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Abstract 

Environmental monitoring via vehicle detecting using unmanned aerial vehicle (UAV) images is a challenging task, due to 

small-size, low-resolution, and large-scale variation of the objects. In this paper, a two-level ensemble deep learning (named 

2EDL) based on Faster R-CNN (regional-based convolutional neural network) introduced for multiple vehicle detection in 

UAV images. We use three CNN models (VGG16, ResNet50, and GoogLeNet) that have already pre-trained on huge auxiliary 

data as feature extraction tools, combined with five learning models (KNN, SVM, MLP, C4.5 Decision Tree, and Naïve 

Bayes), resulting 15 different base learners in two levels. The final class is obtained via a majority vote rule ensemble of these 

15 models into five vehicle classes (car, van, truck, bus, and trailer) or “no-vehicle”. Simulation results on the AU-AIR dataset 

of UAV images show the superiority of the proposed 2EDL technique against existing methods, in terms of the total accuracy, 

and FPR-FNR trade-off.  

Keywords: Deep transfer learning; ensemble learning; multiple object detection; unmanned aerial vehicles. 

Article history: Received 06-July-2021; Revised 12-July-2021; Accepted 18-Aug-2021. Article Type: Research Paper 

© 2021 IAUCTB-IJSEE Science. All rights reserved 

http://dx.doi.org/10.30495/ijsee.2021.684014 

1. Introduction 

Unmanned aerial vehicles (UAVs) are cost 

effective tools, widely used for capturing remote 

sensing images, especially for traffic monitoring [1-

3]. With recent price drop of the UAV products, 

these tools are becoming more prominent in 

transportation safety, planning, and management 

[4]. Advantages of UAVs against ground-based 

traffic sensors include mobility, wide field of view, 

fast and on-demand imaging, great maneuverability, 

safety, and zero impact on the ground traffic [2,5].  

To apply UAVs in traffic monitoring, an 

essential task is vehicle detection, which is 

challenging due to varying illumination conditions, 

background motions due to UAV movements, 

complicated scenes, and different traffic conditions 

[6]. Many classical and machine learning based 

object detection methods have been applied for 

vehicle detection in UAV images. These techniques 

mainly rely on handcrafted features for building the 

classification system. Other types of methods based 

on deep learning have recently significantly 

outperformed the handcrafted features.  

Deep learning, which also known as feature 

learning, is based on learning high-representative 

features automatically from the input data (e.g., 

image). Convolutional neural network (CNN) is the 

most widely used deep learning for object detection 

[7-9]. In the case of vehicle detection, Chen et al. 

[10] proposed a method based on sliding windows 

and deep CNN. The idea behind this technique is to 

replicate the convolution layers at different scales, 

allowing the deep network to detect cars at different 

scales. It requires high computation time to be 

trained for car detection using GPU. Directly 

combining CNN with sliding windows has some 

difficulties to precisely localize objects [11]. To 

address this issue, Sppnet [12], region-based CNN 

(R-CNN) [13], and Fast R-CNN, have been 

proposed. However, the region proposal generation 

step consumes too much computation time. Ren et 
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al. further improved Fast R-CNN [14] and 

developed Faster R-CNN [15], which achieves state-

of-the-date object detection accuracy with real-time 

detection speed.  

In this paper, a two-level ensemble deep 

transfer learning (named 2EDL) is introduced for 

multiple vehicle detection in UAV images. Inspired 

by the success of Faster R-CNN in object detection, 

we apply it for multiple vehicle detection in UAV 

images. The proposed 2EDL model contributes to 

the existing methods by introducing a two-level 

ensemble deep transfer learning model based on 

Faster R-CNN comprising three feature extractors 

and five classifiers, resulting a two-level ensemble 

of 15 base learners. In the proposed 2EDL model, 

three Faster R-CNN models (VGG16, ResNet50, 

and GoogLeNet) which have pre-trained on huge 

auxiliary data are trained on a UAV dataset using 

five learning models (KNN, SVM, MLP, C4.5 

Decision Tree, and Naïve Bayes). The final output 

of the 2EDL is obtained via a majority vote 

ensemble of these 15 base learners, which 

effectively reduces the detection error with less 

sensitivity to noise through aggregation of different 

feature extraction models and classification 

methods.  

The rest of this paper is organized as follows: 

Section 2 reviews the literature on vehicle detection. 

Section 3 provides the detail of Faster R-CNN for 

vehicle detection. The proposed 2EDL model for 

multiple vehicle detection is presented in Section 4. 

Simulation results are provided in Section 5, and 

finally, Section 6 concludes the paper with some 

future research directions. 

2. Literature review 

There are many object detection techniques in 

literature, which have been applied for vehicle 

detection in UAV images, e.g., Viola-Jones (VJ) 

object detection algorithm [16] and Discriminatively 

Trained Part Based Models (DPM) [17]. Generally, 

these techniques are less sensitive to image noise 

and complex scenarios, and thus, are more robust for 

vehicle detection. However, most of these 

techniques are very sensitive to object rotation. 

Moreover, some methods such as VJ suffer from 

high sensitivity to illumination changes. 

There are different methods in literature, which 

have used machine learning for vehicle detection. In 

the case of UAV image, car detection introduces 

more challenges than other object detection 

problems, due to the extremely high resolution of the 

UAV images. Moranduzzo and Melagni [18] 

proposed a scale-invariant feature transform (SIFT) 

for detection of the interest points of cars, in which, 

support vector machine (SVM) is used to classify 

the extracted interest points into “car” and “no-car”, 

based on the SIFT model descriptor. Finally, the 

SIFT points belonging to the same car are merged 

together to represent a single car. Moranduzzo et al. 

[19] developed a method based on higher-order 

gradients and gaussian process regression for object 

detection, and applied it to the problem of car 

detection in UAV images in an urban environment. 

Xu et al. [20] combined the SVM classifier with VJ 

(SVM+VJ) and with histograms of gradient 

(SVM+HOG) for car detection in UAV street 

videos.  

Recently, different deep learning techniques 

have been presented for vehicle detection. Perez et 

al. [21] introduced a traditional object detection 

method based on the sliding window technique 

utilizing CNN. The main problem of this method is 

the time-consuming procedure of the sliding 

window strategy to handle multiscale object 

detection. Chen et al. [8] proposed a CNN-based 

deep learning for vehicle detection in satellite 

images. To bypass the problem of extracting a huge 

number of regions in traditional CNNs, Girshick et 

al. [13] proposed a selective search to extract a 

subset of regions from the image, also called region 

proposals. Ammour et al. [22] presented a three-

stage method for car detection, including generating 

candidate regions, feature extraction, and 

classification. At first, mean-shift algorithm [23] is 

used to segment images, and then, fine-tuned 

VGG16 model [24] is applied to extract region 

features. Finally, SVM is applied to classify the 

selected regions. The procedure of generating 

candidate regions is time-consuming. Moreover, 

different models should be trained for the three 

stages, which increases the complexity of this 

model. Bazi et al. [25] developed a convolutional 

support vector machine network model (CSVM) for 

the vehicle detection in UAV images. The CSVM is 

based on several alternating convolutional and 

reduction layers, which ended by a linear SVM 

classifier. 

To overcome the time-consuming process of 

region proposal generation in the R-CNN 

techniques, Ren et al. [15] presented Faster R-CNN 

as an appealing solution. There are different 

techniques based on the Faster R-CNN, which have 

been presented for vehicle detection from low-

altitude UAV images [26-35]. Inspired by the 

success of the Faster R-CNN in terms of both 

detection accuracy and speed, this paper also utilizes 

the Faster R-CNN technique to detect multiple 

vehicles from UAV imagery. 

3. Vehicle detection using Faster R-CNN 

Faster R-CNN consists of two units: Regional 

Proposal Network (RPN) and Fast R-CNN detector 

(FR-CNN), as seen in Fig. 1. The RPN is a fully 
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convolutional network for generating region 

proposals (candidate regions for object) with a wide 

range of scales and aspect ratios, which would be fed 

into the second unit. Proposals are rectangular 

regions, which may or may not contain target 

objects. The FR-CNN is used to refine the proposals. 

The FR-CNN runs through the CNN only once for 

the entire input image and then refines object 

proposals.  

 

Fig. 1. Architecture of object detection by Faster R-CNN.  

A) Region proposal network 

The RPN takes a UAV image as input, and 

outputs a set of bounding boxes, each with an object 

probability score for each class. In this paper, 

VGG16, ResNet50, and GoogLeNet, are used as the 

Faster-RCNN convolutional backends. The RPN 

utilizes sliding windows over the convolutional 

feature map output by the last convolutional layer, 

to generate rectangular region proposals for each 

position. As many proposals highly overlap with 

each other, non-maximum suppression (NMS) is 

applied to merge proposals that have high 

intersection-over-union (IoU). After NMS, the 

remaining proposals are ranked based on the object 

probability score, and only the top N proposals are 

used for detection. 

B) FR-CNN detector  

The FR-CNN takes multiple regions of interest 

(RoIs) as input. For each RoI, RoI pooling layer 

from the convolutional layer extracts a fixed-length 

feature vector. Each feature vector is fed into a 

sequence of fully connected layers. The final outputs 

of the detector through softmax and bounding-box 

regressor layers include softmax probabilities which 

estimate over K object classes (5 in this paper), and 

the related bounding-box values.  

C) Faster R-CNN training 

For training RPNs, each proposal is assigned a 

K+1 class label which indicates whether the 

proposal is an object from K vehicle types or not 

(background). Since both RPN and FR-CNN 

networks share the same convolutional layers, they 

can be trained jointly to learn a unified network at 

the same time. The learning process follows four 

steps to train the Faster R-CNN model [4]:  

− Train the RPN network as described above.  

− Train the detector network using region 

proposals generated by the RPN trained at the 

first step.  

− Initializing the RPN training by the detector, but 

only train the specific layers of the RPN. 

− Train the detector network model using new 

region proposals of the RPN.  

4. Proposed 2EDL for multiple vehicle detection 

Generally, each deep learning and 

classification model has its own advantages in 

detecting different objects, and consequently, the 

different models have different performances in 

terms of the FPR-FNR trade-off. As a result, an 

ensemble of different learning models may result 

better performance by aggregation of the results of 

the different base learners [36]. 

A) Transfer learning model 

Since the training process in the Faster R-CNN 

requires a large number of data samples and 

consumes huge computation time, transfer learning 

[37] is used to construct the vehicle detection model 

in this paper. The transfer learning is able to take less 

time to build a higher-precision model, i.e., transfer 

learning begins not from scratch, but from previous 

models that have addressed various problems.  

In the proposed 2EDL model, the 

convolutional base of the existing Faster R-CNN 

model is used as the feature extractor and add a new 

classifier to the top of the redefined model. For 

example, the pretrained VGG16 has 1000 different 

class labels as the output, however, our newly model 

corresponding to five specific object classes (car, 

van, truck, bus, and trailer) as the output. The 

parameters of the new classifier can be trained using 

sample data with the labeled UAV images. 

Framework of the vehicle detection using a single 

transfer learning can be seen in Fig. 2, which is 

composed of the convolutional base of a pre-trained   

R-CNN as the feature extractor, and a newly defined 

classifier in the top-level as the output.  

 

Fig. 2. Framework of transfer learning for a single base learner.  
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To obtain a transfer-learning model, three steps 

should be performed, as: 

− Several models pretrained on the ImageNet are 

selected (VGG16, ResNet50, or GoogLeNet). 

− The convolution base of these models is taken 

out in turn as the feature extractor, and the 

newly defined classifier layer (KNN, SVM, 

MLP, C4.5 DT, or Bayes) is connected with it 

to construct a new Faster R-CNN model. 

− The new model is trained with the new dataset, 

i.e., sample UAV image dataset. During the 

training process, the weights of the 

convolutional base are frozen, and only the 

parameters of the added classifier layer are 

trained. 

B) Ensemble learning model 

Vehicle detection in the 2EDL model is done 

using an ensemble deep transfer learning in two 

levels, as shown in Fig. 3. The first level includes 3 

pre-trained CNN-based feature extractors (VGG16, 

ResNet50, and GoogLeNet), while the second level 

comprises 5 classifiers (KNN, SVM, MLP, C4.5 

DT, and Bayes), which results 3×5=15 base learners 

to be obtained. Each base learner is trained 

separately, and the trained learners are used to 

aggregate their results for vehicle detection in each 

region proposal for any new UAV image in the test 

dataset. The final object score of the region proposal 

k can be obtained by majority vote of the output class 

of the 15 base learners.  

 

Fig. 3. Two-level ensemble structure of the 2EDL model.  

At the training stage, N1
Train cropped target 

objects from five types of vehicles (car, van, truck, 

bus, and trailer) in different orientations, as well as 

N0
Train class of “background” are extracted from the 

different UAV images. These cropped images 

include label 0 for background (no-vehicle), and 

labels 1 to 5 for the different object classes including 

car, van, truck, bus, and trailer, respectively. The 

cropped images are used as the same for the transfer 

learning of all base learners within 3×5 ensemble 

structure of the 2EDL. After training of the 2EDL 

model, the trained model can be used for the real-

time multiple vehicle detection in new unseen UAV 

images.  

5. Simulation results 

A) UAV Dataset: AU-AIR  

To evaluate the performance of the proposed 

2EDL model, it is applied for vehicle detection in a 

recently published UAV data, named AU-AIR [37]. 

It is a multi-modal aerial dataset captured by a UAV. 

Having visual data, object annotations, and flight 

data (time, GPS, altitude, IMU data, velocities), the 

AU-AIR meets vision and robotics for UAVs. It is 

accessible in https://bozcani.github.io/auairdataset. 

B) Simulation Settings 

As mentioned above, three pre-trained CNN 

are used as feature extractors of the proposed vehicle 

detection model. These feature extractors include 

VGG16, ResNet50, and GoogLeNet. Moreover, five 

classifiers including KNN, SVM, MLP, C4.5 DT, 

and Naïve Bayes, are employed as the transfer 

learning classifiers. To train each base transfer 

learning model of the 2EDL, a subset comprising 

N1Train=1000 cropped objects from five classes 

and N0Train=2000 background is used, which 

results 3000 training samples in total. After transfer 

learning of 15 base learners on the training dataset 

in an offline scheme, the final tuned 2EDL model is 

used for the online vehicle detection in new unseen 

UAV images. To evaluate the performance of the 

2EDL model, it is tested on 300 new UAV images 

including 1252 vehicle objects.  

Performance measures are considered as 

accuracy, precision, and recall. Precision is the 

ability of the model to not label negative samples as 

positive. On the other hand, recall is the ability of 

the model to find positive samples (i.e., vehicle 

objects). The less FPR (FNR), the more precision 

(recall). Accuracy, precision and recall for class c 

can be expressed as: 
 

Accuracy c
c

c c c

TP

TP FP FN
=

+ +

 (1) 

Precision c
c

c c

TP

TP FP
=

+

 
(2) 

Recall c
c

c c

TP

TP FN
=

+

 
(3) 

where TPc is the number of positive objects of 

vehicle class c correctly identified, FPc is the 

number of regions incorrectly identified as vehicle 

class c, and FNc is the number of vehicles class c 

which have not identified as object class c. 

C) Simulation Results 

As mentioned above, the proposed 2EDL 

model was trained on 3000-cropped objects (1000 

vehicle objects from the five object classes, and 

2000 background objects). The trained model was 

tested on 300 new UAV images containing 1252 
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different vehicle objects in five classes. The results 

of the 2EDL for some test images are shown in Fig. 

4. In Fig. 4 (a), totally 5 vehicles have been 

identified with label “car”. In Fig. 4 (b), 10 cars, a 

bus, a trailer, and a truck have been detected. In Fig. 

4 (c), 5 cars and 2 vans have been identified. Finally, 

in Fig. 4 (d), 3 cars and a truck have been detected. 

The results in Fig. 4 demonstrate the effectiveness 

of the 2EDL to detect multiple objects. The model 

can detect even semi-distorted vehicles, e.g., the car 

at the right-side of the Fig. 4 (b).  

The proposed 2EDL model has different error 

types for some UAV images. Generally, the closer 

the UAV to the target object, as in Fig. 4 (a), the 

more accuracy. For example, in Fig. 4 (c) and (d), 

the vehicles at the top left of the image were ignored, 

which led to false negative. An influential parameter 

is the field of view of the UAV and the orientation 

of the UAV against the object, which highly affects 

the detection accuracy. As an example, in Fig. 4 (b), 

the model has detected some cars parked at the top 

left of the image. However, these cars have not been 

detected in Figs. 4 (c) and (d), because of the less 

height of the UAV camera against the ground. 

Another type of error is the merging error, in which, 

two or more vehicles may be merged together and 

detected as a single object. An example to this type 

of error can be seen in Fig. 5. In this figure, there are 

two merging error, in which, two cars were merged 

into a single object “car”, a pair at the center of the 

image, and a pair at the top left of the image.  

 

 
(a) 

 
(b) 

 
(c) 

 

(d) 

Fig. 4. Sample results of the 2EDL model on some UAV 

images.  

 

Fig. 5. Merging error.  

D) Comparison with single Faster R-CNN 

models  

In this section, the performance measures of 

the proposed ensemble deep transfer learning model 

(2EDL) on test dataset are compared with those of 

achieved by single base learners. Comparison of the 

2EDL with different pre-trained CNN models 

(considering MLP as classifier) can be summarized 

as Table 1. Moreover, comparison of the 2EDL with 

different transfer classifiers (considering VGG16 as 

feature extractor) are provided in Table 2. The 

obtained results clearly show the effectiveness of the 

proposed eansemble model to improve the total 

detection accuracy, precision, and recall. 

E) Comparison with single Faster R-CNN 

models  
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In this section, the performance of the 2EDL is 

compared with a classical method (Viola-Jones) 

[16], a machine learning technique (HOG+SVM) 

[20], and a deep learning model (SW-CNN) [22]. 

Comparison of the 2EDL with these methods is 

summarized in Table 3, and graphically illustrated 

in Fig. 9. According to the obtained results, the 

proposed 2EDL model outperforms the existing 

techniques, in terms of the total accuracy, precision, 

and recall. 

6. Conclusion 

In this paper, a two-level ensemble deep learning 

(2EDL) has been presented for the multiple vehicle 

detection in UAV images. The 2EDL is based on the 

Faster R-CNN object detection technique, in which, 

a set of region proposals are extracted using the 

RPN, and then, CNN is used to classify the region  

Table.1. 
Comparison of 2EDL with Different Single CNNs (Considering 

MLP as Classifier) 

Detection Method Accuracy  Precision    Recall       

VGG16 80.4 91.2 83.7 

ResNet50 78.6 92.5 80.9 

GoogLeNet 79 90.8 82.7 
2EDL (Proposed) 85.3 95.6 88.8 

Table.2. 
Comparison of 2EDL with Different Classifiers (Considering 

VGG16 as Feature Extractor). 

Detection Method Accuracy  Precision    Recall       

KNN 77.5 87.9 81.7 

SVM 82.8 92.7 84.9 
MLP 80.4 91.2 83.7 

C4.5 Decision Tree 79.5 89.8 83.9 

Naïve Bayes 77.2 90.2 79.4 
2EDL (Proposed) 85.3 95.6 88.8 

Table.3. 
Comparison of 2EDL with Existing Techniques. 

Detection Method Accuracy  Precision    Recall       

Viola-Jones [16] 72.7 87.3 81.4 

HOG+SVM [20] 74.4 88.4 82.4 

SW-CNN [22] 81.5 92.2 83.9 
2EDL (Proposed) 85.3 95.6 88.8 

 

 

Fig. 6. Comparison of the 2EDL with the existing techniques. 

proposals into five vehicle classes (car, van, truck, 

bus, and trailer), or no object (background). In the 

proposed transfer-learning model, three pre-trained 

CNNs (VGG16, ResNet50, and GoogLeNet) have 

been used as feature extractors, combined with five 

classifiers (KNN, SVM, MLP, C4.5 Decision Tree, 

and Naïve Bayes). Simulation results on a recently 

published UAV dataset (AU-AIR) have 

demonstrated the superiority of the 2EDL model 

against the existing methods in terms of accuracy, 

precision, and recall. In the proposed 2EDL model, 

the different base learners are aggregated via a 

majority vote ensemble. As a future work, weighted 

averaging ensemble can be used, in which, the 

weights of the different base learners are optimized 

via a metaheuristic algorithm, e.g., genetic 

algorithm.  
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