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Abstract 

This paper introduces and discusses a new control strategy for nonholonomic wheeled mobile 

robots (WMR). Robot models include kinematic and dynamic equations of motion.  A barrier 

function adaptive terminal sliding mode control is used to control the movement of the robot. It 

considers sliding mode control (SMC) to deal with the dynamic model uncertainties of the chaos 

system and uses a combination of SMC with an adaptive control approach to solve the upper 

boundaries problem of unknown model uncertainties and their estimation. Chattering is 

completely eliminated without over-estimating the control gains by adopting an adaptive 

continuous barrier function in the dynamic switching function. Using Lyapunov's stability theory, 

it was shown that the proposed scheme can guarantee the convergence of system states to the 

vicinity of the sliding surface in finite time. Additionally, the adoption of a sliding surface with a 

nonlinear and integral switching function resulted in removing the reaching phase of the sliding 

surface and yielding a controller that is robust to uncertainties from the start. The effectiveness of 

the proposed control method was assessed using three scenarios implemented to Liu's uncertain 

chaotic system in a MATLAB/Simulink environment. The obtained results confirmed the ability 

of the proposed approach to achieve continuous and smooth control rules for such chaotic systems. 

Among the main attributes of the proposed control method is its ability to completely eliminate 

chattering and yield a robust performance against model uncertainties and unknown external 

disturbances. 
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1. INTRODUCTION 
 

Mobile robots are used in many industrial, 

medical, space, and other applications. The 

wheeled mobile robots (WMRs) are the most 

widely used class of mobile robots thanks to 

their fast maneuverability and energy saving. 

In some mechanical and robotic systems, 

certain types of additional conditions restrict 

motions, such as non-integrable constraints, 

or in other words, nonholonomic constraints. 

Nonholonomic restrict the motion of robots, 

making them difficult to control. Under these 

conditions, the robot will usually not be able 

to move in any given path [1, 2]. For instance, 

WMRs, watercraft, and space robots are 

examples of nonholonomic systems. Such 

systems do not behave linearly around any of 

their equilibrium points and cannot be 

stabilized by continuously differentiable time 

independent feedback. The problem of 

stabilizing and tracking the reference path in 

such systems has attracted the attention of 

many researchers in recent years [3, 4]. As 

mentioned, WMRs are an example of 

nonholonomic systems in which the motion 

of WMRs is realized by actuators that 

determine the torque applied to the wheel and 

the direction of motion of the wheel axis [5]. 

WMRs have three  degrees of freedom 

(DOFs) to move on the surface while having 

only two controllable inputs [5, 6]. One of the 

problems in controlling nonholonomic 

mobile robots is the uncertainty in modeling 

this system. Uncertainty in the robot is due to 

the inherent characteristics of the WMR, 

including the real dynamics of the robot, 

inertia, power limitation of operators, and the 

positioning error of the robot; hence, the 

equations of this system cannot be described 

as a simplified mathematical model [5]. 

 Most of the controllers are dedicated to 

the design of a closed-loop stabilizer 

controller for nonholonomic mobile robots. 

In this case, the position of the robot must be 

exactly known at any moment. Nevertheless, 

this assumption is very unrealistic from 

robotics experts’ point of view because a 

mobile robot may  drift during motion. As a 

result, their exact location is not possible by 

dead reckoning alone [7]. In designing a 

mobile robot controller, there are two 

challenges: predetermined path tracking and 

stabilization around the desired position. In 

recent years, the problem of guiding WMRs 

with nonholonomic constraints has attracted 

much attention in the field of robotics [8-11]. 

For the problem of tracking in this system, 

various methods have been proposed, 

including proportional-integral-derivative 

(PID) controller [12], sliding mode controller 

[13, 14], neural control [15], robust adaptive 

control [16], fuzzy control [17], and hybrid 

control [18]. One of the effective methods of 

controlling a WMR is sliding mode control 

(SMC). SMC is a fruitful technique for 

controlling linear and nonlinear systems. 

This method has been widely used in systems 

with uncertainty due to its convenient 

features such as simplicity of design, 

acceptable consistency, reduction of order, 

and easy implementation. SMC and its 

combinations are regarded as a suitable 

method for robust control of systems [5, 6, 

19, 20]. In [21] presents a robust control 

method for asymptotic stabilization of a 

nonholonomic mobile robot and shows that 

the designed sliding mode controller is robust 

to limited external disturbances. In [9], an 

SMC law was introduced to stabilize and 

track the reference path in nonholonomic 
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systems in the chain form. For limited time 

convergence, the terminal sliding mode 

control method was proposed for this system. 

In [22], a finite time tracking controller for 

nonholonomic systems is used in an extended 

chained form, which uses a relay switching 

technique and terminal sliding mode control 

with limited time convergence to design the 

controller. The authors in [23] suggest a 

recursive terminal sliding mode control 

method for tracking nonholonomic systems 

converted into a chained form. 

 Recently, a new control technique for 

removing the chattering problem in sliding 

mode controllers has been used as an 

excellent alternative to the saturation 

function method, the high-order derivative of 

the sliding surface, as well as other 

conventional approaches to removing 

chattering, which is a simple, robust, and 

practically efficient. This technique is known 

as "sliding mode control based on the 

adaptive continuous barrier function," in 

which an adaptive continuous barrier 

function is used to provide a smooth and 

continuous control rule for the switching 

surface and completely solve the chatting 

problem in SMC. The SMC based on the 

barrier function was first proposed in [24] by 

Franck Plestan et al. (2010) for controlling an 

electro-pneumatic actuator system. An 

adaptive continuous barrier function TSMC 

scheme was proposed in [25] to control a  

three degrees of freedom manipulator subject 

to external disturbances. In [26], A barrier 

function adaptive nonsingular TSMC 

approach was designed to control quad-rotor 

unmanned aerial vehicles with external 

disturbances, in which a novel nonsingular 

terminal sliding surface is suggested to 

guarantee convergence of the sliding surface 

to the origin in a finite time. The work in [27] 

provides a quasi-adaptive sliding mode 

method based on the barrier function to 

control the motion of the hydraulic  servo 

mechanism with modeling uncertainty. Also, 

barrier function-based adaptive high-order 

SMC has been used for the fast stabilization 

of a perturbed chain of integrators with 

bounded uncertainties [28]. Recently in [29], 

a TSMC based on the continuous barrier 

function along with a fuzzy estimator has 

been designed to control an inverted 

pendulum. The approach resulted in the 

creation of continuous and smooth control 

rules. In addition, a novel barrier function 

based on the adaptive technique for the first-

order SMC was proposed in [30]. This 

technique was applied to a class of first-order 

disturbed systems whose upper boundaries of 

the uncertainty are unknown. The proposed 

barrier technique can guarantee the 

convergence of the output variables 

independently of the uncertainty boundaries 

and keep it in a neighborhood of the origin 

without overestimating the control gain. For 

this purpose, to overcome the problem caused 

by the upper boundaries of unknown 

uncertainty, the SMC method is combined 

with the adaptive control technique, and a 

novel strategy entitled "chatter-free TSMC 

based on adaptive continuous barrier 

function" is proposed. Its main contributions 

are as follows: 

• A novel adaptive control to tune the 

controller's adaptation gain parameters to 

estimate the boundaries of the uncertainty 

terms. 

• An adaptation gain that is not 

overestimated, so only the convergence of 
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the system state variables in a predefined 

neighborhood of the origin is guaranteed. 

• A design that considers a barrier function 

as a simple switching function to 

completely eliminate the chattering 

phenomena. 

• A design that guarantees the convergence 

and maintenance of the system state 

variables to a predefined neighborhood of 

the origin in finite time. 

• A control design that covers a complete 

class of uncertain NWMR systems in which 

the upper boundaries of the uncertainty are 

assumed to be unknown. 

 The organization of this paper is as 

follows. In Section 2, the model of wheeled 

mobile robots is introduced. Section 3 

designed the kinematic control law. Section 4 

describes the design of the dynamic control 

and stability analysis. The simulation results 

are provided in Section 5 to evaluate the 

performance of the proposed controller 

design. Eventually, Section 6 summarizes the 

conclusion. 

 

2. MOBILE ROBOT MODELING 
 

The mobile robot in this study consists of two 

identical moving wheels placed on a rod so 

that each wheel is independently controlled 

by an actuator (motor) as illustrated in Fig. 1. 

 Referring to Fig. 1, 𝑟 is the wheel radius 

(m), 2𝑟 denotes the length of the axis between 

actuator wheels, 𝑣𝐿 and 𝑣𝑅 represent the 

speed of the right and left wheels (m/s), (𝑥, 𝑦) 

shows the position of the robot's center of 

gravity at any given moment. Also, 𝜃 (rad) is 

the angle between the axis perpendicular to 

the axis between the wheels of the mobile 

robot (𝑥𝑟 ) and the x-axis, 𝑣 is the 

instantaneous linear velocity, and 𝜔 gives the 

instantaneous angular velocity of the mobile 

robot body. The robot state position vector is 

defined as 𝑞 = (𝑥, 𝑦, 𝜃). The angular and 

linear velocities of the moving robot are 

expressed by Eq. (1) and the equation of the 

kinematic model is given by Eq. (2) [31]: 

 

 
Fig. 1. The schematic model of a WMR. 
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Fig. 2. The motion of virtual and real robots. 
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 Nonholonomic constraints are assumed 

so that the wheels rotate without chattering. 

Moreover, the dynamic model of a mobile 

robot is presented in Eq. (3): 
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where, 𝑀 is the total mass of the mobile 

robot, 𝐼 is its moment of inertia, τL and 𝜏𝑅 

are motor torque of the right and left wheels, 

𝑓(𝑡) represents the friction force, and 𝜏𝑓 

indicates the friction torque, respectively. 

The present paper aims to control a WMR to 

track a pre-designed path in the presence of 

uncertainty. To clarify the problem, it can be 

assumed that a virtual vehicle is moving on 

the desired reference path and the real mobile 

robot must follow the virtual path as shown 

in Fig. 2. 

 The position and path orientation of the 

virtual vehicle as well as its kinematic 

equations are described by Eq. (4): 
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 Additionally, the reference time-variant 

angular and linear velocities are calculated as 

follows: 
 

0aV mV+   (4) 
 

 Therefore, to find the proper control law, 

it is necessary that 𝑞(𝑡) → 𝑞𝑑 (𝑡) as 𝑡 → ∞. 

The error between the desired position and 



138                                                                                            Kordi, Alikhani, Nikoukar.  A Novel Barrier Function … 

the real position is 𝑒 = [𝑒1,𝑒2,𝑒3 ] 𝑇 = [(𝑥 − 

𝑥𝑑), (𝑦 − 𝑦𝑑), (𝜃 − 𝜃𝑑)] 𝑇 . As a result, the 

error dynamics for path tracking are 

determined by Eq. (6): 
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 The control system consists of two parts. 

The first part is a nonlinear kinematic 

controller (steering) whose outputs are linear 

and angular velocities. The second part is a 

dynamic controller whose outputs are the 

angular and linear torques required by the 

robot for path tracking. 

 

3. DESIGNING THE KINEMATIC 

CONTROL LAW 
 

First, a control law for the kinematic model 

of a WMR is defined based on [31]: 
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where, 𝛾, 𝑏, 𝑎 are constant positive gains. 𝑣𝑐 

and 𝜔𝑐 are the linear and angular velocities 

required for kinematic stabilization, which 

are used as reference inputs to the dynamic 

control block. By placing Eq. (7) in Eq. (2) 

and using Eq. (6), the dynamics of the errors 

are obtained as follows: 
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with selecting the Lyapunov function as 

follows: 
 

2 2 2
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 It is proved that the mobile robot is 

capable of asymptotic tracking of the 

reference path with error convergence to zero 

at 𝑡 → ∞ [32]. 

 

4. Dynamic control design and stability 

analysis 
 

In order to obtain continuous, smooth, and 

differentiable control inputs and further 

weaken the chattering phenomenon, the idea 

of diverting the switching term of the 

discontinuous sliding surface into the first 

derivative of the control input is adopted. As 

a result, the dynamic sliding mode surfaces 

resulting in a smooth adaptive SMC law are 

defined as follows: 
 

( ) ( ) ( )i i i it s t s t = +
 (9) 

 

where 𝜆𝑖, 𝑖=1,2,…,𝑛 are positive constants, 

and sliding surfaces 𝑠𝑖 with the integral 

operator are defined as follows: 
 

0
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where 𝑘𝑖, 𝑖=1,2,…,𝑛 are positive constants, 

and xi(t), 𝑖=1,2,…,𝑛 are system state 

variables. The main advantage and feature of 

Eq. (10) is that the use of a sliding surface 

with this nonlinear and integral switching 

function makes the SMC become a global 

sliding mode control because the nonlinear 

sliding surface Eq. (10) has both GSMC 

conditions, i.e. 𝑠(0)=0 and 𝑠(∞)=0. 

Accordingly, one of the main advantages of 

selecting the mentioned nonlinear and 

integral sliding surfaces is that the proposed 
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controller becomes GSMC and the phase of 

reaching the sliding surface is removed. This 

results in placing the sliding surface at the 

initial moment, and yielding a controller that 

is robust to uncertainties from the beginning. 

 

4.1. Analysis of Stability and Convergence 

of System States 
 

In the proposed control method, SMC is used 

to deal with the dynamic model uncertainties 

of the chaos system and a combination of 

SMC with the adaptive control approach is 

used to solve the upper boundaries problem 

of unknown model uncertainties and their 

estimation. In this section, we first make the 

following assumption to analyze the stability 

of system states.  
 

 Assumption 1: Here, we assume that the 

unknown positive constants 𝑐𝑖 and 𝑖=1,2,…,𝑛 

exist as the upper boundaries of the system 

uncertainty term, so that the following 

inequality holds: 
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where 𝑑𝑖(𝑡,𝑥) and 𝑖=1,2,…,𝑛 are the 

unknown uncertainty terms in Eq. (1). 
 

 Note 2: Contrary to the assumption in 

[33], here we allow the upper boundaries of 

the uncertainty term, i.e., 𝑐𝑖, to be unknown. 

 

 Theorem 1: Considering assumption 1, if 

the adaptive TSMC rule is written as follows: 
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where 𝜖𝑖>1, and 𝑖=1,2,…,𝑛 are some constant 

parameters related to the controller design, �̂�𝑖 

is the upper boundary estimate of 𝑐𝑖, which 

displays the adaption gain, and is obtained 

from the following equation: 
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 Then, for each specified initial condition, 

the closed-loop system state vector 𝑥(𝑡) 

becomes asymptotically stable, leading to the 

convergence of the system states to the 

origin.  
 

 Proof: To prove Theorem 1, consider a 

Lyapunov's candidate function as follows: 
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 Therefore, the time derivative of 

Lyapunov's function will be as follows: 
 

1
ˆ ˆ[ ( ) ]

n

i i i i ii
V c c c 

=
= + −  (15) 

 

 By combining Eq. (15) with Eqs. (9) and 

(10), the following equation is achieved: 
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 By applying the inequality (11) of 

assumption 1, the following relation will be 

obtained in (17). 

 Substituting the control rule of the 

adaptive sliding mode (12) in inequality (17), 

yields the following relation: 
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 Thus, if 𝜖𝑖>1 is selected according to the 

assumptions of Theorem 1, the derivative of 

the candidate Lyapunov function is less than 

or equal to zero. That is, the following 

inequality holds: 
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 Now, based on Eq. (19), we define the 

variable 𝛾 (𝑡) as the following relation: 
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 Then, by integrating both parts of (20), 

we will have the following inequality: 
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 By taking the limits of both parts of 

relation (21) and considering the existence 

and finiteness of the limit ∫𝛾(𝜏)𝑑𝜏, using 

Barbalat's lemma, the following result will be 

obtained: 
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 From Eq. (22) and Eqs. (9) and (10), the 

following result is obtained, which means 

that the system states eventually converge to 

zero, and the closed-loop system state vector 

𝑥(𝑡) is asymptotically stable. 
 

lim 0 lim ( ) 0i
x x
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4.2. Improvement of the Proposed 

Controller eth Adaptive Barrier Function 
 

In this study, to improve and develop the 

proposed control method, the  chattering-free 

TSMC based on the adaptive barrier function 

is used for the robust stability of chaotic 

systems with unknown external disturbances. 

For this purpose, a novel adaptive control 

rule based on the adaptive continuous barrier 

function is suggested in this section. The 

block diagram of the proposed adaptive 

continuous barrier function-based chattering-

free TSMC approach is illustrated in Fig.3. 

 Lemma 2: To improve the proposed 

control method, the unknown uncertainties of 

the system can be estimated more effectively 

by employing the adaptive barrier function-

based TSMC, in which case the closed-loop 

system will be more stable. For this purpose, 

the adaptation gain parameter �̂�𝑖 in the 

adaptive TSMC rule (12) can be written as 

follows: 
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Fig. 3. Block diagram of the proposed adaptive continuous barrier function-based TSMC approach. 
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where 𝑡 ̅ represents the time when the system 

state trajectories converge to the 

neighborhood 𝜏 of the sliding surface 

dynamics 𝜎𝑖(𝑡), and when 𝑡=�̅�, the smallest 

root of the equation |𝜎𝑖(𝑡)|≤ 𝜏 is obtained. In 

the proposed control method, the adaptation 

rule and positive-semi-definite (PSD) 

continuous barrier function are created by the 

following equations, respectively: 
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 Using where in (23), 𝜏 is a positive scalar 

parameter.  
 

 Note 3: The adaption rule (25) is 

extracted from Eq. (13) in Theorem 1.  

 Employing the adaptation rule (25), the 

adaption gain is adjusted to increase until the 

state trajectories reach the neighborhood 𝜏 of 

the sliding surface at the time �̅�. For times 

greater than �̅�, the adaption gain shifts to the 

PSD barrier function to reduce the 

convergence region and hold the state 

trajectories in it.  

 For time 0<𝑡≤𝑡 ̅, the controller design is 

suggested by the control rule defined in Eq. 

(15) of Theorem 1, and for conditions when 

the time is longer than �̅�(𝑡>𝑡 ̅), the controller 

is designed by the adaptive control rule based 

on the barrier function as follows: 
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(26) 

 

 Then, the system state trajectories reach 

the convergence region |𝜎𝑖(𝑡)|≤ 𝜏 in a finite 

time. As a result, the system state trajectories 

converge to the origin in a finite time, and the 

closed-loop system will reach stability in a 

finite time.  
 

 Note 4: The process of designing and 

generating adaptive control rules (12) and 

(27) according to the method [33] is briefly 

illustrated in Appendix A.  
 

 Note 5: According to lemma 2, using the 
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adaptive barrier function in the SMC, the 

proposed controller will be automatically 

finitetime; in other words, the closed-loop 

control system will be stable in a finite time. 
  

 Proof: The controller stability with the 

control rule (12) was proven in the previous 

subsection. Here again, the proof is based on 

Lyapunov's approach and is shown according 

to [33] that the system state trajectories reach 

the convergence region |𝜎𝑖(𝑡)|≤ 𝜏 in a finite 

time. To prove the controller stability with 

the control rule (27), we can consider a 

Lyapunov's candidate function which 

includes both sliding surface dynamics and 

adaption gain dynamics (barrier function), as 

follows: 
 

( )2 2ˆ ˆ( ) 0.5 ( ) ( ( ) (0))
psd psdi i i iV t t c t c= + −

 
(27) 

 

 Taking the time derivative of the 

Lyapunov's function (28), yields: 
 

( ( )2ˆ( ) ( ) ( ) ( ) (0))
psd psdi i i i iV t t t c t c = + −

 
 

(28) 
 

 Substituting the sliding surface derivative 

�̇�𝑖(𝑡) and 𝑑(0)=0 in Eq. (29), yields: 
 

1

1

( , ) ( , )
( ) ( )[

( , ) ( , )
( )( ( , ) ( , ) ) ]

ˆ ˆ( ) ( ),
psd psd

n i i
i i jj

j

n i i
j i i i i i i i i ij

j

i i

f t x f t x
V t t x

x t

d t x d t x
x u k f t x d t x u k x

x t

c t c t



 

=

=

 
= +

 

 
+ + + + + + + +

 

+





 

 

(29) 

 

 Applying the inequality (11) of 

assumption 1 and placing the control input �̇�𝑖 

of Eq. (27) in Eq. (30) yields: 
 

( )

 

 

2

( ) ( )

ˆ ( )sgn( ( )

ˆ ˆ( , ) ( ) ( )

ˆ( ) ( , ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( , ) ( ) ( )

( ( ) )

ˆ( , ) ( )sgn( ( ))

sgn( ( ))

psd

psd psd

psd

psd psd

psd psd

psd

i i

i i i

i i

i i i

i i

i i i i

i

i i i

i

V t t

c t t

d t x c t c t

t d t x c t

c t c t

t d t x c t c t

t

d t x c t t

t











 





=

−

+ +

  −

+

  − +


−

 −
 



 
(30) 

 

 From Eq. (31), the following inequality 

can be obtain: 
 

  2
ˆ ˆ ˆ( ) ( ) ( , ) ( ) ( ) ( ) ( , ) .

( ( )
psd psd psdi i i i i i i

i

V t c t d t x t c t c t d t x
t




 
  −  − −   −
 −

 

(31) 

 

 Since from (32), an upper boundary can 

be found as follows: 
 

 

2

0.5

( )
ˆ( ) 2 ( ) ( , )

2

2
ˆ ( ) ( , )

( ( ) )

ˆ ( )

2

( ) ˆ ( )
( )

2 2

psd

psd

psd

i

i i i

i i

i

i

i i i
i

t
V t c t d t x

c t d t x
t

c t

t c t
Z ZV t





 



 −  −

 −  −
 −

 
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 (32) 

 

where: 
 

  2

2ˆ2 ( ) | ( , ) | min 1,
( | ( ) |)

i i psd

i

Z C t d x t
t




 

  
= −  

−    

(33) 

 

 Therefore, due to Eq. (33) and according 

to Lyapunov's stability theorem and lemma 2, 
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we can conclude that the proposed control 

system will be stable in a finite time. 

 

5. SIMULATION RESULTS  
 

To show the effectiveness of the proposed 

control design, the system is simulated in the 

MATLAB software and its performance is 

compared with conventional multivariate PI 

controllers and the Terminal sliding mode 

control (TSMC) presented in [28]. The 

suitable trajectory is 𝑦 = 𝑔(𝑥) = sin(0.5𝑥) + 

0.5𝑥 + 1 and the path’s image on the x-axis is 

𝑥(𝑡) = 𝑡. The model input for desirable linear 

and angular velocities are generated as 

illustrated in Fig. 3. The robot parameters are 

quantified as given in Fig. 1: 
 

𝑚 = 9𝑘𝑔, 𝑟 = 1𝑚, 𝐼 = 5𝑘𝑔/𝑚2 , 𝐿 = 2m 
 

 We consider the disturbance term as 

follows: 
 

1

1

sin( )

( , ) sin( )

sin( ) sin( )

x

d t x t

x t

 
 

=
 
 +   

(34) 

 

 
Fig. 4. Close-loop system responses. Up: along the x-axis, middle: along the y-axis, and down: head 

angle of the robot. 
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Table 1. Design parameters of PI, TSMC, and 

FO-NTSMC controllers. 

BFTSMC TSMC PI 

  0.9 1k
 

5 Y 1 Kp1 13.97 


 0.1 2k

 
2 1k

 
1.79 Kp2 14.01 

  0.1 1y
 

20 2k
 

2.63 KI1 0.45 

1a
 

2 2y
 

1 C1 0.5 KI2 0.43 

2a
 

1.8   C2 1   

 

 In the first scenario, robot simulation is 

carried out without considering frictionless 

and uncertainty for the determined path 

tracking. Also, it is assumed that the mobile 

robot starts with initial speeds of 𝑣(0) = 0 and 

𝜔(0) = 1 and the initial position of 𝑞 = [3,2,0] 

𝑇, while the desired path starts from the point 

𝑞𝑑 = [0,1,0.78] 𝑇. Design parameters of three 

PI, TSMC, and BFATSMC controllers are 

tabulated in Table 1. It should be noted that 

the objective criterion of the Integral Squared 

Error (ITS) has been optimized by a genetic 

algorithm (GA) to adjust the coefficients of 

these controllers. 

 Figs. 4 and 5 present responses of PI, 

TSMC, and BFATSMC controllers for WMR 

path tracking in the presence of a large error 

in the initial position and the absence of 

disturbance. The first and second images in 

Fig. 5 illustrate the robot’s behavior along the 

x- and y axes, and the third image describes 

the head angle behavior of the robot. It is 

clear that the WMR’s response caused by all 

mentioned controllers tracks the desired path 

after 10 seconds. 

 Fig. 5 depicts the behavior of angular and 

linear speed errors converging to zero. As one 

can observe, the response error caused by the 

proposed BFATSMC controller is faster than 

the PI and TSMC controllers in converging to 

zero and shows less overshoot. These results 

verify the suitable efficiency and high 

tracking performance of the suggested 

controller than PI and TSMC controllers. 

 Fig. 6 shows the control effort signal 

established by PI, TSMC, and BFATSMC 

controllers to track the reference input. The 

magnitude of the control effort signal of 

BFATSMC is greater than PI and TSMC 

controllers during the transient period. The 

reason is that the control rule related to this 

controller requires a huge control effort to 

ensure tracking of the desirable path. 

 To ensure that a system has suitable 

performance, the controller needs to be 

appropriately coordinated with the system. 

The controller design aims to tune its 

parameters in a way that the error caused by 

perturbation or changing the adjustment point 

disappears rapidly with the minimum 

variations. The speed of error elimination and 

ensuring the minimum overshoot is measured 

using a criterion function in terms of time and 

error. To this end, the Integral Squared Error 

(ITS) and the Integral of Time Multiply 

Squared Error (ITSE) functions are 

calculated for all three above-mentioned 

controllers, and the related results are listed 

in Table 2. 

 Table 2 clearly illustrates the BFATSMC 

controller performs the other PI and TSCMC 

controllers in tracking the desired path based 

on ISE and ITSE error criteria. Moreover, 

concerning the above evaluation criteria, it is 

observed that the overshoot in the transient 

response of the BFATSMC controller is 

smaller than that of PI and TSMC controllers. 

The oscillations of this controller are 

mitigated more rapidly and the path is tracked  
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Fig. 5. Up: Tracking error of linear forward velocity, down: tracking error of angular velocity. 

 

 
Fig, 6. Up: magnitude of the control signal 𝑢1; down: magnitude of the control signal 𝑢2. 
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Table 2. A comparison between the performance of PI, TSMC, and BFTSMC controllers based on 

error criterion functions. 

Angular velocity error Linear velocity error 
Control method 

ITSE ISE ITSE ISE 

717.843 1596.3 526.67 602.43 PI 

36.06 917.81 318.39 447.89 TSMC 

15.0848 789.96 30 303.62 FO-NTSMC 

 

without any steady error. In this scenario, 

limited uncertainty and an external 

disturbance are applied to the robot system to 

validate the robustness of the proposed 

controller. To this end, the mass and inertia 

of the robot have been changed by 10% with 

respect to their nominal values. Also, the 

friction force and the torque caused by 

friction set 𝑓 = 2𝑁 and 𝜏 𝑓 = 2𝑁. 𝑚, 

respectively. The desired path and initial 

conditions of the robot are similar to the 

previous scenario. Fig. 6 demonstrates the 

behavior of angular and linear velocity errors 

caused by the mentioned controllers in the 

presence of uncertainty and disturbance. 

These results verify that uncertainty has 

degraded the quality of the response of PI and 

TSMC controllers and led to increased 

tracking error. However, the proposed 

BFATSMC controller succeeds in dealing 

with the adverse effects of model uncertainty 

and disturbance and maintains its efficiency. 

Thus, it can be concluded that path tracking 

by the proposed controller is considerably 

robust to parameter uncertainties and external 

disturbances. 

 
Fig. 7. Up: linear velocity error and, down: angular velocity error. 



Signal Processing and Renewable Energy, March 2024                                                                                                  147 

 

6. CONCLUSION 
 

This paper presents a novel control design for 

a WMR, which includes nonlinear dynamic 

and kinematic models of the robot. 

Furthermore, in this approach, the path 

tracking problem was applied to a 

nonholonomic mobile robot. The nonlinear 

nonholonomic model of the robot is 

controlled by using the fractional-order 

nonsingular terminal sliding mode control to 

achieve the target position on the desired 

optimal path. A simple mathematical law was 

proposed to select the feedback gains of 

controller switching in different initial 

conditions. The robot successfully tracked 

the reference path using the proposed 

approach. Based on the obtained results, the 

suggested technique has been effective 

because the tracking error has converged to 

zero in a limited time. Additionally, this 

approach is compared with the sliding mode 

control approach presented in [28] and the 

typical multivariate PI control. The results 

show that the proposed control robot follows 

the desired path with very few steady-state 

errors in the presence of parametric 

uncertainty. Therefore, the proposed control 

is more accurate than the conventional 

sliding mode control and the multivariate PI 

control. Eventually, the results prove the 

efficiency, simplicity, and accuracy of the 

proposed control strategy. 
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