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Abstract 

In this research, a miniaturized narrow-band bandpass filter is presented. The design procedure has 

been started using a coupled structure and the final circuit has been bent to reduce the circuit size. The 

operational frequency is located at 3.6 GHz with an acceptable sharpness in the transition bands. In 

the passband, both the insertion and return loss are 0.6 and 27 dB, respectively.  The obtained fractional 

bandwidth of the filter is about 2%, which is highly appropriate for a special-purpose narrow-band 

BPF. The presented BPF has been fabricated on an RT/Dourid5880 substrate. The obtained results of 

the fabricated circuit are consistent with the simulation one. 
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1. INTRODUCTION 
 

The invention and development of new 

applications in wireless are the results of 

advances in telecommunications technology 

along with governmental regulations and 

market needs.  These new applications  

 

 

 
provide definite features in 

telecommunications services, which propose 

three substantial items to customers. 

Coverage is the first one, which means that a 

minimum signal level should support each 

customer; the second one is capacity, which 

means that the customer can upload and 

download data by having enough data rate, 
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and finally, ensure the quality of data transfer 

from the sender to the recipient, which is 

called a service quality. 

Undoubtedly, WiMAX (Worldwide 

Interoperability Microwave Access) can be 

considered an appropriate solution to many 

problems in wireless networks. We need a 

completely new receiver and a transmitter for 

the realization of such a system as WiMAX. 

The design of bandpass filters (BPFs) 

with compact size is essential for filtering 

applications in modern electronics and 

communication systems. A bandpass filter 

can select signals within a specified 

bandwidth at a certain center frequency and 

reject signals at different frequencies, 

especially in frequency regions which can 

interfere with information. There are many 

types of microwave BPFs such as narrow-

band, wide-band, dual-band, forth-band, etc 

[1-27]. 

Narrow-band bandpass filters are more 

important in WLAN and WiMAX than the 

other. They are used in communication and 

microwave systems. In mobile 

communication systems, the compactness of 

the devices has been greatly important. 

Various techniques have been proposed for 

this purpose, such as microstrip ground 

structure (DMS) [1, 2], step impedance 

resonators (SIRs) [3], defected ground 

structures (DGS) [4, 6], photonic bandgap 

(PBG) structure [7], and cascaded resonators 

[8, 9]. One of the usual techniques is 

implementing microstrip filters with 

cascaded low-high impedance elements or an 

open stub [10, 11]. 

Using coupled lines and two short-

circuited stubs, a BPF was reported in [12]; it 

suffers from large size and narrow stopband. 

The investigated BPF in [13], were fabricated 

with an inductive-coupled stepped-

impedance quarter-wavelength resonator. 

The filter has good characteristics like high 

return loss in the passband. Nonetheless, it 

has a narrow stopband. In [14], a wide 

stopband hairpin BPF was designed for 

millimeter-wave applications. This topology 

suffers from bad characteristics in the 

passband. Also, complex topology and 

enormous size are undesirable characteristics 

of this circuit. A narrow-band bandpass filter 

was reported in [15] with complex topology 

and incompetent stopband region. The 

compact dual-mode BPFs were studied in 

[16-18]. They suffer from significant 

fluctuations in the passband, large circuit 

size, and narrow stopband. These works 

include a miniaturized narrow-band passband 

filter with a central frequency of 3.6 GHz and 

an appropriate group delay in the passband. 

The 3.6 GHz frequency is located in the 

WiMax frequency range and is a common 

telecommunication protocol. Also, it can be 

used to keep the second and third harmonics 

in different GSM applications. 

 

2. DESIGN PROCESS 
 

The proposed BPF is designed in 4 steps: the 

gapped resonator, coupled resonator, bent 

coupled- resonator, and final BPF design. 

The proposed gapped resonator is illustrated 

in Fig.1. 

The gapped resonator is made of a weakly 

coupled structure, which can produce a pole 

in its frequency response. This pole can be 

improved and used to produce a narrow 

passband. LC equivalent circuit of this 

resonator is shown in Fig.2.  
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Fig.1. Microstrip layout and simulated S-parameters of the gapped resonator. 

 

 
Fig. 2. LC equivalent circuit of the gapped resonator. 

 

Considering the proposed LC model, the 

ABCD matrix for the gapped resonator can 

be obtained from: 
 

[
A B
C D

] = [
1 L1S
0 1

] × [
1 0

C1S 1
] × [

1 L2S
0 1

] ×

[
1 0

C2S +
1

L3S+
1

C3S

1] × [
1

1

CgS

0 1
] × [

1 L1S
0 1

] ×

[
1 0

C1S 1
] × [

1 L2S
0 1

] × [
1 0

C2S +
1

L3S+
1

C3S

1]  

 (1) 
 

For simplifying Eq. 1, two auxiliary 

parameters of P and the matrix of M are 

defined below: 
 

P=C2S +
1

L3S+
1

C3S

                (2) 

 

M=[
Q R
W 1

] = [
1 L1S
0 1

] × [
1 0

C1S 1
] ×

[
1 L2S
0 1

] × [
1 0

C2S +
1

L3S+
1

C3S

1] =

[
Q (L1S + L2S)

C1S + P 1
]             (3) 

 

where 𝑄 = 1 + C1S(L1S + L2S) + P(L1S +

L2S). 

So, Eq. 1 can be simplified as follows: 
 

[
A B
C D

] = M × [
1

1

CgS

0 1
] × M    (4) 

 

By applying Eq. (3) to Eq. (4), the 

following one is obtained.  
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[
A B
C D

] =

[
Q2 + RW

1

CgS
(Q2 + RW) + R(Q + 1)

W(Q + 1)
W

CgS
(Q + 1) + WR + 1

]   (5) 

 

Obviously, the gapped resonator has a 

symmetric topology. So, the resonator should 

have a reciprocal response. Therefore, the 

ABCD matrix determinant should be equal to 

the unit: 
 

Δ [
A B
C D

] = (Q2 + RW) × (
W

CgS
(Q + 1) +

WR + 1) − (W(Q + 1)) × (
1

CgS
(Q2 + RW) +

R(Q + 1)) = 1                 (6) 

 

As indicated in Fig. 2, the LC values are 

extracted using Eq. (6). The relationship 

between dimensions of line and the 

equivalent L and C are formalized in [28]. In 

the next step, as shown in Fig.3, the proposed 

resonator has been coupled with a stub, and 

then, it has been bent. 

As illustrated in Fig. 4, the coupled stub 

added a zero to the frequency response at 

frequency 11GHz. 

Not only is there no significant difference 

between the S-parameters of the coupled 

resonator and the bent coupled one, but also 

good miniaturization has accrued in the bent 

structure. The corresponding dimensions are 

indicated in Fig. 3, and the widths of the bent 

lines are 0.2 mm. Finally, the proposed BPF 

has been designed by adding a meandered T-

shaped resonator to the bent coupled-

resonator as in Fig. 5. 

 

 

 
Fig. 3. Coupled and the bent coupled-resonator. 
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Fig. 4. S-parameters of the Coupled and the bent coupled-resonator. 

 

 
Fig. 5. The structure of the proposed BPF. 

 

As depicted in Figs. 6 and 7, it can be 

adjusted to a very applicative and standard 

frequency of 3.6 GHz using a tuning 

procedure. 

The magnitude of the S12-parameter of 

the BPF as a function of n is illustrated in Fig. 

6. Considerably, the passband is dependent 

on this parameter and can be adjusted by 

tuning this gap distance. Besides, the 

magnitude of the S12-parameter is illustrated 

in Fig. 7 for the suggested BPF as a function 

of K. As regarded, the passband is also 

dependent on this parameter and can be 

adjusted by tuning this high-impedance line. 
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Fig. 6. The magnitude of the S12-parameter as a function of n. 

 

 
Fig. 7. The magnitude of the S12-parameter as a function of K. 

 

3. RESULTS AND DISCUSSION 
 

As shown in Fig. 8, the designed filter has 

been fabricated on an RT/Duroid 5880 

substrate with a relative dielectric constant εr 

= 2.2, thickness h = 20 mil, and loss tangent 

0.0009. 

The measurement response and 

simulation of this filter are compared in Fig. 

9, which displays the measured results have 

suitable matching with the simulation results. 

 

 

Fig. 8. Fabricated filter. 
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Fig. 9. Comparison of measured results with simulated results. 

 

 
Fig. 10. The group delay of the designed bandpass filter. 

 

The filter has sharp transition bands. The 

first transition band is 100MHz and the 

second transition band is 270 MHz (from -3 

to -20 dB). The measured bandwidth is too 

narrow (from 3.58 to 3.62 GHz). The 

measured insertion loss is 0.6 dB at 3.6 GHz 

and the return loss is 27 dB. The fractional 

bandwidth of the proposed filter is about 2%.  

Concluded from the simulation results, the 

upper stopband region has been extended to 

19.1 GHz with respect to the rejection level 

of -20 dB. Also, the size of the filter is only 

11.9 mm × 8.2 mm equal to 0.19λg×0.13λg. 

Having a flat group delay in the passband is 

one of the suitable parameters of a filter [5]. 

The group delay can be obtained using the 

equation given below: 
 

Group delay (s) =  −
dφ

dω
                       (7) 

 

where ω is the angular frequency in radians 

per unit time, equal to 2πf, f is the frequency 

in Hertz, and φ is an overall phase shift in 
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radians. The obtained measured S-parameters 

from the network analyzer contain both the 

magnitude and phase of the S-parameters. 

Fig. 10 has been sketched by extracting the 

phase of the measured S21 parameter and 

using Equation (7) in Matlab software. The 

utmost measured variation group delay is just 

0.6 ns in the passband area.  

The comparison between the proposed 

BPF and some related studies is listed in 

Table 1. 

As indicated in Table 1, the proposed 

study demonstrates the least Insertion loss. It 

is essential to acknowledge the inherent 

trade-offs in configuring filter parameters. 

Consequently, the proposed BPF not only 

exhibits a narrow-band bandwidth but also 

showcases favorable characteristics like good 

return and insertion losses. Moreover, 

observation reveals that the suggested filter 

stands out as one of the most compact among 

the references cited. 

 

Table 1. A comparison with some published BPF. 

ref F(GHz) Return loss Insertion loss (dB) NCS FBW 

[13] 2.35 27.7 1.4 0.2 λg×0.16 λg 16% 

[14] 34 12 3.5 0.47 λg×0.28 λg 5% 

[15] 2.45 22.7 0.8 0.92 λg×0.345 λg 10% 

[18] 2.45 15 0.8 0.92 λg×00.34 λg 10% 

[20] 2.6 14 5.8 0.3 λg×0.55 λg 31% 

[21] 0.9 15 3 0.28 λg×0.13 λg 20% 

[22] 1 14 5.8 0.589 λg×0.317 λg 30% 

[23] 2 25 1.7 0.49 λg×0.34 λg 11% 

[24] 2.5 19 0.8 0.35 λg×0.35 λg 54% 

[25] 3.03 15 0.9 0.77 λg×0.39 λg 105% 

[26] 91.5 10 4 - 5% 

[27] 16.21 22.5 2.42 0.725 λg×0.598 λg 1.2% 

[29]  1.25 24.34 1 0.34λg×0.34λg 22.9% 

[30] 30 20 1.5 0.70 λg ×0.38 λg 3% 

[31] 0.37-0.8 35 3.4 0.05 λg ×0.06 λg 6% 

[32] 3.1 10 1 - 111% 

[33] 3.1 13.3 2.9 0.15 λg ×0.12 λg 5% 

This 

work 
3.6 27 0.6 0.19λg×0.13λg 2% 
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4. CONCLUSIONS 
 

In this paper, a single-frequency bandpass 

filter using a modified coupled structure has 

been designed. The operational frequency 

has been adjusted to 3.6 GHz, which is 

applicable in WiMAX systems. The measure 

data validated the design results. The 

proposed BPF has very appropriate passband 

characteristics with a wide stopband region 

and too small fabricated circuit size. The 

insertion and return losses are 0.6 and 27 dB, 

respectively. To reduce the size, the structure 

has been bent. The overall size of the 

designed circuit is just 0.19λg×0.13λg. Due to 

these excellent features, this filter is suitable 

for WiMAX applications.   
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