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Abstract 

Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states 

transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace 

Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is proposed 

for generating discrete mode transition graph of a hybrid system. This method can be used for a general class of industrial 

hybrid plants which are defined by Polyhedral Invariant Hybrid Automata (PIHA). In these automata there are no resetting 

maps, while invariant sets are defined by linear inequalities. Therefore, based on the continuity property of the state 

trajectories in a PIHA, the problem is reduced to finding possible transitions between all two adjacent discrete modes. In the 

presented method, the possibility and the direction of such transitions are detected only by computing the angle between the 

vector field and the normal vector of the switching surfaces. Thus, unlike the most other reachability methods, there is no 

need to solve differential equations and to do mapping computations. In addition, the proposed method, with some 

modifications can be applied for extracting Stochastic or Timed Discrete Trace Transition Systems. 
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1. Introduction 

Hybrid dynamical system (HDS) which 

contains both discrete and continuous dynamics has 

attracted considerable attention in recent years [1, 

2, 3]. Modelling of HDS is a challenging problem 

because; the model must represent completely both 

discrete and continuous behaviour of HDS and their 

interactions as well. 

A Subclass of hybrid systems that arise 

naturally in a great number of engineering 

applications (i.e. DC_DC converters, combustion 

engines or manufacturing processes), is Discretely 

Controlled continuous System (DCCS). A typical 

DCCS consists of a continuous plant (with 

continuous state vector) that its operation mode q(t) 

is switched x(t) by a discrete feedback controller 

(c.f. Fig1) [4].  

This paper concerns with modelling of a 

DCCS by a Polyhedral Invariant Hybrid Automaton 

(PIHA). PIHA is a particular class of Hybrid 

Automata (HA) that differs from general HA in the 

following respects: 

1) There are no so-called reset mappings 

associated with the discrete transitions, which 

means that there are no discontinuities in the 

continuous state trajectories.  

2) The invariant sets are defined by linear 

inequalities and guards are faces of the invariant 

sets. A discrete state transition (which is called an 

internal event) occurs immediately when the 

continuous state trajectory reaches a guard set [5]. 

According to the continuity property of the 

state trajectories in a DCCS, PIHA is a suitable tool 

for modelling and simulation of DCCS's [5, 6]. 
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plant 

Discrete 
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Hybrid 
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q(t) x(t)

 
Fig. 1. Discretely controlled continuous system. 
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An essential step for modelling a DCCS by a 

PIHA, is obtaining Discrete Trace Transition 

System (DTTS) of the underling system [7, 8]. 

DTTS is a transition system that abstracts away the 

continuous dynamics and retains the hybrid system 

behaviours only at the instants of discrete 

transitions [5]. Generally speaking, DTTS is a 

Discrete Event System (DES) that describes all 

internal events of the DCCS (c.f. Definition 4) and 

may be represented by a discrete mode transition 

graph [6].  

Obtaining DTTS which is the main 

contribution of this paper is a challenging problem 

especially in model based fault diagnosis and 

supervisory control of DCCS's. In these 

applications all internal events must be included in 

the obtained DTTS to guarantee completeness and 

efficiency of the model [9]. On the other hand, 

modelling approach complexity reduces its 

application in real time and large scale processes 

[10].  

PIHA modelling of DCC has been cited in 

some lines of researches such as reach ability 

analysis, verification analysis and fault diagnosis of 

HDS [4, 6, 8, 11, 12]. In these approaches the 

continuous state space is divided into a set of 

disjoint partitions so that the union of all partitions 

covers the entire state space. These methods need 

complex computations for determining the 

transitions between elements of the partitions. 

Computing these transitions needs to solve state 

equations in each partition which may lead to a 

high degree of complexity especially for large scale 

systems [10]. Besides, in some verification 

analysis, the initial partitions may be refined for 

several times that it causes more complexity of 

DTTS computations [5].  

Based on the properties of PIHA, especially 

its continuity property, in this paper a fast 

geometric method is introduced for detecting DTTS 

of PIHA with lower complexity. As it will be 

illustrated in the next section, in a PIHA, invariant 

sets are linear inequalities; hence guard sets can be 

visualized as hyper-plans that partition the 

continuous state space into discrete states. These 

discrete states, which specify different dynamics of 

DCCS, are called locations. The locations can be 

changed under evolution of continuous states. 

When a continuous state trajectory intersects a 

hyper-plane guard set, an interval event is occurred 

and current location is changed. It can be shown 

that continuity of continuous state trajectories in 

overall state space restricts the location transitions 

only to adjacent mode transitions. Therefore, in the 

DTTS of PIHA only transitions between two 

adjacent locations are possible. By these 

considerations, the problem of finding DTTS is 

reduced to finding all possible adjacent mode 

transitions [6].  

In our proposed method occurrence of these 

events is detected by computing  , where   is the 

angle between      and     , which      is the vector field  

and      is normal vector of switching surface at a 

guard set point, respectively. For computing     on 

whole of the switching surface, the surface may be 

divided into some partitions and      is computed for 

each one.  

The proposed method in this paper has some 

advantages: 

 There is no need to solve differential 

equations and      can be computed directly by using 

state equations. 

 Computations are carried out only on 

switching surface, instead of the overall state space. 

It means that the order of the equations reduces at 

least one order.  

 The method can be easily extended to detect 

stochastic or timed DTTS.  

This paper is organized as follows. Some 

basic concepts including PIHA and DTTS are 

defined in section 2. In section 3 our geometric 

approach for detecting DTTS is described 

completely. Model completeness and further 

discussions of the proposed method are presented in 

section 4. For more illustration, in section 5 the 

proposed method is applied on a two tank system. 

And finally in section 6 a brief discussion is given 

about the abstraction levels. 

2. Basic Definitions  

In this section the proposed method for 

detecting DTTS for PIHA is described. Hence, 

some related definitions are given firstly, and then 

the method is presented at the end of the section. 

Definition 1 [1, 5]: A PIHA is a 7-tuple   
                , where: 

               is a set of discrete states 

or locations;  

     is the continuous state space; 

  is a function that assigns to each 

location       a vector field        on   ;         

         is a set of initial states; 

         assigns to each location of    
   an invariant set of the form        where      
is a non-degenerate convex polyhedron; 

      is a set of edges or discrete 

transitions which are called events; 

            is a guard condition set that 

assigns to              a guard set. 

Recall that        (or    denotes the power 

set of  . 

In PIHA the following assumptions must be 

satisfied: 
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For each location the guards are the union of 

the faces of the corresponding invariant set. 

Events do not lead to transitions that violate 

invariants. 

In addition the following assumption is 

considered. 

The vector field        is Lipschitz for each 

location    . This condition implies uniqueness 

trajectory of         for each initial state    . 

The hybrid system is a DCCS. This 

assumption implies that for each location   state 

equation can be written as            that   

denotes input discrete value. 

 

Definition 2 [5]: Given an initial hybrid 

system state       , the continuous trajectory in 

location q, is            where  

             ; and 

                                 . (until a 

discrete transition occurs.) 

  

Definition 3 [1]: A transition system, 

          , consists of 

a set of states  ; 

a transition relation         ; 
a set of initial states     . 

 

In this paper a PIHA is abstracted into a 

transition system called Discrete Trace Transition 

System (DTTS) that abstracts away the continuous 

dynamics. DTTS is defined as follows. 

Definition 4 [6]: For a given PIHA, DTTS is 

a transition system in which 
      

        
           
                                      

                                   

Here I(q) denotes the boundary of I(q) and 

I(q) I(q) is the interior of I(q) . 

DTTS is a discrete event representation of 

PIHA and it is used to model transitions of 

locations and corresponding event sequences. 

Based on definition 4, DTTS has two parts of 

transitions n , null transition and e , discrete 

transition. Null transition comprises all continuous 

state trajectories that remain in a location 

indefinitely and discrete transition comprises all 

continuous state trajectories in the PIHA between 

different locations. 

3. Obtaining DTTS  

For detecting DTTS firstly invariants of PIHA 

must be defined. In this paper invariant sets are 

determined by using state quantizers. The state 

quantizer maps the continuous state space    onto 

discrete states set Q [13]. Here we use rectangular 

quantizer that leads to hyper-boxes as invariant 

sets. Based on Def. 1 and properties of PIHA, each 

common face of two hyper-boxes    and    

determines a guard set     that is a subset of a 

hyper-plane     . Note that         for all    and 

   . Fig 2 shows a typical state partition of a two 

tank system illustrated in section 5. As it is shown 

in this Fig, occurrence of event      is equal to 

discrete transition from location    to location   .  

                       (1) 

where  ,  ,   and   denote states, inputs, 

disturbances and faults respectively. 

Based on Def. 1, in PIHA an event     occurs 

when there is at least an entry point    for 

   location, in which the continuous 

trajectory            intersects with the guard set       

Generally, finding entry points of all discrete 

modes, needs to mapping all interior points of each 

location by solving state equation. These 

calculations are complex especially when refining 

partitions is needed [5]. 

By considering continuity properties of PIHA 

it is sufficient to check intersection points on guard 

sets. In fact in our method we assume that each 

point on a guard set could be an intersection point. 

This assumption is not a restriction assumption and 

also guarantees completeness of the obtained model 

for DTTS that will be considered in the next 

section. Therefore it is only needed to check that 

each point on a guard set can be an entry point for 

location   . This test can be carried out by 

calculating 

                                  (2) 

where           is the vector field of      and 

         ) is the normal vector of hyper-plane      , 

both at    (c.f. Fig 2). Now it can be deduced that: 

   is an entry point for    if: 

        
 

 
 (3) 

Thus the possibility function of occurrence 

    is defined as 

1 ( )
( ) 2

0

p ij p
ji

if g x
Poss e

otherwise

 s.t.


   
 



x
 

(4) 

Note that in Equation (1) 

                      
      (5) 
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Fig. 2. A typical state space partition.  

Which can be computed simply by replacing 

   in         .  

By computing Equations (2) ~ (5) for 

all x
i j

g , possibility of occurrence     is 

determined. Note that if 1jiPoss( )e   for a 

point    , then a transition from location iq  to 

location jq is considered in DTTS and there is no 

need to test other points on
i j

g . By repeating this 

procedure for all guard sets and for all locations, 

the overall DTTS of PIHA is detected. This 

algorithm will be given in the next section, but 

before that, some major considerations are 

presented in the next section. 

4. Further Discussions  

In this section at first completeness of the 

DTTS is considered and then some special cases 

that may be arise in obtaining DTTS, are 

considered.  

Completeness of DTTS: Recall that DTTS is a 

discrete event model for PIHA. Thus DTTS must 

be a complete model for each initial hybrid state 

and for each input  . It means that the obtained 

DTTS could generate all possible discrete 

trajectories of the underlined DCCS, i.e.      . 

Here,    and    are event trajectories generated by 

the system and the model, respectively. For 

investigation the completeness of DTTS, the 

problem is studied for discrete transition and null 

transition as follows. 

a) Discrete transition: In this case if the point 

at which event     occurs in HS is   , then 

       . Since during the obtaining procedure of  

DTTS all points of     is tested for detecting 

location transitions, then     has been considered in 

DTTS and similarly it is true for all events of HS. 

Therefore,      , for all discrete transitions. 

b) Null transition: In this case there is no 

event occurrence at the system and continuous 

trajectory remains in a location permanently. If 

       denotes the system event trajectory where    

is the instant time in which a null transition occurs, 

then we have:            for all      . On the 

other hand by part a), it is resulted that       
     for       Therefore, for all time: 

                 (6) 

Practically, null transition can be detected 

when all points on guard sets of a location are entry 

points to this location. 

Another issue that is addressed in this section 

is special cases of the entry point   : 

a) If =0 for some   , then    is an equilibrium 

point and there is no transition of DTTS in this 

point. (Fig. 3-a) 

b) If   
 

 
 for some   , then      moves 

exactly on     and event     cannot be detected at 

this point. (Fig 3–b) 

c) If                        . In this case       

is not continuous at   . Thus it can be seen that if 

both         and         are less than 
 

 
, then    is 

an entry point for    and the event     occurs (c.f. 

Fig 4). But, if          
 

 
 and         

 

 
, then 

the Zeno phenomenon has occurred at this point. It 

means that infinite oscillations (i.e. discrete 

transitions) occur in a finite duration time, thus the 

point     is not an entry point. 

An important note in this method is that only 

algebraic equations must be solved and there is no 

need to solve differential equations. Moreover, 

since partitions are rectangular, then       , for all 

points on all guard sets In addition; DTTS obtained 

by this method is complete. At the end of this 

section the presented method are summarized by 

following steps: 

1- According to state equation and sensor 

positions, partition the system state space 

and determine all guard sets. 

2- For each guard set choose a set of test 

points which is called   . This set is built by 

partitioning the guard set and selecting test points 

from each partition. 

3- For a test point,      , on the guard set 

   , compute            and           . If at least one of 

them is equal to zero, choose another test point 

from   , and go to step 3. 

4- Compute           and            by 

Equation 2. If at least one of them is equal to zero, 

choose another test point, and go to step 3. 

5- Determine           or           by 

Equation 4. 

6- If           and           cannot be 

detected because of Zeno execution, choose another 

test point and go to step 3. 

Repeat steps 3 ~ 6 for all test points and for all 

guard sets.   
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In this procedure singular points, in which 

event occurrence cannot be detected, are isolated in 

steps 3, 4 and 6. If all test points of    are singular 

points, then another set must be chosen by refining 

partitions of the guard set. In the next section the 

proposed approach is simulated to detect DTTS of a 

two tank system that is a well-known hybrid 

system. 

5. Limiting Conditions 

The main requirement which must be satisfied 

for applying this method is continuity of state 

trajectory. Two main situations may contradict this 

condition. Whenever there is a switching part in the 

overall system. In this case the presented method 

could be extended as follows: 

 Represent the switching system by a discrete 

model such as a Finite State Automaton (FSA).  

 Drive the DTTS of the continuous part 

 Obtain the overall DTTS by combining (e.g. 

synchronized production) of these two discrete 

models [14].An example of this situation is 

considered in the next section.   

The system is represented by a difference equation 

set. (i.e. it is a discrete system itself). In this case, 

the discrete model could be derived directly by 

methods such as cell to cell mapping [9].  

6. An Illustrative Example  

In this section the proposed method is applied 

for obtaining PIHA of the two-tank system which is 

affected by faults. The system depicted in Fig 5. 

This system is a nonlinear hybrid system described 

by the following differential equations [15, 16]. 

Here    and     are liquid levels of tank1 and tank2 

respectively,     is input flow and hv is the height 

of the upper pipe. The other parameters of the 

system are given in Table 1.The valves    and    

may be closed or open and the input pump works in 

on or off mode. The valve    is assumed to be 

always open in the normal operation. 

1 1 1

1
( )in U Lh q q q

A
    (7) 

2 1 1 2

1
( )U Lh q q q

A
    (8) 

2 1 2 1 2 1 2

2 1 1 2
1

2 2 2 1

1 2 2

sgn( ) , ,

, ,

, ,

0 ,

v

v v v
U

v v v

v

c h h h h if h h h

c h h if h h h h
q

c h h if h h h h

if h h h or V closed

   

   

 
   

 

 

(9) 

1 1 2 1 2 1
1

2

sgn( )

0
L

c h h h h V is open
q

v is closed

  
 


 
(10) 

2 3 2q c h  (11) 

 

 0                      0.3                    0.6   h1 (m)  

h2 (m) 

0.6

0.3

0

N

( )tx ) 0( pT x

 
(a) 

 0                      0.3                    0.6     h1 (m)  

h2 (m) 

0.6

0.3

0

N

( )tx
)( pT x

90 

 
(b) 

Fig. 3. Special cases for     a)    is an equilibrium point 

         b)   
 

 
 and     cannot be detected at   . 

 0                      0.3                    0.6  h1 (m) 

h2  

0.6

0.3

0

N

( )tx

)( p
ip

T x

)( p
jp

T x

)( p
jp

 x

)( p
ip

 x

 

Fig. 4. Discontinuity in       at   . 
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Table.1. 
Parameters of the two tank system 

 

For determining the DTTS of the system, (and 

consequently its corresponding PIHA), all discrete 

states and events must be identified. DTTS of such 

systems comprises three parts; Input discrete 

events, internal events and fault events [6]. Here, 

Each combination of the situations of the   ,    and 

the pump is considered as a discrete input for the 

system. Therefore, the system has 8 different 

discrete inputs which all are assumed to be 

observable. In addition, three working modes are 

considered for the system as follows: 

1f : Faultless system (faultless).  

2f : Blockage in the output flow (block2). 

3f : Leakage in the first tank (leak1) 

The crucial part of detecting DTTS is 

identifying internal events [4]. Here, internal events 

occur when the liquid levels    or     reach the 

height of the upper pipe,   . At this point, state 

equations change according to Eqs. 7~10. Thus the 

state space          
  is partitioned into four 

distinct locations due to four distinct dynamics of 

Equation (10) (c.f. Fig 6). 

By considering all discrete states, the PIHA 

graph of the system is constructed which is shown 

in Fig 7. In this graph    
 denotes the sub graph 

depended on the fault   ,    
 shows the sub graph 

related to discrete input    and      denotes the sub 

graph for fault    and discrete input   . It is 

assumed that the system is in normal mode,    
 

until the fault    occurs and the states of the PIHA 

move towards the    
 and remain there. In addition 

transitions between all     
 are assumed to be 

acceptable. 

It can be seen that the basic element of the 

obtained PIHA, is      which must be determined 

for all faults and discrete inputs. By considering Fig 

6, each      has 4 invariant sets and the number of 

all discrete states is equal to S         .  

   

L1

   

P(t)

Tank-2

inq

Tank-1

L2

L3

1V

2V

1Lq

3V

2Lq

1Lq

1Uq

2q

 
Fig. 5. The two tank system. 

 

 
Fig. 6. The partitions of two tank system. 

It is clear that for such a number of discrete 

states, using the previous methods lead to a huge 

number of computations. By using the proposed 

method of this paper these computations reduced to 

solving a few algebraic equations for a few test 

points.  

For more illustration the detail of the 

calculations is presented for sub graph     . In this 

mode the system is working with no fault, all 

valves are assumed to be opened and the pump is 

on. By using our method           ,           ,and,    is 

computed for all       and for all guard sets. For 

example for guard set    , and for location 1; 

12 1 2: , 0 0.3vg h h h   ; 

2( ) ( 1,0)h  1N ;  

Not that the direction of the normal vector for 

each face of a hyper box is considered into the 

inside of the hyper box. 

1 2( ,h h 1T , 

where,       due to the characteristic of 

guard set,     and 

2 1 2 2
1

1
( sgn( ) )in v vh q c h h h h

A
     

By Equation (2),       is computed for all 

20 0.3h  , and is depicted in Fig 8-a. It is seen 

that: 

2 2( ) 0.24
2

h for h


   , 

A=
2-21.5 10 m           Cross-section area of tanks. 

1c =
4 5 26 10 m s/ /    Flow constant of valve 1. 

2c =
4 5 24 10 m s/ /    Flow constant of valve 2. 

3c =
4 5 22 10 m s/ /    Flow constant of valve 3. 

                             Input flow.     

h 0.3mv                    Height of the upper pipe. 

                                     Leakage flow of tank 1 

                                     Leakage flow of tank 2 
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2 2( ) 0.24
2

h for h


    

Therefore by using Equation (4), it is resulted 

that: 

2

2

0.24

0.24

21

12

Poss(e ) = 1 for h

Poss(e ) = 1 for h




   

By repeating these computations for the other 

guard sets,      nd possibilities of all events are 

derived. Fig. 8 show      for all guard sets and the 

obtained DTTS is depicted in Fig 9. In this graph 

nodes denote locations and events are denoted by 

edges. On each edge the condition for that 

transition has been written as well. 

Note that when possibility of an event is 1 for 

some point on a guard set, there is no need to check 

other points. Generally, each guard set may be 

divided into some partitions and these computations 

are carried for a few points of each partition. 

In Fig 9 the edge between nodes 3 and 2, 

shows that this transition occurs just at    

                . In fact this point can be 

considered as a guard set and              is computed 

for this. Here                           that 

indicates the transition from location 4 to location 

2. For each sub-graph     , a transition matrix,      

would be defined. In this matrix, each entry      

indicates a state transition from state j to state i. For 

example the transition matrix for DTTS of Fig 9 is 

as follows.  

8,1

0 1 0 1

1 0 1 1

0 1 0 1

0 0 0 0

L

 
 
 
 
 
 

 

7. Hierarchical DTTS 

The method presented in this paper generates 

a Finite State Automaton (FSA) as DTTS of a 

PIHA. In this FSA all continuous behavior of the 

original system are abstracted by discrete states and 

their transitions. Such FSA has been used in some 

fault diagnosis applications, successfully [17, 18]. 

In [16, 17] the diagnosability analysis have been 

presented for such FSA. Generally speaking, a FSA 

is diagnosable if it could generate eventually, two 

different discrete trajectories for two different 

faulty modes. If the obtained FSA (i.e. DTTS) is 

not diagnosable, it means that the level of 

abstraction is high and some necessary details have 

been ignored. In these cases two modifications 

could be used.  

1q

3q

2q

4q

10 0.3h 

2 0.24h 

2 0.24h 

2 0.3h 

1 0.32h 

1 20.3, 0.3h h 
1 0.32h 

 
Fig. 7. DTTS of two-tank system for     . 

A) Increasing the discrete states by refining 

the partitions 

In this method, some ignored details of the 

continuous behavior are considered, but the 

dimension of the FSA is increased [10].  

B) Using the other discrete event models for 

representing the DTTS 

 In fact, in these approaches, other discrete 

event models such as Stochastic Automata (SA) or 

Timed Automata (TA) are applied [13, 19]. These 

models consider more details of the continuous 

behavior within a location rather than the FSA. In 

SA the probabilities of the state transitions are 

considered instead their possibilities. In TA, each 

discrete state transition is known with its 

occurrence time. In fact, for abstracting PIHA a 

hierarchical modeling can be used due to the 

abstracting level. FSA has the highest degree of 

abstraction and the most simplicity of calculations. 

SA is in the second level of the abstraction and TA 

is in the third level [4]. 

The presented method in this paper could be 

extended for SA or TA modeling of DTTS. Basic 

principles of these extensions are given here 

briefly, while more details must be considered in 

each one. In the case of SA extension, the 

probability of occurrence of     is computed by: 

    
    

 
 (12) 

Here,      denots the length of the part of 12g
 

in which the event     occurs and l is the whole 

length of 12g
. The extension of the method for TA 

modeling could be carried by computing the 

interval time of reaching a continuous state 

trajectory to a guard set. Because the computations 

are done only for some points (or intervals) on the 

guard sets, then the complexity of calculations is 

yet lower than the other methods.  

8. Conclusion 

In this paper a geometric method is presented 

to detect discrete trace transition system of a PIHA. 

Since a wide range of technological plants can be 

described by a PIHA, this method can be used in 
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these areas. Constructing DTTS of a hybrid system 

is the first and essential step in analyzing such 

systems. The method of this paper uses continuity 

properties of PIHA for detecting DTTS without 

need to solve differential equations. In addition, the 

computations are done only on switching surfaces, 

which have smaller dimensions rather than the 

original state space. The method can be easily 

extended to detect stochastic DTTS or timed DTTS. 
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