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Abstract 

This paper constructs a novel 4D system with nonlinear complex dynamic behaviors. By analyzing 

the hyperchaotic attractors, bifurcation diagram, equilibrium points, Poincare map, Kaplan–Yorke 

dimension, and Lyapunov exponent behaviors, we prove that the introduced system has complex 

and nonlinear behavior. Next, the work describes a finite-time terminal sliding mode controller 

scheme for the synchronization and stability of the novel hyperchaotic system. All the results 

obtained from the proposed control are verified using Lyapunov stability theory. For 

synchronization, both systems designed with different parameters and model uncertainties are 

disturbed. Both stages of the finite-time terminal sliding mode controller have been shown to have 

fast convergence properties. Simply put, it has been shown that the state paths of both master and 

slave systems can reach each other in a finite–time. The new controller feature is that the terminal 

sliding surface designed with a high–order power function of error and derivative of error, is stable 

in finite–time. At last, using the MATLAB simulation, the results are confirmed for the new 

hyperchaotic system. 

 

Keywords: Hyperchaotic System, Chaotic Analysis, Fast Synchronization, Finite-Time Terminal 

Sliding Mode Control. 

  

1. INTRODUCTION 
 

In the current digital age, we have witnessed 

an increasing trend towards secure 

communication links with the aim of trading  

 

 

 
transactions, online shopping, and banking. 

Certainly, these wide applications of secure 

communications will increase exponentially 

in the future. One of the challenges in this 

area is to keep information secure and 

increase the security of data transmission 

networks [1]. One of the areas in which 
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communication technologies are being 

developed today is the transfer of information 

to industrial applications, especially 

industrial automation [2-4]. Due to the 

importance of information in this area, the 

transfer of information in the usual networks 

will present risks such as easy access to 

information.  Therefore, one of the necessities 

of information transfer, especially Industrial  

information, is to increase the security of 

information transfer [5, 6]. One way to 

increase security in the transmission of 

industrial information is to encrypt 

information using chaotic functions [7]. 

Chaotic and hyperchaotic systems have a 

number of intrinsic properties including high 

oscillations as well as complex nonlinear 

dynamical equations [8, 9]. Two very 

important features of these systems are the 

uncertainties in the system parameters and 

the extreme sensitivity to very small changes 

in their initial conditions.  Chaos programs 

and methods of analysis were developed over 

time.  Given that chaotic systems are 

unpredictable, this very important feature can 

be used in many fields such as image 

encryption [10], robotic [11], biological 

networks [12], neuroscience [13], secure 

communication [14], and information 

processing [15]. The research on chaotic 

systems has achieved considerable progress. 

Many new 3D chaotic systems were 

accepted, in which the Chen [16], Lu [17] and 

Qi [18] systems are generic. These chaotic 

systems because they are simple in structure 

and have only one Lyapunov exponent, faults 

of feeble security allow them to be easily 

cracked. Hence, Rossler created the first 

hyperchaotic system and determined it as a 

system with two or more Lyapunov 

exponents [19]. An important difference 

between chaotic and hyperchaotic systems is 

that high–order hyperchaotic systems have 

more complex behavior and higher volatility 

[20, 21]. To create a hyperchaotic system, it 

is necessary to increase the system 

dimension, however, this may lead to 

instability. In a chaotic secure 

communication system, to ensure secure 

message transmission, similar systems must 

be used on both sides of the master and the 

slave. In order to have a complete and 

successful transmission, chaotic systems in 

the master–slave configuration must be 

synchronized. Dynamic synchronization of 

these systems is a very important 

phenomenon [22],  which has been displayed 

in many scientific structures [23]. 

Synchronization of chaotic systems is one of 

the main control approaches that has been 

considered for many years. For 

synchronization, an appropriate control 

technique is used to move the systems of the 

master to the slave. In recent years, many 

controllers have been used to synchronize 

hyperchaotic systems [24-28]. Since time 

plays a basic role in the transmission of 

industrial information, therefore, the 

transmission of information in the fastest 

time is crucial. Between the stated methods, 

sliding mode control (SMC) has some special 

specs such as parametric uncertainties, 

robustness versus, simply implement, 

suitable transient response, reduce the order 

of the system,  less sensitivity to bounded 

disturbance, and computational simplicity 

[29]. Over several years much research has 

been devoted to the development and 

application of SMC design [30-33]. 
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Although SMC is very popular and 

efficient, but this method has a big drawback 

called chattering. In practice, chattering is a 

very undesirable phenomenon because it can 

increase energy consumption, cause 

mechanical wear in systems and actuators 

and deteriorate controller performance. So, in 

designing the controller we will have two 

goals, eliminating the chattering 

phenomenon and controlling the function as 

quickly as possible. A lot of research has 

been done to solve these problems. The 

application of a new chattering–free sliding 

mode control technique with both–

differential and integral operators for 

synchronizing and controlling nonlinear 

disturbance systems with unknown 

parameters is stated in [34]. Utilization of a 

new PID sliding mode control to eliminate 

the effect of chattering phenomenon as well 

as to achieve optimal state–of–the–art in 

finite time and high accuracy and to use 

estimation theory to adjust the parameters 

with regard to consistent disturbances in the 

system is stated in [35]. 

Employing new powerful controllers for 

finite–time as well as eliminating deleterious 

effects on the system is studied in [36, 37]. 

The new controllers are developed for secure 

communication of two various chaotic 

systems with unknown parameters, external 

disturbances, and systemic uncertainty, by 

combining adaptive back–stepping in a 

finite–time terminal sliding mode control 

(FTSMC) studies. The FTSMC supplies 

faster convergence and more precise control 

than the conventional SMC. The FTSMC 

method accomplishes both robustness against 

uncertainties and external disturbances and 

guarantees system stability in a finite–time. 

However, some engineering problems are 

expected to reach synchronization within a 

finite–time. The fast synchronization has 

many advantages, such as optimality of 

convergence time, disturbance rejection 

properties and better robustness. 

Decoding an unauthorized receiver 

without knowing the initial conditions and 

dynamics of a hard–working system is 

difficult. One of the ways to increase security 

in chaotic communications is to use the high–

order dimensional dynamics, because high–

order dynamic regeneration and discovery of 

messages for unauthorized recipients using 

difficult timescale reduction methods are 

difficult. Other ways to increase security in 

chaotic secure communications can point out 

the complexity of the systems dynamics, 

because the more complex the structure of the 

system and its more parameters, the more 

difficult system decoding. The design of 

high–order chaotic and hyperchaotic systems 

as well as the analysis of their intrinsic 

properties and the stability analysis of these 

systems are some of the research that has 

been done in this field [38-40]. Asymptotic 

stability is a weaker concept than finite–time 

stability. In finite–time stability, system state 

variables converge to their equilibrium point 

more rapidly in a finite–time. The term 

“terminal” refers to the meaning of finite–

time stability. Depending on the structure of 

the systems, there are many applications that 

need to be stable in a finite–time.  The paper 

consists of the following main contributions: 

I. Design of an exponential 4D 

hyperchaotic system, analysis, and 

acquisition of its inherent 

properties. 
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II. The introduction of a new controller 

based on FTSMC for the fast 

synchronization of two different 

hyperchaotic systems. 

III. Eliminating the destructive 

chattering phenomenon by 

introducing a new sliding surface. 

The structure of the rest of this article is as 

follows:  Section 2 provides the dynamic 

model of the hyperchaotic system and its 

benefits and features. In the following, the 

fast synchronization problem of hyperchaotic 

systems in finite–time is formulated. Section 

3 is used to describe the structure of the 

FTSMC and analyze the stability and finite–

time convergence of the desired system.  In 

Section 4, numerical simulations are 

performed to prove the methods. Section 5 

contains some conclusions from the previous 

sections. 

 

2. PROBLEM DESCRIPTION AND 

PRELIMINARIES 

 

2.1. Model of Hyperchaotic System 
 

The dynamics of the new 4D system are 

described as: 

1 1 2 1 2 4

2

3 3 4 2 3

2

2 5 2 6 4 1 1

7 2 3 8 1 2 9 1 2 3

2

3 2 3 10 1 1 2 3

4 11 1 9 3 7 1 2 3

8 1 2 10 2 3 4 12 1 3 4

( ) ( )

( )

( )

( )

x a x x a x

a x a x x

x a x a x a x

a x x a x x a x x x

x a x a x x x x

x a x a x a x x x

a x x a x x x a x x x

= − −

− −

= + −

− − −

= − + +

= − + +

+ + +









 (1) 

 

where 
, ( 1,..., 4)ix i =

 and 
, ( 1,...,12)ia i =

 are 

the state variables and constant positive  

parameters of the system (1). With 

1 2 3 4 515,  =4, 15,  8.5,  0.12,a a a a a= = = =
 

6 7 8 9 1021.2,  11,  3.5,  8,  5,  a a a a a= = = = =  

11 1213,  20.1,a a= =   system  (1) exhibits 

complex hyperchaotic behavior. 

 

2.2. Basic Properties and Dynamic 

Behaviors of Hyperchaotic System 
 

This section gives the natural properties of 

the new hyperchaotic system such as chaotic 

attractors, equilibrium points, Kaplan–Yorke 

dimension, eigenvalues, Lyapunov 

exponents, Poincare map, and bifurcation 

diagram. 

 

2.2.1. Equilibrium Points and Eigenvalues 

Analysis 
 

By setting the differential equations in (1) to 

zero, one of the equilibrium points is the 

origin. When the parameter values are 

considered as in (1), the system linearization 

matrix [41] at the zero equilibrium point is 

given by 
 

*

1 1 2

5 9 6

1 1 2 1

11 12 12 9 12 12

( )

                         0       

 0                                   

                        

                

i

j Q

F
J x

x

a a a

a a a

a a a a

a a a a a a


=


− − 
 

−
 =
 − − − −
 
− + + 

 (2) 

 

According to  (2),  the system eigenvalues 

are found as follows: 

( ) 0dp s sI J= − =  with, dI was an 4 4  

identity matrix. That is, 
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Fig. 1. x y− plan of the system (1) . 

 

 
Fig. 2. x y z− − plan of the system (1) . 

 
4 3 2

1 2 3 4

1 1 2 5 12

2 6 12 1 5 1 2 2 5 1 12 5 12 2 12 2 5 12

3 1 6 12 2 6 12 1 2 5 1 5 12 1 2 12

2 2

4 1 2 6 12 1 2 5 12 1 2 9 11 1 2 9 12 1 9 11 1 9 12

[ ( ) ]

( )

( )

( )

(

s s A s A s A s A

A a a a a

A a a a a a a a a a a a a a a a a a

A a a a a a a a a a a a a a a a

A a a a a a a a a a a a a a a a a a a a a a a

 = + + + +

= + − −

= − − + − − + − +

= − − − + −

= + − + − + )
 

(3) 

 

Using parameter values in (1), the 

eigenvalues are 1,2 19.5624 13.3435 ,s j= − 
3,4s 19.7649 12.1173 j=  . Thus, the origin is 

an unstable saddle. 
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Fig. 3. LEs of the system (1) in (a) LE1, LE2 and (b) LE3, LE4. 

 

2.2.2. Chaotic Attractors Analysis 
 

The system (1) divergence is as follows: 
 

4

1

1 5 9 2 12

15 0.12 8 4 19.75

20.1 0

i

i i

x
V

x

a a a a a

=


 =



= − + − − +

= + − − +

= 



 (4) 

 

The  convergence speed of the system (1) 

to its attractor is 
1 5 9 2 12( )a a a a a

e
− − + − − +

. So, as time 

goes on to the infinite, system (1) is 

constrained and settles on an attractor [42]. 

the phase portrait diagrams of the system (1) 

are shown in Fig. 1 and Fig. 2. 

 

2.2.3. Lyapunov Exponents and Kaplan-

York Dimension 
 

Divergence and convergence of states of a 

nonlinear system are determined by its 

Lyapunov exponents (LEs) representation. If 

Lyapunov exponents are positive, it indicates 

the chaotic behavior of the system [43, 44]. A 

system is hyperchaotic if there are two or 

more than two positive LEs. The LEs of the 

exponential hyperchaotic system (1) with 

different initial conditions 1 0( ( ) 2),x =  

2 0( ( ) 7),x =  3 0( ( ) 7.2)x =  4 0, ( ( ) 1.1),x = −  

are numerically found as 1 0.132,LE =  

2 0.035,  LE =  3 0,  LE =  4 1.250,LE = −  

shown in Fig. 3. For these values of 

Lyapunov exponents, the Kaplan–Yorke 

dimension [45] of the 4D hyperchaotic 

designed system, is defined as: 

1

1

1 2 4

3

| |

3 3.13
| |

KY

LE

D
LE

LE LE LE

LE

=

+

= +

+ +
= + =










 (5) 

which is fractional. 



Signal Processing and Renewable Energy, September 2022                                                                                                  61 

 

 

Fig. 4. Bifurcation diagrams of the system (1) in: (a) 2 1 2( , ),  ( 20,10)a x a  −   

and (b) 
5 1 5( , ),  (12,20)a x a  . 

 

 

Fig. 5. Bifurcation diagrams of the system (1) in: (e) 7 1 7( , ),  (4,13)a x a   and  

(f) 9 1 9( , ),  (8,18)a x a  . 
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Fig. 6. Poincare map of the system (1) in 1 2x x−  plan. 

 

2.2.4. Bifurcation Diagram Analysis 
 

To investigate the dependence of the 

parameters of the new exponential hyper–

chaotic system (1), we need to draw and 

analyze the bifurcation diagram. In Fig. 4 and 

Fig. 5 bifurcation diagrams of the system (1) 

are plotted. The system enters into chaotic 

oscillations with routine period doubling. 

Bifurcation diagrams show the behavior of a 

system with respect to changes in the system 

parameter and provide an explanation of the 

system’s absorbent behavior [46, 47]. 

 

2.2.5. Poincare Map Analysis 
 

As an interesting method, we use the 

Poincare map to describe the folding 

attributes of the chaotic system. To study the 

performance and behavior of continuous 

dynamical systems, similar the proposed 

system (1), we can use the Poincare map, one 

of the most popular topics in nonlinear 

dynamic analysis. Fig. 6 shows the Poincare 

maps of system (1). According to Fig. 6, the 

regular set of points shown in the Poincare 

maps is an indication of system chaotic 

behavior. 

 

2.3. Problem Formulation of Finite–Time 

Fast Synchronization 
 

In this section, fast synchronization and its 

theorems are presented between two new and 

overly hyperchaotic systems with indefinite 

parameters and uncertain disturbances.  At 

this point, we use the system of Equation (1) 

by modifying the initial conditions and its 

parameters, both master and slave systems 

for fast synchronization. Consider the 

hyperchaotic system which refers to the 

master system. 

1 1 4 3 3 3 2

1 1 8 2 1 3 5 7 6

1 1 1 3

                           x           x            

x x       x x                          
( )

x                              x x               

m m m m m m m

m m m m m m m m m

im

m m m m

a a a a a

a a a a a
x

a


− − − −

− − − + − −
=

2

11 8 2 10 3 4 9 7 1 2 12 1 3

                    0

x               x x         + x x   x x

im

m

m m m m m m m m m m m m m

x
a

a a a a a a

 
 
 
 −
 
− +   

(6) 
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The basic parameters and initial conditions of 

the master system (6) are defined as 

follows: 

 

1 2 3 4 5 6

7 8 9 10 11 12

1 2 3 4

15,  4,  16,  8,  0.25,  23,

10,  3,  8.12,  5,  13,  20

(0) 2.2,   (0) 0.4,   (0) 10,   (0) 1.1

m m m m m m

m m m m m m

m m m m

a a a a a a

a a a a a a

x x x x

= = = = = =

= = = = = =

= = − = − =

 (7) 

 

where 1 4,...,m m mX x x=
, 1 4(0),..., (0)m mx x

 

and 1 12 ,..., m ma a
 are the states, initial 

conditions and parameters of the system  (6), 

respectively. Similarly, for the slave 

hyperchaotic system, we will have: 
  

1 1 4 3 3 3 2

1 1 8 2 1 3 5 7 6

1 1 1 3

                           x           x            

x x       x x                          
( )

x                              x x               

s s s s s s s

s s s s s s s s s

is

s s s s

a a a a a

a a a a a
x

a


− − − −

− − − + − −
=

2

11 8 2 10 3 4 9 7 1 2 12 1 3

                    0

x               x x         + x x   x x

( ) ( )   (for i=1,...,4)

is

s

s s s s s s s s s s s s s

x
a

a a a a a a

u d 

 
 
 
 −
 
− + 

+ +  

(8) 

 

where 1 4,...,s s sX x x=
 are the state variables 

of the system (8) and 1 4( ) ,...,u u u =
 are 

nonlinear command signals which are used to 

synchronize two systems in equation (6) and 

equation (8) respectively. The basic 

parameters and initial conditions of the 

master system (8) are defined as follows: 

 

1 2 3

4 5 6

7 8 9

10 11 12

1 2

3 4

14.9,  3.85,  16.19,  

8.2,  0.253,  22.89,

9.962,  3.21,  7.799,

 5.05,  12.92,  19.75

(0) 2.2,   (0) 0.5,   

(0) 9,   (0) 1

s s s

s s s

s s s

s s s

s s

s s

a a a

a a a

a a a

a a a

x x

x x

= = =

= = =

= = =

= = =

= =

= − =

 (9) 

where 1 4(0),..., (0)s sx x
 and 1 12 ,..., s sa a

 are 

the initial conditions and parameters of the 

slave system (6), respectively. 

Assumption 1: Let dene the 

synchronization and fast synchronization 

errors of the system (6) and system (8) as:  

 (i=1,...,4)i is ime x x= −
. 

Assumption 2: In general, consider the 

constraints on the disturbance and 

uncertainty as: 

1 2( ( ))  , ( )f x d    
 

(10) 

where 1  and 2  are positive unknown 

constants.  

Assumption 3: Suppose 
( ) ( )i iy x =

 

implies that 
lim ( ) 0ie



→

=
. 

Definition 1 [48]: The systems (6) and 

(8) can be synchronized in a finite–time if 

lim || ( ) || 0error



→

=
 and || ( ) || 0error  =  if 

T  , where ( (0)) 0 ,T = T error    

( ) [ ] , ( 1,..., 4)ierror error i = =
. 

Definition 2 [49]: Master and slave 

systems (6) and (8) are finite–time 

synchronized, if there is a controller 
( )p 

 

and a constant 0   such that 
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lim  [ ( ) ( )] 0p p


 • ••

→
 −  =

, where 

( ) ( )
p p • •• −

 for ,  ( ) •    and ( )••  

are the solutions of master–slave systems (6) 

and (8). 

Lemma 1 [50]: If ( )   is a definite and 

positive performance such that: 

0 0( ) ( ),   ,   ( ) 0t        −   
 (6) 

where 0,  0< <1   are known and 

constants, for any initial time 0 . Then 

function ( )t  satisfies 
1 1

0 0

0 1

( ) ( ) (1 )( ),

 

− − − − −

 

        

  
 (7) 

And 
 

1( ) 0,       
 

(8) 

 

with the settling time 1  satisfying 
 

1

0
1 0

( )

(1 )

 
 

 

−

 +
−  

(9) 

 

Lemma 2: Suppose that the ( )   

function, which is positive–definite and 

continuous, satisfies the differential 

inequality of [51]: 
 

0 0

( ) ( ) ( )

, ( ) 0

 − −

  

     

   
 (10) 

 

for all times 0 , the function ( )   in the 

finite time s  , will converge to zero. Thus: 
 

1

0
0

( )1
ln

(1 )
s

  
 

  

− +
= +

−  

(11) 

 

3. FTSM CONTROLLER 

To obtain the finite time tracking approach, 

the FTSMC surface is 
 

/

0

( ) ( ) ( ) ( )q p

p i ds t k e k e t dt k e



 = + +
 

(12) 

 

where 
, ,p i dk k k

 indicate the positive 

coefficients, q  and p denote the odd positive 

integer values which q p . Once tracking 

error ( )e   reaches the finite-time terminal 

sliding mode surface ( ) 0s  = , we have: 
 

/

0

( ) ( ) ( ) 0q p

p i dk e k e t dt k e



 + + =
  

(13) 

 

And also ( ) 0s  =  is produced, which 

gives 
 

/( ) ( ) ( )
p q pi

d d

k k
e e e

k k
  = − −

 
(14) 

 

Construct the Lyapunov function by 
 

0

/

( ) 0.5 ( ) ( )

( ) ( )
( )

T

T q piP

d

V t e t e t

k
e t e t

k q p

=

+
+

 (15) 

 

Taking time-derivative of 
0V  and using 

(14), one finds 
 

0

/

/

/

( ) ( ) ( )

( 1) ( ) ( )
( )

( ) ( ( ) ( ) )

( ) ( )

( ) ( ) 0

p

d

T

q T q piP

p

d

kT q piP

k

d

T q pi

d

p T

d

V t e e

k
e e

k q p

k
e e e

k

k
e e

k

k
e e

k

=

+ +
+

= − −

+

= − 

 

 

  

 

 

 

(16) 
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It means that once the error reaches the 

finite-time terminal sliding surface (12), the 

error trajectories converge to the origin 

asymptotically. In fact, the error trajectories 

are uniformly bounded. Since the Lyapunov 

functional is positive definite and its 

derivative (16) is negative semi-definite, it is 

resulted in that 
0lim ( ) ( )V V




→
= 

 exists for 

0 ( )V + 
. Based on the boundedness of 

error states, the term 0 ( )V 
 is a uniformly 

continuous term. Hence, via Barbalat’s 

lemma, one has 
lim ( ) 0e



→

=
. From (12), the 

condition 
lim ( ) 0e



→

=
obtained. Totally, the 

error trajectories asymptotically converge to 

the origin. 
 

Theorem 1: Consider the nonlinear 

system as 
 

( ) ( , ) ( , ) ( ) ( )x a x b x u d    = + +  (17) 
 

The finite-time terminal sliding surface 

(12) is considered. Using the terminal sliding 

mode tracker as 
 

( )

/1

1

2

( ) ( , ) ( )

( ( , )) ( ( , ) ( ))

( , ( , )) ( )

sgn( ( )) ( ) sgn( )

( ) sgn( )

d

q p

ik

p d d

p d

u b x k e

k a x k a x x

k b x k b x u

s s s

s s

= − +

+ + −

+ +

+ +

+


  

  

  

   

 

 
 

(18) 

 

where 1( )T Tb b bb+ −=  and 

( ) ( )p dk d k d   +
, then, the designed 

sliding surface is obliged to converge to the 

equilibrium in finite-time.  
 

Proof: Using (17) in time-derivative of 

the sliding surface (12). One has 

(

)

/

/

( ) ( ) ( ) ( )

( ( , ) ( , ) ( )

( ) ( )) ( )

( , ) ( , ) ( )

( , ) ( ) ( ) ( )

q p

p i d

p

q p

d i

d

d

s k e k e k e

k a x b x u

d x k e

k a x b x u

b x u d x

= + +

= +

+ − +

+ +

+ + −

   

  

  

  

   

  

(19) 

 

The Lyapunov function is considered as 
 

1

1
( ) ( ) ( )

2

TV s s  =
 

(20) 

 

 taking time derivative (20) of and by using 

(19), one attains 
 



( )



/

1( ) ( ) ( )

( ( , ) ( ))

( ( , ) ( ))

( , ) ( , ) ( )

( ) ( )

( , ) ( )

T q p

i

p

d d

p d

p d

d

V s k e

k a x xd

k a x x

k b x k b x u

k d k d

k b x u

=

+ −

+ −

+ +

+ +

+

  

 

 

  

 

 

 
 

(21) 

 

Now, substituting (18) into (21), one 

achieves 
 





( )

1

1

2

2 1

1 2

2 1

1 2

( ) ( ) ( ) ( )

sgn( ( )) ( ) sgn( )

( ) sgn( )

( ) ( ) ( )

( ) ( )

( ) ( ) 0

T

p d

p d

V s k d k d

s s s

s s

k d k d s

s s

s s

+

+

= +

− −

−

 + −

− −

 − 







   

   

 

   

   

   

 
 

(22) 

 

Since
2

( ) ( ) ( )Ts s s=   , then one can 

obtain from (20) that 0.5

1( ) 2 ( )s V=  . 

Hence, from (22) we have: 
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Fig. 7. Block diagram of hyperchaotic communication scheme. 

 
1 1

2 2

1 1 1 2 1( ) 2 ( ) 2 ( )V V V
 

    
+ +

 − −
 

(23) 

 

Since the Lyapunov function time-

derivative is negative definite, then, the 

Lyapunov function (20) gradually decreases 

and sliding surface ( )s   is convergent to zero 

in finite-time. 

 

4. HYPERCHAOTIC SYNCHRONIZA-

TION 
 

In this section, we perform the finite-time 

synchronization between two 4D 

hyperchaotic systems with unknown 

disturbances and parametric uncertainty in 

the system. Here, we used both system (6) 

and system (8) for the synchronization. It is 

worth noting that although systems (6) and 

(8) are the same, for their simulation during 

synchronization, we consider unequal  

parameters and different initial conditions. 

Chaotic communication systems have 

two hyperchaotic systems, the master and 

slave hyperchaotic systems, and both of them 

must be synchronized for chaotic 

communication. In the chaotic 

communication method, the information 

signal is added to the chaotic signal at the 

master. In the slave, the signal received from 

the public channel is removed from the 

chaotic signal that is generated by the slave 

chaotic system. The synchronization error 

between the state variable of the master and 

slave chaotic systems is applied to the FTSM 

controller to produce the control signal. The 

block diagram of the proposed scheme is 

shown in Fig. 7. 

Based on Assumption 1, to study chaos 

synchronization, the error according to 

systems (6) and (8), can be designed as 

follows: 

1 1 1 2 2 4 11

4
5 2 6 4 22

1 3 2 3 3

4 11 1 9 3 4

( )

        ( )
 = + B( ) ( ) + ( )

           ( )

    ( )

i i i

i

a e a e a e fe

a e a e fe
e y x u D

e a e f

e a e a e f




  





=

− + − +  
  

+ +
  = − 
   − +
  

− + +   



 

(24) 
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Fig. 8. Synchronization between two states ,   , 4.im isx x for i = 1,...  

 

 
Fig. 9. The errors of synchronization without the controller. 

where 
 

2 2
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(25) 
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Fig. 10. The errors of synchronization with the controller. 

 

 

System (24) in the matrix is formed as: 
 

( )
( ) ( ( ))

( ) ( ) ( )

i
i

de
e f e

d

B u D

=  +

+ +


 



  

 (26) 

 

The control law (18) with 

600, 300, 0.5,p i dk k k= = =   1 2 25,= = 

10,= , 5, 3p q= =  0.4=  is designed so 

that the finite-time synchronization of 

unknown hyperchaotic systems is performed. 

Fig. 8 shows the complete hyperchaotic 

synchronization of the system (6) and (8). 

According to the equation (18) in the initial 

conditions, the errors of synchronization 

without the controller are shown in Fig. 9. 

When the controller is activated, the errors of 

synchronization are as in Fig. 10. According 

to the simulation results, it is easy to see that 

the master and slave systems are 

synchronized in finite–time. 

 

5. CONCLUSIONS 
 

In this paper, a novel 4D hyperchaotic system 

is reported. The dynamic behavior of the 

proposed system was analyzed using phase 

portraits, Lyapunov exponent, Poincare map, 

Kaplan–Yorke dimension, and bifurcation 

diagram. The new hyperchaotic system has 

extremely complicated dynamics and 

structure. Next, one terminal sliding mode 

controller has been designed for stabilizing 

the new hyperchaotic system with 

uncertainty and unknown disturbances. The 

results obtained from FTSMC were verified 

using Lyapunov stability theory. A new 

controller is designed for finite-time 

synchronization between two identical 

proposed hyperchaotic systems in the 

presence of unequal parameters, different 

initial conditions and matched disturbances 

are considered for transferring industrial 

automation information. The new controller 

feature is that the sliding surface designed 
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with high–order power function of error and 

derivative of error was new and stable. The 

new terminal sliding surface can supply a 

particular convergence characteristic. 

Finally, the numerical simulations show the 

viability of the designed methods. The 

simulations show that the analytical  results 

and computational are similar. 
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