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Abstract 

Human brain cells are active even during sleep and communicate through electrical impulses. 

Electroencephalogram (EEG) signals can be used to extract the correct information from the hu-

man brain and classify it with different mental functions. Non-inventiveness, high temporal reso-

lution, and relatively low financial cost are the reasons for the use of EEG widely in medical en -

gineering research. Extraction of a feature is very important and fundamental for EEG signal 

classification. In this paper, some of the methods used to extract the features from EEG signals 

are reviewed. In biomedical research, the classification of EEG signals plays an important role. 

According to the principles of pattern recognition, the classification process has two stages: fea -

ture extraction and classification. This study explains the EEG signal classification. Features are 

extracted for different bands. 
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1. INTRODUCTION 
 

Medical engineering is the application of 

engineering sciences in the field of medicine 

to diagnose and treat diseases. In this area, the  
 goal is to meet the medical needs in the field 

of design, construction and maintenance of 

medical equipment and tools for the 

prevention, diagnosis and treatment of 

diseases with the help of engineering  

 

 
sciences [1,2]. 

 So far, various studies have been 

conducted on the application of engineering 

sciences in medical engineering [3,4]. 

 The brain is a very complex part of the 

human body [5,6,7]. So far, various brain 

signals that are easily visible and controllable 

have been suggested for brain computer 

interface (BCI) [8,9,10]. General architecture 

of an online brain-computer interface is 

shown in Fig. 1 [11,12]. 
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Fig. 1. Basic BCI system. 

 

 
Fig. 2. Signal acquisition techniques for brain computer interface. 
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Table 1. A review run on studies on different aspects of EEG. 

Subject References Specifications (Summary of the review study) 

Artifacts 

removal 

[13] 

Removal of artifacts from various sources is necessary for the pre-

processing stage before analyzing the EEG data. An overview of existing 

methods for identifying and removing artifacts with their comparative 

advantages and limitations is provided. 

[14] 

Artifacts are unwanted interference in the EEG signal that is caused by 

factors such as muscle activity, power line noise, and so on. Various 

techniques for receiving free EEG signals from artifacts to improve accuracy 

when extracting features and classifying data are proposed, and conventional 

methods for noise cancellation are reviewed. 

Feature 

extraction 

[15] 

The physiological significance of EEG maturation characteristics and their 

relationship to neural growth in specific locations are shown in this paper. 

Intermittent multi-channel EEG monitoring is important for preterm infants 

because many of the features described are unclear when limited channel 

EEG monitors are used. 

[16] 

Increasing the size of data challenges many methods of selecting specific 

features and extracting features. A number of widely used feature selection 

and feature extraction methods are analyzed. The purpose of this analysis is 

to show how to use these techniques to achieve high performance of 

learning algorithms to improve the accuracy of classification prediction. 

[17] 

Feature selection involves a combination of searching and estimating the 

usefulness of features along with evaluating them according to specific 

learning plans. Genetic algorithm is one of the most widely used methods in 

selecting features in grouped systems. Investigation of the proposed feature 

selection algorithm uses the idea of evolutionary calculations of feature 

space to find the optimal feature subset. 

Classification 

[18] 

EEG is a suitable signal for biometric authentication. Advanced methods in 

EEG-based authentication are reviewed in this paper, which includes various 

aspects such as different user tasks in EEG biometric authentication. 

[19] 

Current functions and performance results of using deep learning for EEG 

classification are summarized. Tasks that used in-depth learning were 

divided into five general groups: mental workload, motion images, seizure 

detection, potential event detection, emotion recognition, and sleep scoring. 

 
 

 Fig. 2 shows the different methods for 

measuring brain activity signals in BCI. 

These techniques are divided into two 

groups: invasive such as ECoG [20,21] and 

non-invasive such as MEG [22,23], NIRS 

[24,25], fMRI [26,27], and EEG [28,29,30]. 

The electrical activity of the human brain can 

be detected using an electrode attached to the 

scalp in an EEG test [31,32]. 

 Changes in brain activity are shown by 

EEG results that can help diagnose brain 

conditions. EEG activity is quite small, 

measured in microvolts. In general, these 

signals are time-varying in nature and are 

unstable. It is a non-invasive imaging 

technique of the brain [33,34]. 

 Abnormal electrical discharge by the 

EEG is possible in some abnormalities in the 

brain. Over time, the use of EEG signals in 
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the field of health to diagnose brain disorders 

has increased widely [35,36]. 

 According to studies conducted by a 

number of researchers, irregular and complex 

EEG signals can provide information about 

basic neural activity in the brain [37]. To 

automatically detect brain abnormalities, the 

signals generated by the EEG recorder must 

be prepared to perform further processing 

[38,39].  

 EEG measurements are commonly used 

in various fields of medical research such as 

mental states [40], epilepsy diagnosis 

[41,42], drowsiness detection system [43], 

detection of deep sedation [44], motion 

sickness [45], for seizures treatment [46], 

addiction diagnosis [47], and other 

applications [48,49,50]. Typical EEG 

classification pipelines include artifact 

removal [51,52], feature extraction [53,54], 

and classification [55,56]. A review run on 

studies on different aspects of EEG is show 

in Table 1. 
 

Table 2. Five frequency bands of EEG. 

Brainwave 

type 
General characteristics Location Amplitude Signal waveform 

Gamma 

[57,58] 

Indicates anxiety, stress, meditation. 

Gamma-band activity participates in 

various cerebral functions. Within the 

gamma-band frequency range, it is 

possible to differentiate between low 

gamma-band oscillations and high 

gamma-band oscillations. 

Frontal-

central areas 

 

Smallest 
 

Beta 

[59,60] 

The temporal and frontal lobes are the 

most commonly used areas for 

recording. It is considered a natural 

rhythm, that is predominant in patients 

who are alert or anxious or have their 

eyes open. This shows alert mode, 

especially when the subject is in 

dynamic thinking modeor focus mode. 

Parietal, 

somatosensor

y, frontal, and 

motor areas 

Very low 
 

Alpha 

[61,62] 

It appears when the eye is closed and 

relaxed, and disappears when the eye 

is opened or alerted by any 

mechanism. Alpha rhythm 

characteristic can be found in any area 

of the brain. 

Occipital and 

parietal 

regions 

Low 
 

Theta 

[63,64] 

It is perfectly normal in children up to 

13 years old and asleep, but it is 

abnormal in awake adults. 

Hippocampus 

region 

Low-

medium  

Delta  

[65,66] 

In general, these waves are recorded 

from the occipital lobe. Appears at 

brain injuries, learning problems, 

inability to think. That dominant 

rhythm is normal in infants up to one 

year and stages 3 and 4 of sleep. 

Mostly in 

thalamus 

region 

High 
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 EEG can be used to measure different 

states of the brain [67,68]. EEG signals can 

be recorded in two ways: unipolar or bipolar. 

The unipolar method is mostly used. In this 

method, the potential of the electrode in an 

active electrode is measured. A set of special 

oscillations called rhythms make up the EEG 

signals [69]. In terms of EEG frequency 

components recorded in the channel, EEG 

signal can be analyzed [70,71]. 

 EEG energy in the frequency domain is 

concentrated in specific bands (normal brain 

rhythms) that are referred to in this section. 

The types of EEG waves are divided into five 

frequencies based on their frequency range 

[72,73]. The types of EEG waves are: delta 

[74], theta [75], alpha [76], beta [77], and 

gamma [78], which are shown in Fig. 3 of the 

frequency range with the characteristics of 

each [79,80]. The frequency range and state 

of the brain of beta signal are shown in Fig. 4 

[81]. Band power feature reflects the power 

in these five bands at each electrode position 

[82,83]. Table 2 describes the five frequency 

bands of EEG signal [84,85]. the frequency 

of the EEG signal refers to rhythmic 

repetitive activity (in Hz) [86]. They can have 

different properties such as: rhythmic, 

arrhythmic, and dysrhythmic [87,88]. 

 The dynamics of EEG signals during 

emotional brain states during visual stimula-

tion are evaluated in [89] for an accurate 

understanding of emotional EEG patterns. 

Three EEG time series channels are used and 

EEG signals from 5 subjects are recorded in 

three emotional categories of disgust, neutral, 

and happy. Also, RQA is used to study the 

morphological changes of EEG in different 

emotional states and ANOVA and t tests are 

performed to detect significant differences in 

the measurement of RQA EEGs. 

 

 

 
Fig. 3. Electroencephalogram signals characteristics. 
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Fig. 4. Brainwave beta type. 

 

 Automatic classification of focal and 

non-focal electroencephalogram signals 

using discrete Fourier transform-based 

rhythms is proposed in [90], which is used to 

classify derived features (MF and RMS) as a 

set of input features using the class. The LS-

SVM device classification is provided. Also 

in this data set, for automatic classification of 

50 pairs of focal and non-focal pairs, the 

classification accuracy is 89.7% and for 750 

pairs of EEG signals, the classification 

accuracy is 89.52%. 

 For multilevel mental fatigue EEG 

classification, two feature selection 

approaches are presented in [91], in which 

RF is combined with the heuristic INIT or 

with the RFE. 12 subjects were evaluated. RF 

with RFE achieved its lowest test error rate of 

12.3% using 24 top-ranked features, whereas 

RF with INIT reached its lowest test error rate 

of 15.1% using 64 top-ranked features, 

compared to a test error rate of 22.1% using 

all 304 features. 

 In [92], the improvement of gamma band 

activity detection when a filter based on 

experimental state analysis is added to the 

pre-processing block of single-channel EEG 

signals, is investigated and shown that by 

improving EEG processing, clinical 

applications of activity the gamma band 

expands. 

 In [93], a study of 44 patients with 

depressive disorders showed that resting beta 

activity could be a useful biomarker for 

predicting future quality of life outcomes in 

patients. Initially, after considering the 

pharmacological effects in longitudinal 

studies in patients with high beta band 

strength (20-30 Hz), significantly predicted 

QOL at 3-year follow-up (p=0.01 and 

β=0.38). 

 For smokers, an EEG pattern study based 

on the theta, alpha, and beta band in [94] is 

presented that PSD is used. For this study, 33-

male smokers and 33 non-smokers were 

sampled and EEG data were recorded for 5 

minutes. From the sampling results it can be 
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stated that for smokers compared to non-

smoker is higher theta band power and higher 

alpha band power. 

 EEG signals are used to record the 

internal structure and activity of the brain. 

This paper provides an overview of important 

strategies for extracting 

electroencephalogram signal features. The 

contribution of this review paper are: 

• Different EEG signals are compared in 

terms of bands, mental, frequency range, 

and applications. 

• EEG signals have been classified into 

five categories based on kind of the 

rhythms. 

• EEG signals studies have been reviewed 

in terms of characteristics, feature 

extraction methods, and events. 

• Relationships between EEG waveform 

frequency bands and different cognitive 

processes are presented. 

 This paper consists of three sections. 

After stating the importance of the issue in 

the second part, the five main frequency 

bands of the EEG waveform are expressed. 

The EEG signal has a different amplitude and 

width for each person. EEG has a short 

duration time and signal length is not enough 

to evaluate the frequency characteristics. 

Therefore, one of the main issues in 

identification systems is the extraction of 

EEG features. The most used feature 

extraction methods are mentioned in section 

2. There are several events that affect the 

signal. In the second 3, a number of them are 

examined. Finally, the conclusion is stated 

in Section 4. 

 

2. FEATURE EXTRACTION TECHNIQ-

UES 
 

EEG is neurophysiological test conducted to 

capture neuronal actions of the brain. Manual 

screening of EEG signals to detect the event 

is complicated for users because EEG signals 

consist of the inherent complexity of the 

brain and are recorded in microvolts [95]. 

The study of EEG signals with linear 

frequency and time domain methods is 

complex because EEG signals are nonlinear, 

contain a lot of noise and inherently 

oscillating [96]. Therefore, nonlinear 

parametric amplitude-frequency-time metho-

ds are used to analyze EEG signals.  

 A variety of methods have been widely 

used to extract the features from EEG signals 

[97,98],  including time frequency 

distributions (TFD) [99,100], wavelet 

transform (WT) [101,102], eigenvector 

methods (EM) [103], fast Fourier transform 

(FFT) [104] and auto regressive method 

(ARM) [105], and so on. 

 Feature extraction is an important step in 

the process of EEG signal classification [106, 

107]. The purpose of feature extraction is to 

show raw EEG signals or processed by 

related ideal quantities that display the task 

information contained in the signals [108]. 

EEG signals feature extraction methods are 

listed in Table 3. 

 

2.1. Time Frequency Distributions (TFD) 
 

TFDs characterize nonstationary signals over 

a time-frequency plane. These methods 

require noise-free signals to provide good 

performance. Also, they may serve as a basis 

for signal synthesis, coding, and processing 

[109,110]. Feature extraction using this 

method is based on energy, frequency, and 

main path length [111]. 
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2.2. Fast Fourier Transform (FFT) 
 

EEG consists of time series data of evoked 

potentials resulting from systematic neural 

activity in the brain. FFT is a simple 

algorithm for efficient calculation of discrete 

Fourier transform. In this method, the EEG 

signal is decomposed into a number of sine 

functions with different frequencies, 

amplitudes and phases. FFT is just an 

algorithm used for fast computation of the 

DFT [112,113]. 

 

2.3. Eigenvector Methods (EM) 
 

To estimate the frequencies and signal power 

of faulty noise measurements, eigenvector 

methods based on an eigen-decomposition of 

the correlation matrix are used [114,115]. 

When the SNR is low, high-frequency  
 

Table 3. EEG signals feature extraction methods. 

Analysis 

method 
Method name Description Advantages Disadvantages 

Frequency 

domain 

Eigenvector 

They are used to 

calculate the frequency 

and power of signals 

from artificial 

measurements. 

Eigen has the potential to 

decompose to 

communicate even 

artificially faulty signals. 

They must be calculated 

for each problem. 

There are no special 

vectors for the degenerate 

case that are not perfect 

degrees. 

Autoregressive 

The variable in question 

is usually predicted using 

a linear combination of 

the variable's past values. 

The AR model explicitly 

accounts for 

autocorrelation in the 

error allowing for valid 

inference to be made. 

It is difficult to get 

transient features from 

EEG signals. 

Fast Fourier 

transformer 

It converts the signal into 

individual spectral 

components and provides 

frequency information 

about the signal. 

The speed increases as 

the number of 

calculations required to 

analyze the waveform 

decreases. 

The narrow bandwidth 

transformed by super-

heroism is also the most 

limiting factor of this 

method. 

Both time 

and 

frequency 

domain 

Wavelet 

transform 

Wavelet transform 

decomposes a signal onto 

a basis of functions. 

It is suitable for the time-

frequency analysis. 

Signal analysis is 

possible at different 

scales simultaneously. 

The length of time that 

the energy of the 

decomposition functions 

is localized varies 

depending on the 

amplitude of the 

operating frequencies. 

Its discretization is less 

efficient and natural. 

It does not give 

information about the 

time of occurrence of the 

signal components. 

The calculations are 

compressed during 

accurate analysis 

Time 

frequency 

distribution 

The pre-processing step 

is necessary to get rid of 

all kinds of artifacts. 

The windowing process 

is required in the 

preprocessing module. 

It is more suitable for 

nonstationary signals. 

Noiseless EEG signals or 

a well-de-noised signal 

should be used. 
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eigenvector methods can still produce 

frequency spectra of high resolution. These 

methods are suitable for signals that can be 

thought of as consisting of several specific 

sinusoids buried in noise [116,117]. 

 

2.4. Wavelet Transform (WT) 
 

Similar to Fourier transform, WT 

decomposes a signal onto a basis of functions 

[118]. Various WT such as Tunable-Q 

wavelet, dual tree complex, and orthogonal 

wavelet filter bank have been used in pre-

processing and feature extraction of EEG 

signals to detect the event [119,120]. 

 Its main advantage is that any favorable 

interaction between time and frequency 

resolution is provided, in other words the 

time window length becomes larger at low 

frequencies and smaller for large frequencies 

[121]. 

 

2.5. Auto Regressive Method (ARM) 
 

AR model is widely used in system 

identification and signal processing. It is a 

time series model and uses observations of 

previous time steps as input to the regression 

equation to predict the value in the next time 

step. The AR model coefficients are used as 

characteristic vectors in the BCI system 

[122,123]. 

 

3. VARIOUS EVENTS AND EEG 

SIGNAL EVENTS EFFECT ON EEG 

SIGNALS 
 

Recent advances in biomedical signal 

processing have led to the development of 

various techniques for multi-resolution 

analysis of EEG signals and diagnosis of 

disease status. The effect of various events 

such as epilepsy [124,125], addiction, and 

sleep on the EEG signal is examined in this 

section. 

 

3.1. Epilepsy, Epileptic Seizures and Their 

Effects on EEG Signals 
 

Epilepsy is the most common neurological 

disorder in humans. It is a serious 

neurological condition [126].  

In epilepsy, brain activity becomes abnormal 

and anyone can have epilepsy. Periods of 

unusual behavior, emotions, and sometimes 

loss of consciousness are the effects of 

epilepsy. 

 Electrical signals in the brain are 

disrupted in epilepsy. Sometimes there is a 

sudden explosion of electrical activity that 

causes a seizure. In most cases, the cause is 

unknown. 

 Recorded EEG signals contain valuable 

information for understanding epilepsy. 

Traditional intelligent methods for detecting 

epileptic EEG signals consider two 

conditions: (a) the training data set and the 

test data set have the same distribution, and 

(b) the available data are sufficient for 

training. In practice, these two conditions are 

not always achievable and reduce the ability 

of the intelligent detection model obtained to 

detect epileptic EEG signals [127,128]. 

 A DIC-MV fuzzy clustering algorithm 

for automatic detection of epileptic EEG data 

is presented in [129]. This algorithm uses 

correlation information between each view 

and controls the importance of each view to 

improve the final clustering performance. 

Experimental results show that this algorithm 

has better clustering performance than 
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traditional clustering algorithms for 

processing multi-index EEG data. 

 A strategy for constructing a TSK-FLS 

based on transducer transmission learning to 

identify epileptic EEG signals is presented in 

[130]. TSK transfer learning algorithms for 

regression and binary classification are built 

to build the corresponding TSK FLS, 

respectively. Both algorithms are mostly 

used to perform a multi-class classification to 

detect epileptic EEG signals. Their 

performance in the EEG epilepsy dataset 

represents promise in dealing with situations 

where the training and test datasets vary 

according to the distribution of the data. 

 In [131], an EEG classification method 

based on the prediction error of the AR model 

has been performed to detect EEG signals 

between control subjects and patients with 

epilepsy without epileptic form discharges. 

Twenty-three patients with non-discharge 

generalized epilepsy were studied in their 

EEG recordings and 23 age control groups 

for whom EEG recordings were performed 

using EEG features based on the prediction 

error of the classification AR model. The 

results showed that the accuracy, area under 

the curve, true positive rate, and true negative 

rate were 85.17%, 87.54%, 89.98%, and 

81.81%, respectively. 

 Feature extraction based on image 

processing algorithms for automatic 

detection of epileptic activity in brain EEG 

signal display using an efficient classification 

method is proposed in [132] and CNGP and 

CTP for elimination automatic artifact brain 

maps are provided. The results also show that 

the LSSVM classifier with Gaussian RBF 

nucleus is able to detect epileptic brain map 

with high accuracy. 

 Literature [133], examines the common 

moment signals and frequencies at the EWT 

signal compatible frequency scales, and the 

Boston-Massachusetts Children's Hospital 

EEG database (CHB-MIT) is studied. Using 

a step, the features extracted from each 

oscillation level are processed and the 

common features are calculated to achieve 

better seizure discrimination and without 

seizures during the EEG signal period. Using 

six classifications, the proposed detection 

method was evaluated, and the means of 

sensitivity, specificity, and accuracy were set 

at 97.91%, 99.57, and 99.41, respectively. 

a) Decoding brain signals 

Decoding motor commands from non-

invasive neural signals measured is important 

in brain-computer interface research 

[134,135]. The brain signal decoding 

algorithm is an important part of the BCI, 

because its function determines the 

performance of the interface [136,137]. 

 In [138], when participants execute, 

observe, or imagine complex paths of upper 

limb movement, the movement instructions 

are decoded in three dimensions after EEG 

recording. The results show that linear 

receivers are an efficient and powerful 

method for decoding motor commands. 

Contamination of brain signals related to eye 

movement is also a serious problem for 

decoding motion signals from EEG data. 

 In [139], a decoding algorithm with a 

small-dimensional feature matrix optimized 

to detect the motion of a finger using EEG 

signals is proposed and implemented. That, 

to classify the two types of finger 

movements, a degree attribute extraction 

algorithm based on graph theory with SVM 

is proposed, which considers three factors: 
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frequency band, amplitude, and ERD 

amplitude. 

 A spike detection algorithm using the 

frequency band amplitude feature and 

classification of the core support vector 

device for intracranial EEG data is proposed 

in [140]. The algorithm consists of two steps: 

FFT algorithm is used to extract various 

features and then these features are used 

selectively and used to detect spikes in 

educational sets. Medium performance with 

98.44 sensitivity, 100% selectivity and 99.54 

accuracy is achieved for the performance of 

this algorithm. 

 In [141] by examining linear and 

nonlinear regression methods and using the 

estimated target EEG signals in the occipital 

region, the ear-EEG decoding accuracy in 

relation to the SSVEP pattern is increased. 

Given the predictive diversity of regression 

methods, an ECR framework has been 

proposed to reduce prediction errors by 

adding an additional nonlinear regression 

process. The ability to decode the proposed 

framework online with a short window size is 

demonstrated. The average accuracy was 

91.11 9 9.9, 90.52 67 8.67, 96.96 12 12.13 

and 78.79 12 12.59%. 

 

3.2. Sleep and Drowsiness and Their 

Effects on EEG Signals 
 

During human life, sleep plays an important 

role in health and wellness. Getting enough 

sleep at night protects a person's mental and 

physical health. And adds to the 

improvement of quality of life. Sleep-related, 

such as insomnia, sleep apnea syndrome, 

depression, schizophrenia, narcolepsy, and 

other neurological disorders are some of the 

sleep-related disorders. By reducing the 

memory capacity and speed of processing a 

person's brain information, drowsiness is 

determined, which creates risks in the 

workplace in real time for the person. Sleep 

screening and analysis is a significant tool in 

assessing these disorders.  

 Sleep disorders are a number of 

conditions that affect the ability to sleep well 

on a regular basis. For a variety of reasons, 

such as health problems and high stress, sleep 

disorders are on the rise. 

 Depending on the type of sleep disorder, 

people may find it difficult to fall asleep and 

feel very tired during the day. Lack of sleep 

can have a negative effect on energy, mood, 

concentration and overall health of the body. 

 Feature extraction is performed as an 

essential preprocessing step to reduce data 

and perform automatic sleep staging 

[142,143]. 

 Three different schemes for extracting 

features from EEG signals including relative 

spectral band energy, It acara distance and 

harmonic parameters are presented in [144]. 

AR modeling has been used for spectral 

estimation. The performance of these 

schemes has been compared with the aim of 

selecting the optimal set of features for 

specific, sensitive and accurate neural-fuzzy 

classification of sleep stages. 

 The classification of EEG signals for the 

determination of the state of sleep of a patient 

is studied in [145], which the PSD matrices 

as the feature for the distinction between 

different classes of EEG signals is used. 

 An apnea frame detection method based 

on the EMD of wavelet reconstructed delta 

wave of EEG signal is proposed in [146], 

which begins with WT an EEG frame and 

reconstructing the low frequency delta wave 
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from the approximate coefficients. The 

proposed method is applied to each patient 

and overall patients. Sensitivity and 

specificity rates of 80.43%, 85.59%, and 

77.87% respectively on overall patients. This 

method is an efficient method for detecting 

apnea and non-apnea frames when only EEG 

signal is available and can be a great tool for 

PSG sleep apnea diagnosis.  

 The EEG-based automatic drowsiness 

detection method has been suggested in 

[147], which the CVMD is used to 

investigate the unstable behavior of EEG in 

the diagnosis of drowsiness. Homogeneous 

clusters created by CVMD are decomposed 

into finite band states. Then the oscillation 

mode features are extracted in terms of 

several features and fed as input to the least 

squares vector machine classification. 

 In [148], WT is used to detect drowsiness 

and alertness of EEG signals. Alpha and beta 

channels are considered EEG signals. 

84.98% sensitivity and 98.65% rating were 

reported. 

 The non-static property of the EEG signal 

is investigated by TQWT in [149], in which 

TQWT decomposes the EEG signal into sub-

band, which is mostly used to extract the 

features. Different classifications are 

considered. Awareness and drowsiness EEG 

signals assess the differential performance of 

TQWT-based features with the KW test. The 

results of the KW-test show that the proposed 

features effectively differentiate between 

wakefulness and drowsiness. According to 

the results, the best accuracy score of 

91,842% is generated by the ELM classifier. 

 

3.3. Migraine and Their Effects on EEG 

Signals 
 

Migraine is a long-term neurovascular 

disease that can be caused by many factors 

and causes severe pain and disorders of the 

autonomic nervous system [150]. 

 It is usually a moderate to severe 

headache. Migraine is felt as a throbbing pain 

on one side of the head. There are symptoms 

such as feeling sick, sick, and 

hypersensitivity to light or sound in some 

people. Migraine is a common disease that 

affects 1 in 5 women and 1 in 15 men. 

 Migraines are different from headaches. 

Headache symptoms include pain in the head, 

face, or upper neck. It can also have different 

frequencies and intensities. But migraine is a 

very painful primary headache disorder, and 

usually causes symptoms that are more 

severe and debilitating than the headache. 

 The two feature extraction methods 

(parametric and non-parametric) and the two 

classification methods in order to achieve 

optimal compositional diagnostic accuracy 

are compared in [151]. Features are selected 

using a GA, and then given to a vector 

machine for classification and linear 

segregation analysis. In this study, the 

highest migraine detection accuracy of 93% 

was obtained using the Welch method to 

extract the EEG feature along with the 

support vector device for classification. 

 A migraine analysis method using EEG 

signals to characterize migraine patients with 

aura is proposed in [152]. Three brain 

characteristics using brain network analysis 

of alpha phase synchronization; transient 

abnormality analysis and finally joint time-

frequency analysis are extracted, which the 

wavelet scale and AR modeling are used. 

Findings suggest electrical features for the 

predisposition of migraine which can lead to 
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possible preventative interventions in the 

future. 

 

4. CONCLUSION 
 

EEG is an effective non-invasive 

measurement method used to monitor the 

electrical activities of the brain. EEG signals 

are used intermittently among physiological 

signals because they represent brain activity. 

EEG signals contain a lot of information 

about brain function and detect abnormalities 

in the human brain.  In other words, different 

brain functions produce EEG signals. The 

recorded waveforms reflect the cortical 

electrical activity. The voltage of the EEG 

signal corresponds to its amplitude. EEG 

signals have different rhythms depending on 

the frequency bands occupied. The EEG 

signal can be analyzed in terms of its 

frequency components. The main frequencies 

of the human EEG waves are: delta, theta, 

alpha, beta, and gamma. A number of 

diseases are identified by the nature and 

occurrence of these waves. A critical part of 

EEG classification is features extraction. 

Classically, feature selection methods are 

divided into two categories: filtering methods 

and wrapper methods. 
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