 

successfully applied to various problems in science 

and engineering [1,2]. This method relies on the 

primary idea of replacing a continuous function over 

the entire solution domain by a piecewise 

continuous approximation, typically using polyno-

mials, over a set of sub-domains called finite 

elements [3,4]. FEM requires a structure of 

interconnected elements via nodes called finite 

element mesh which is considered as a constraint in 

some applications [5]. For example, when FEM is 

applied to solve partial differential equations (as a 

forward problem for providing simulation data in 

solving the inverse problem) involving moving 

objects or objects with changing geometrical 

appearance, mesh distortion is inevitable and 

susceptible to producing error in numerical results 

[6]. Moreover, in FEM, meshes must be propagated 

in some regions of the solution domain (e.g. near a 

boundary or a sharp edge) leaded to increase the 

computational complexity of the FEM model [7].  

The mesh free (MF) methods are effective in 

problems with variable object geometries or 

mechanical movements since they are purely based 

on nodes distribution. This eliminates all problems 

related to the mesh shape or size. So far, different 

MF methods have been proposed to solve some field 

related engineering problems. The element free 

Galerkin (EFG) [8] and the wavelet based mesh free 
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(WMF) [9,10] are two well-known methods of this 

family which have been suggested to solve 

electromagnetic field problems. 

The EFG is considered as a MF method, 

because it requires only a set of nodes distributed 

over the entire solution domain. For the numerical 

implementation of this method, it is necessary to 

calculate the local summation in the vicinity of 

nodes. In contrast to EFG, the WMF method 

requires no local summation in the vicinity of nodes 

in numerical implementations [11]. Thus nodes 

displacement due to variation of objects geometry 

results in less approximation error in wavelet based 

method with respect to EFG [12]. However, most of 

the WMF formulae have been derived from higher 

order differentials of the basic functions to calculate 

the coefficient matrix which causes large variations 

in these coefficients and instability in numerical 

implementation. Consequently, some reduced WMF 

formulations have been suggested in [13] and [14]. 

Moreover, these reduced approaches are inefficient 

in enforcing boundary and interface conditions in 

materials with different conductivity. For solving 

this problem, employing jump functions [14] or 

combination with the FEM [15] has been suggested. 

The jump function used in [14] was the polynomial 

form. 

Yang et al. [11,15,16] have used a set of 

orthogonal scaling basis functions, produced by the 

dyadic translations for realizing the WMF 

approximation in electromagnetic field application. 

This method was a single scale wavelet based 

method due to non-orthogonality of the scaling 

functions at different scales. Considering the fact 

that wavelets provide multi-resolution signal 

analysis via wavelet functions in different resolution 

levels, the accuracy of MF approximation may be 

improved by choosing the optimal number of 

resolution levels in each location of the solution 

domain. Furthermore, if the basic wavelet is 

properly chosen, one might be able to reduce the 

number of coefficients without serious approxima-

tion error [16,17]. If the basic wavelet is well 

localized (i.e., it approaches, zero rapidly away from 

the origin), then many of the coefficients with large 

translation will be negligible. Likewise, coefficients 

with large dilation will usually be small as well, 

since the wavelet basis function then becomes 

extremely narrow. In other words, very sparse 

coefficient matrices can be achieved by employing 

the multi-resolution analysis [18]. 

In this paper, a new multi-resolution WMF 

approximation is proposed using both wavelet and 

scaling basis functions for numerical analysis of the 

electromagnetic field problems. 

Moreover, for boundary and interface conditi-

ons enforcement in materials with different condu-

ctivity, we utilize a new form of jump functions in a 

specified procedure. For this purpose, we first 

extract the formulation of the proposed MF method. 

Then the set of scaling and wavelet basis functions 

is presented for supporting the multi-resolution 

WMF approximation. Finally, in order to apply 

boundary condition, different polynomial and slope 

jump functions is added to the set of wavelet basis 

functions. The rest of this paper is organized as 

follows. In Section 2 we introduce the MF method 

formulation using the Galerkin approach. Section 3 

presents the orthogonal set of multi-resolution 

wavelet basis functions. The simulation results of 

the proposed method using two different jump 

functions with the aim of enforcing boundary 

conditions for solving some simple boundary 

problems are given in Section 4 and the results are 

compared with analytical solution. Finally, Section 

5 is devoted to concluding remarks. 

2. Mesh free wavelet Galerkin method 

In this section, the MF formulation is provided 

with reference to the Helmholtz differential equation 

which is usually used for modelling the electro-

magnetic field problems. In a one-dimensional (1-

D) region enclosed by two boundary points [x1,xN], 

it is defined as: 

−  + =.( ( x ) u( x )) ( x )u( x ) f ( x )                (1) 

where α and β are the electromagnetic properties of 

the solution domain, f is the excitation function and 

u is an unknown scalar potential. Robin boundary 

condition (a weighted combination of Dirichlet and 

Neumann boundary conditions) is considered at start 

and end points of the solution domain: 

(2) 
11111 )()()( qxuxux =+   

22 )()()( qxuxux NNN =+ 
 

where γ1, q1, γ2 and q2 are boundary coefficients. The 

first step of MF approximation is a linear 

combination of the unknown function in terms of 

linearly independent basis functions [19]: 

 (3) 
=

=
M

j

jj

MF xcxu
1

)()(   

where  j(x) are 1-D basis functions, M is the 

number of basic functions and cj is unknown 

coefficients. These unknown coefficients can be 

obtained by the Galerkin method using the basic 

functions as weights of the residual for Error! 

Reference source not found.. Yang et al. [9] have 

proposed a polynomial jump function for applying 

boundary constraints in the WMF approximation. In 

a normalized domain, for the start and end boundary 

points, it is defined as: 

(4) 133)( 23 +−+−= xxxxs

poly
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e 3 2

poly (x) (x 1) 3(x 1)

3(x 1) 1

 = + − +

+ + −
 

The jump function corresponding to start and 

end boundary point is illustrated in Fig. 1-a).

  
(a) (b) 

Fig. 1. (a) Polynomial and (b) slope jump functions corresponding to start and end boundary points of a normalized domain. 

 

  
(a) (b) 

Fig. 2. (a) Polynomial and (b) slope boundary and interface jump functions of a normalized domain. 

 

The polynomial jump function has been also 

suggested for applying interface conditions in [15]. 

The interface jump function for an interface is 

assumed at x=0.5 is shown in Fig. -a). This form of 

jump function meets the first three conditions above; 

however, the WMF approximation with the 

polynomial jump term will only approximate a 

derivative in the form of a Heaviside step function 

[20]. Moreover, employing this form of jump 

function into WMF approximation may cause 

numerical instability due to large variation of the 

higher order derivatives of the jump term in the 

medium interfaces. For eliminating this problem and 

supporting the derivative in the form of a Heaviside 

shape function exactly, we suggest using the slope 

jump function similar to the standard finite element 

shape functions for applying boundary and interface 

conditions: 

 (5) xxs

slop −=1)(
 

xxe

slop =)(  

The slope jump function corresponding to start 

and end boundary point of a normalized domain is 

illustrated in Fig. -b). Fig. -b) demonstrates the slope 

jump functions when the interface is assumed at the 

midpoint of a normalized domain. Compared to 

polynomial jump function, we expect more accurate 

result when the proposed slope jump function is 

used to apply boundary and interface conditions; 

because the second derivative of this function 

appears as zero in (1). That means utilizing the slope 

jump function has less effect on the WMF 

approximation. 

Therefore, by applying boundary conditions at 

the first and last boundary point via jump functions 

 s(x) and  e(x) and similarly 
I

k (x) at the kth 

medium interface, the expansion (3) is modified as:  

(6) 

MF j J

j,i i i i

j i i

s e I

1 2 k k

k

u (x) d (x) a (x)

b (x) b (x) e (x)

=  + 

+  +  + 

 


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where b1, b2 and ek are unknown boundary and 

interface coefficients, respectively. After inserting 

these jump functions into the multi-resolution WMF 

basis set, the basis set in (6) will be remain linearly 

independent [21]. 

3. Numerical Results 

In order to compare the result of enforcing 

boundary and interface conditions using these two 

different jump functions, they have been tested in 

solving two simple boundary problems. First, we 

consider the 1-D Laplace equation: 

(7)               0))()(.( = xux  

In (7), α(x) is changed according to the Error! 

Reference source not found.. The Dirichlet 

boundary conditions considered at the start and end 

boundary points: 

(8) 
0V

0
=

=x
u  

1V
2
=

=x
u  

The analytical solution of this problem is: 











+

−
−

+


+

=

21

10               

)(

21

21

21

1

21

2

xx

xx

xu












  (9) 

 

 
Fig. 3. The geometry of the 1-D test problem for solving by the 

multi-resolution WMF method. 

 

In the second simulation, we change the 

equation from Laplace to Helmholtz: 

(10)               0)()())()(.( =+− xuxxux   

where α(x) is the same as the previous problem 

and β(x)=0.1 is a constant throughout the solution 

domain (β1=β2=0.1). The boundary conditions are 

assumed to be the same as the previous problem. The 

analytical solution of this problem is by (11). 

In order to provide the set of basic functions, 

we decided to use Daubechies wavelets which are a 

family of orthogonal and compact support wavelets 

with highest number of vanishing moments for a 

given support width. The db3 wavelet and related 

scaling function are employed to represent the multi-

resolution WMF basis set.  

 The numerical result of solving the Laplace 

and Helmholtz equations presented in (7) and (11) 

are compared with the analytical solution in Table 1. 

This result shows the effectiveness of the slope 

compared to polynomial jump functions. To confirm 

the validity of this observation, we changed the 

boundary condition at the end point from Dirichlet 

to Neumann. The result of this comparison is also 

given in Table 1 which shows the ability of the 

proposed slope jump functions in approximating the 

analytical solution in all presented problems. This 

observation supports our hypothesis that the slope 

jump function has less effect on the WMF 

approximation. The lower mean error rate resulted 

from solving Laplace equation compared to the 

Helmholtz equation has confirmed this hypothesis 

because the slope jump function has no effect on the 

WMF approximation [the variation of these jump 

functions and their derivation was eliminated from 

Error! Reference source not found.] in contrast to 

the polynomial jump functions. 

In the next simulation, the slope jump funct-

ions are employed on the boundaries and interfaces 

without any constraint since the second derivative of 

this function is zero in (1). Therefore, the desired 

accuracy in approximation is achievable. The result 

of the proposed multi-resolution WMF method 

utilizing slope jump functions for approximating the 

analytical solution Error! Reference source not 

found. is shown in Fig.  and for analytical solution 

(11) is shown in Fig. . Furthermore, by changing the 

boundary constraint at the end point from Dirichlet 

to Neumann, simulation results are compared with 

analytical solution in Error! Reference source not 

found.. 

These results show the effectiveness of utilizi-

ng the proposed slope jump functions in accurately 

approximating the analytical solution in all presen-

ted problems. We are limited to use the polynomial 

jump functions in the medium interfaces because it 

causes instability in numerical implementation.  

 

 
Fig. 4. The result of multi-resolution WMF approximation using 

slope jump functions in solving the 1-D Laplace equation with 
Dirichlet boundary conditions, are compared to analytical 

solution. 
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Table 1. 

 The multi-resolution WMF approximation using two different jump functions compared to analytical solution in solving the Laplace and 

Helmholtz equations with Dirichlet and Neumann boundary conditions. 
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n
e
ti
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p
r
o

p
er

ti
e
s Boundary conditions 

Number of basic functions Mean error rate 

between 

approximation 

and analytical 

solution in: 

Error rate between 

approximation and 

analytical solution 

at end boundary 

point in: 

W
a
v

el
e
t 

fu
n

c
ti

o
n

s 

S
c
a

li
n

g
  

fu
n

c
ti

o
n

s 

Boundary 

jump 

functions 

Interface 

jump 

functions 

T
o

ta
l 

Start point End point 

P
o

ly
n

o
m

ia
l 

S
lo

p
e 

P
o

ly
n

o
m

ia
l 

S
lo

p
e 

MFu  
x

u MF



  
2=x

MFu  
2=




x

MF

x

u  

α β 

L
a

p
la

c
e 

* 0 

0V
0
=

=x
u  V1

2
=

=x
u

 

7 1 2 - - - 10 16.42% 37.29% 0.000% 125.0% 

7 1 - 2 - - 10 8.433% 22.12% 0.000% 25.00% 

7 1 2 - 1 - 11 26.17% 76.47% 0.000% 350.9% 

7 1 - 2 1 - 11 9.761% 26.18% 0.000% 50.00% 

7 1 - 2 - 1 11 0.000% 0.005% 0.000% 0.000% 

0V
0
=

=x
u  1V/m

2

=




=xx

u

 

7 1 2 - - - 10 30.44% 39.99% 55.00% 0.000% 

7 1 - 2 - - 10 25.13% 26.39% 33.33% 0.000% 

7 1 2 - 1 - 11 38.22% 55.99% 77.77% 0.000% 

7 1 - 2 1 - 11 20.39% 24.00% 33.33% 0.000% 

7 1 - 2 - 1 11 0.000% 0.005% 0.000% 0.000% 

H
el

m
h

o
lt

z 

* 0.1 

0V
0
=

=x
u  V1

2
=

=x
u  

7 1 2 - - - 10 15.95% 36.30% 0.000% 116.6% 

7 1 - 2 - - 10 8.904% 23.11% 0.000% 27.78% 

7 1 2 - 1 - 11 25.72% 75.65% 0.000% 333.2% 

7 1 - 2 1 - 11 9.345% 25.38% 0.000% 44.43% 

7 1 - 2 - 1 11 0.126% 0.604% 0.000% 2.705% 

0V
0
=

=x
u  1V/m

2

=




=xx

u  

7 1 2 - - - 10 29.54% 38.87% 53.84% 0.000% 

7 1 - 2 - - 10 28.17% 29.34% 38.47% 0.000% 

7 1 2 - 1 - 11 37.62% 55.54% 76.92% 0.000% 

7 1 - 2 1 - 11 19.14% 22.29% 30.76% 0.000% 

7 1 - 2 - 1 11 1.267% 2.007% 2.780% 0.000% 

* According to Error! Reference source not found.. 
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Table 2.  

The effect of increasing number of interfaces jump function (the slope form) on reduce error in solving the Helmholtz equations with 

Dirichlet and Neumann boundary conditions. 

E
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r
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p
er

ti
e
s Boundary conditions 

Number of basic functions Mean error rate 
between 

approximation and 

analytical solution 
in: 

Error rate between 

approximation and 
analytical solution at end 

boundary point in: 

W
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S
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n
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o
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Start point End point MFu  
x

u MF



  
2=x

MFu  
2=




x

MF

x

u  

α β 

* 0.1 

0V
0
=

=x
u  V1

2
=

=x
u  

7 1 2 1 11 0.126% 0.604% 0.000% 2.705% 

7 1 2 3 13 0.023% 0.246% 0.000% 1.515% 

7 1 2 7 17 0.005% 0.116% 0.000% 0.799% 

7 1 2 15 25 0.002% 0.069% 0.000% 0.443% 

7 1 2 31 41 0.001% 0.042% 0.000% 0.226% 

7 1 2 63 73 0.001% 0.024% 0.000% 0.116% 

0V
0
=

=x
u  1V/m

2

=




=xx

u  

7 1 2 1 11 1.267% 2.007% 2.780% 0.000% 

7 1 2 3 13 0.657% 1.110% 1.538% 0.000% 

7 1 2 7 17 0.337% 0.582% 0.806% 0.000% 

7 1 2 15 25 0.185% 0.321% 0.445% 0.000% 

7 1 2 31 41 0.094% 0.164% 0.227% 0.000% 

7 1 2 63 73 0.048% 0.084% 0.116% 0.000% 

              * According to Error! Reference source not found.. 

 

Table 3.  

The multi-resolution WMF approximation compared to analytical solution in solving the Poisson equation (equation). 

Number of basic functions Mean error rate between 

approximation and 

analytical solution in: 

L
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o
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T
o
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MFu  
x

u MF



  

- - - 33 33 0.354% 1.971% 

1 1 1 33 35 0.352% 1.970% 

1-2 3 1 33 37 0.354% 1.958% 

1-3 7 1 33 41 0.346% 1.934% 

1-4 15 1 33 49 0.262% 1.630% 

1-5 31 1 33 65 0.210% 1.411% 

1-6 63 1 33 97 0.208% 1.409% 
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1-7 127 1 33 161 0.207% 1.402% 

Table 4.  

The multi-resolution WMF approximation compared to analytical solution in solving the Helmholtz equation (equation). 

Number of basic functions Mean error rate between 
approximation and 

analytical solution in: 

W
av

el
et

 

fu
n
ct

io
n

s 

S
ca

li
n
g

  

fu
n
ct
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n

s 

ju
m

p
 

fu
n
ct

io
n

s 

T
o

ta
l 

MFu  
x

u MF



  

1 1 1 2 0.126% 0.604% 

7 1 3 13 0.023% 0.246% 

7 1 7 17 0.005% 0.116% 

7 1 15 25 0.002% 0.069% 

7 1 31 41 0.001% 0.042% 

7 1 63 73 0.001% 0.024% 

 

 
Fig. 5. The result of multi-resolution WMF approximation using 

slope jump functions in solving the 1-D Helmholtz equation 
with Dirichlet boundary conditions are compared with the 

analytical solution. 

4. Conclusion and future work 

This paper presented a detailed description of 

the formulation and enforces boundary conditions in 

the proposed multi-resolution WMF method for 

numerical analysis of the Laplace and Helmholtz 

boundary problems. These differential equations are 

usually used for modeling the electromagnetic field 

problems. To apply boundary and interface 

conditions, two different jump functions are added 

to the set of wavelet basis functions. The simulation 

results show the effectiveness of the proposed slope 

jump functions for enforcing the boundary and 

interface conditions compared to polynomial jump 

functions. As future work, the proposed method 

could be used for numerical analysis especially for 

inverse problem of impedance tomography studies 

as non-invasive imaging technique for reconstructi-

ng the cross-sectional conductivity distribution of a 

human brain or body. 
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