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Abstract 

This paper constructs a new 6–D hyper–chaotic system with complex dynamic behaviors for se-

cure communication scheme. We analyze the chaotic attractor, bifurcation diagram, equilibrium 

points, Poincare map, Lyapunov exponent behaviors, and Control parameter. The more nonlinear 

the autonomous system is and the higher the parametric sensitivity it is, the more performative it 

will be and the more difficult it will be to decode. We will show that the designed system will 

have attractive and different behaviors due to very small changes in control parameters, which is 

a sign of the high sensitivity of the system. Then, with the construction of master-slave systems 

and the design of a new terminal sliding mode controller, the application of the hyper-chaotic 

system in synchronization and transmission of secure communications is shown. Finally, using 

the MATLAB simulation, the results are confirmed for the new hyper–chaotic system. 

 

Keywords: Chaotic Analysis, Nonlinear Autonomous System, Secure Communication Scheme, 

Terminal Sliding Mode Control, Finite-Time Synchronization. 

  

1. INTRODUCTION 
 

In recent years, communications and 

information technology systems have a 

special place and the secure communication 

of this information is very important. 

 Due to the existence of information 

 

 

 
networks in military structures, medicine, 

trade and other structure, increasing security 

has a special importance and place. 

Compared to traditional methods, 

information transfer using chaotic systems 

has some advantages such as speed, security 
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and capability [1]. Chaotic systems have a 

number of intrinsic properties, including 

high–complex as well as nonlinear dynamical 

equations. Three key features of these 

systems are their high complexity, 

uncertainties in the system parameters, and 

extreme sensitivity to very small changes in 

their initial conditions [2]. Because of these 

features, these systems have been used in 

many fields, including image encryption [3], 

medical science [4], mechanics [5], space 

Science [6], control synchronization [7], 

physics [8] and secure communications [9]. 

In recent years, new chaotic systems have 

been introduced for secure communications 

[10-14]. These communication systems are 

less secure, due to the presence of only one 

positive Lyapunov exponents view compared 

to hyper-chaotic systems with two or more 

positive Lyapunov exponents views. The 

researchers found that the more complex and 

large the system is, the more secure it is in 

chaos-based secure communication [15]. 

There are two reasons: First, the low-

dimensional the system is, the less band-

width it has and the easier it can be separated 

by a filter. Second, high-order systems are 

more dynamic and complex than low-order 

systems and are more unpredictable. There 

are two main ideas for secure 

communication, one is control and the other 

is synchronization. These ideas were first 

proposed by Afraimovich' et al [16]. And 

later improved [17]. With the development of 

this idea [18-23], researchers have shown 

experimentally and theoretically that if two 

master-slave systems are synchronized, 

information transfer can be achieved. 

Dynamic systems synchronization is the 

power of two systems to track each other's 

behavior. 

 In order to transfer chaos-based secure 

communication, many hyper-chaotic systems 

have been developed, each with its own 

unique characteristics [24-27]. In [28], a six-

dimensional hyper-chaotic system with four 

positive Lyapunov exponent's has been 

reported. Lyapunov exponent's is the average 

speed of two-point transmission paths in 

chaotic systems. The positive of this index 

shows the degree of divergence and its 

negative shows the degree of convergence of 

system states. Then, using phase portraits 

analysis, the high-pressure of the system has 

been proved. The results indicate the optimal 

performance of the system. In [29], by adding 

a dimension to the Lorenz hyper-chaotic 

system, a five-dimensional system is created 

that has three positive Lyapunov symbols. 

The existence of adsorbents in this system 

has been confirmed using Poincaré map. 

Then the electrical circuit is made suitable for 

this system. It has been proven that the 

system is very sensitive to changes in the 

initial conditions and parameters, which 

indicates the specificity of the system. 

 In recent years, various methods and 

controllers have been used to synchronize 

hyper-chaotic systems, including: output-

feedback control [30], adaptive control [12], 

passive control [31], optimal control [32, 33], 

PID control [34], adaptive backstepping 

control [35], linear control [36], neural 

network [37], predictive control [38], 

stochastic control [39], backstepping design 

[40], sliding mode control [41-43] and 

terminal sliding mode control [44-46]. 

Between the stated methods, sliding mode 

control (SMC) has some special specs such 
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as: parametric uncertainties, robustness 

versus,  simple implementation, suitable 

transient response, reduction of the order of 

the system, less sensitivity to bounded 

disturbance and computational simplicity 

[47]. Although SMC is very popular and 

efficient, but this method has a big drawback 

called chattering. In practice, chattering is a 

very undesirable phenomenon because it can 

increase energy consumption, cause 

mechanical wear in systems and actuators 

and deteriorate controller performance. Much 

research has been done to solve the problems 

of this method [48-50]. For example in [51] a 

new sliding mode control is used by 

combining PID and sling mode methods. The 

new controller is robust against disturbances 

and has no chattering and is able to provide 

convergence in a finite-time. In [52], robust 

sliding mode control without chattering is 

used to control and track a remote vehicle 

with three degrees of freedom in the presence 

of uncertainty. The new controller has been 

able to reduce chattering as much as possible 

in the presence of uncertainties and 

disturbances, while maintaining robustness 

and accurate tracking. In [53], a finite-time 

controller is used, using a neural network 

with uncertainty in the system. The cost 

function used includes continuous and 

intermittent feedback controllers. finite-time 

control is designed in accordance with the 

cost function that can provide convergence in 

limited time. The proposed controller was 

able to optimize the quadratic cost function 

and reduce convergence time. In 

conventional SMC algorithm, the most 

commonly used sliding variable is the linear 

which is based on linear combination of the 

system errors by using an appropriate 

coefficient. Instead of using a linear sliding 

variable, Terminal Sliding Mode Control 

(TSMC) with a nonlinear sliding variable is 

present. The terminal sliding mode was 

developed by adding the nonlinear fractional 

power item into the sliding variable in sliding 

phase to offer some superior properties, such 

as finite time convergence of state variables, 

faster and better tracking precision. Also, 

nonlinear sliding variable in TSMC can 

improve the transient performance statically. 

 This paper includes two main new 

structures, one is the use of a high-order 

nonlinear autonomous system and the other is 

the use of a fast controller that provides safe 

data transmission in the finite-time. These 

structures can be classified as follows: 

• A novel 6-D hyper-chaotic system 

has been constructed to increase 

communication security. 

• The standard analysis of the new 

system has been performed and the 

sensitivity of the system has been 

discussed. 

• A new TSMC controller has been 

designed and stabilized using the 

Lyapunov stability method. 

• The synchronization technique is 

performed by entering an uncertainty 

in the system to secure 

communication in the finite-time. 

• A comparison has been made 

between a new controller and a 

similar controller. 

 The rest of this paper is organized as 

follows: Sect. 2, Introduction of a new 6-D 

hyper-chaotic system. In Sect. 3, Standard 

analysis of the introduced system has been 

performed. In Sect. 4, Chaos-based secure 

communication scheme and simulation 
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results are given to demonstrate the 

efficiency and advantages of the suggested 

method. Finally, we end this paper with some 

conclusions in Sect. 5. 

 

2. INTRODUCTION OF A NEW 6-D 

HYPER-CHAOTIC SYSTEM 

The new 6-D hyper-chaotic system designed 

by the following equations is introduced as 

follows: 

1 2

3 4

2

5

6

7

8 9

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

dx d a y x a v

dy d a x a u y xz

dz d a z xy x

du d a y v w kyz

dv d a y x w

dw d a x a u v

 

 

 

 

 

 

= − −

= − − −

= − + +

= + + +

= + −

= − + −

 (1) 

where 6( , , , , , )Tx y z u v w   are state  

variables and 
1 9,...,a a   are parameters 

and k  is hyper-chaos control parameter. 

With parameters: 

1 2 3

4 5 6

7 8 9

13.47,  0.85,  37.2,

19.41,  8.13, 2.92,

5.17,  4.32,  0.54,  0

a a a

a a a

a a a k

= = =

= = =

= = = =

 (2) 

and initial conditions: 

0 0 0

0 0 0

( ) 0.4,  y ( ) 1.6,  z ( ) 4.05,

u ( ) 2.7,  v ( ) 1.8,  w ( ) 0.2

x   

  

= − = = −

= = − =
 (3) 

 System (1) has hyper-chaotic behaviors. 

The system (1) divergence is as follows: 

6

1 5

1

1 0 0 0

         13.47 1 8.13 22.6 0

x
V a a

x



 =


 = = − − − + + + =



− − − = − 

  (4) 

. 

 

Fig. 1. Analysis of chaotic absorbers of system (1) in (a) x y−  plane, (b) x z−  plane, (c) y z−  plane, 

(d) x w−  plane, (e) x y z− −  plane and (f) x y v− −  plane. 
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 The convergence speed of the system (1) 

to its attractors is 1 5( 1 )a a
e

− − − −  at time  . 

Therefore, the system paths converge to the 

origin and the system will eventually remain 

motionless on its absorbers. the 3-D phase 

portrait diagrams of the system (1) with 

parameters (2) and initial conditions (3) is 

shown in Fig. 1 

 

3. PROPERTIES OF THE HYPER-

CHAOTIC MODEL 
 

In this section, we will review and analyze 

common methods in evaluating the 

performance of chaotic systems and 

introduce the characteristics of the new 

hyper-chaotic system (1). In the simulations 

we use the Runge–Kutta method and 

consider the time step equal to ( ) 0.001 = . In 

the following, we will examine the type of 

system behavior with two important methods 

of qualitative analysis of bifurcation 

diagrams (B.D.s) and quantitative analysis of 

Lyapunov exponents (L.E.s). 

 

3.1. Stability and Equilibria 
 

By setting the differential equations in (1) to 

zero, it is concluded that the new system (1) 

has equilibrium point at: (0, 0, 0, 0, 0, 0).Q =  

When the parameter values are considered as 

in (1), the system linearization matrix [54] at 

the equilibrium point Q is given by 

      0     0    0
1 1 2

  1    0     0     0
3 4

0     0     0      0     05
( )

0         0     0         1
6 6*

1         0     0      0  17

 0     0      1     0
8 9

a a a

a a

aFiJ x
a ax j Q
a

a a

− −

− −

−
= =


−

− −

 
 
 
 
 
 


 





 (5) 

 According to (5), the system eigenvalues 

are found as follows: ( ) 0s sI J
d

 = − =  with 

,dI  as an 6 6  identity matrix. That is 

5 4 3 2

1 2 3 4

5 6 ( )

s s s s

s s

   

 

+ + +

+ + = 
 (6) 

 Using parameter values in (2), the 

eigenvalues are 1 30.0247,s = −   

2s 11.3098,=  3s 8.13,= −  4s 6.2926,=  

5s 1.9024,= − 6 s 0.1453.= −  Thus, Q  is an 

unstable saddle. 

 

3.2. Chaotic Analysis 
 

To investigate the dependence of the 

parameters of the new hyper–chaotic system 

(1), we need to draw and analyze the 

bifurcation diagram. In Fig. 2 the bifurcation 

diagrams of new hyper-chaotic system are 

plotted. The system enters into chaotic 

oscillations with routine period doubling 

[55]. 

 As an interesting method, we used the 

Poincaré map to describe the folding 

attributes of the chaotic system. To study the 

performance and behavior of continuous 

dynamical systems, similar to the proposed 

system (1), we can use the Poincaré map, one 

of the most popular topics in nonlinear 

dynamic analysis. Figure 3 displays a 2-D 

Poincaré map of system (1) with a related 

phase portrait. As it is known, the Poincaré 

map of the hyper-chaotic system corresponds 

to the phase portrait of the system [56, 57]. 

According to Fig. 3, the regular set of points 

depicted in the Poincare maps is an indication 

of the system’s chaotic behavior. 
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Fig. 2. Bifurcation diagrams with initial conditions (3) and changes made in the parameters of (2) and 

changes in (a) parameter a2, (b) parameter a3, (c) parameter a4 and (d) parameter a6. 

 

Fig. 3. Poincaré map (i) and 2–D phase portrait (ii) of the system (1) in (a) x–y space, (b) y-z space and 

(c) z–w space. 
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The divergence and convergence of the 

states of a nonlinear system are determined 

by its L.E.s’ representation. If L.E.s are 

positive, it indicates the chaotic behavior of 

the system [58]. A system is hyper–chaotic if 

there are two or more positive L.E.s. The 

L.E.s of the exponential hyper–chaotic 

system (1) using Wolf’s algorithm [58] with 

different initial conditions (3) and parameters 

(2) are numerically found as L.E1=0.89308, 

L.E2=0.10658, L.E3=0, L.E4=-1.41338, 

L.E5=0, L.E6=0 shown in Fig. . 

 Another characteristic of the chaotic 

systems, is the sensitivity to change in the 

initial conditions. Fig.  display the 2–D phase 

portraits of the novel hyper–chaotic system 

(1) with parameters (2) and three different 

initial conditions. 

 

 
Fig. 4. Dynamics L.E.s of the novel six–dimensional system (1) with parameters (2) and initial 

conditions (3). 

 

 
Fig. 5. The phase portrait diagrams of the system (1) on the y z−  space with parameters (2) for three 

different initial conditions: (a) [–0.01, –0.1, –0.01, –0.1, –0.01, –2.5], (b) [–0.1, –0.1, –0.1, –2.5, –0.1, –

0.1] and (c) [–0.1, –0.1, –0.1, –0.1, –0.1, –2.5]. 
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Fig. 6. Bifurcation diagram (B.D.s) of the system (1) with local maxima of x  and control  

parameter k [0,0.25] . 

 
3.3. Chaos and Hyper-Chaos 
 

System (1) is assumed with the initial 

conditions (3), control parameter k   and 

parameters (2). Fig.  display the Bifurcation 

diagram (B.D.s) of a designed hyper-chaotic 

system in k [0,0.25] . In this figure, we see 

the overlap of the curves with different 

colors, which is the hysteresis of the system 

[59]. Variation in the control parameter k , 

allows us to obtain several different 

adsorbents in k [0,1.5] . 

When the control parameter k  is in this 

range, the system will have complex 

behaviors such as hyper-chaotic, chaotic, 

periodic and quasi-periodic. These 

behavioral changes are shown in Fig. , 

proportion to L.E.s changes. Dynamic 

behaviors of the system (1) with changes in 

k  include the following: 

I. When (0,0.05]k , the L.E.s of 

system (1) at 0.04k =  are (0.30668, 

0.00376, -0.034823, -1.52462, 0, 0). 

In this case, the system (1) has a 

hyper-chaotic behavior and the 1-D 

and 3-D phase portraits are shown in 

Fig. (a). 

 

Table 1. L.E.s and complex dynamical behavior with different control parameter k. 
 

Parameter k (L.E1, L.E2, L.E3, L.E4, L.E5, L.E6) 
Dynamic 

behaviors 

(0, 0.05] (+, +, –, –, 0, 0) Hyper-chaotic 

(0.05, 0.15] (+, –, –, –, 0, 0) chaotic 

(0.15, 0.25] (+, –, –, –, 0, 0) chaotic 

(0.25, 0.5] (0, –, –, –, 0, 0) periodic 

[1, 1.5) (0, 0, –, –, 0, 0) Quasi-periodic 
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Fig. 7. 1-D time series (i) and 3-D phase portrait (ii) of system (1) with initial condition (3) and 

changing the control parameter k in (a) k=0.04, (b) k=0.13, (c) k=0.2 and (d) k=0.77. 

 

II. When (0.05,0.15]k , the L.E.s of 

system (1) at 0.13k =  are (0.00664, -

0.00405, -0.86748, -1.11307, 0, 0). In 

this case, the system (1) has a chaotic 

behavior and the 1-D and 3-D phase 

portraits are shown in Fig. (b). 

III. When (0.15,0.25]k , the L.E.s of 

system (1) at 0.2k =  are (0.00718, -

0.01938, -0.0294, -0.95119, 0, 0). In 

this case, the system (1) has a chaotic 

behavior and the 1-D and 3-D phase 

portraits are shown in Fig. (c). 

IV. When (0.25,0.5]k   and [1,1.5)k , 

the L.E.s of system (1) at 0.77k =  are 

(0, -0.53618, -1.32396, -1.33496, 0, 

0). In this case, the system (1) has a 

periodic behavior and the 1-D and 3-

D phase portraits are shown in Fig. 

(d). 

 

4. SYNCHRONIZATION 

 

4.1. Terminal Sliding Model Control 

Design 

Consider the following system: 

( ) ( ) ( ) ( ( )) ( )D       =  +  +  +  (7) 

where 1
( )

n



   is the system state 

variable, n n
   and 1n

   are the 

constant matrices, 1
( )

n
 


  is the 

controller, 1
( ( ))

n
 


   is the nonlinear 

function of the system and 1
( )

n
D 


  is the 

unknown disturbance of the system. 

Assumption 1: ,     and ( ( ))   which are 

nonlinear functions, change over time. 

The sliding surface for System (7) is 

described as: 

( ( )) ( ) ( ( ( )) )0

( ( ) ( ) )

t dt


   


 

 =  +  

 + 

 (8) 
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where   and   signify the positive constant 

vajlues of the system, and 
( )

( ( ))
( )

tit
ti


  =


  

Theorem 1: Consider the disturbed dynamic 

system (7). Let the fast terminal sliding 

controller FTSMC is defined as: 

( ( ))
( )

2
( ( ))

1
( ( ( )) ( ) ( )) ( ( ))

( ( ) ( ) ) ( ( ))

2
tanh ( ( ( )))

G

 
 

  

     
 


   



  


=

 +

−  −  +  −  

 +  − 

+ 









 (9) 

where ,  ,     and G are optional positive 

constants and   is a scalar value which 

satisfies 

( ( ))
sup ( ) ( )G D D

 
  




= + +

  
  

  
 (10) 

 Then, the states of the dynamical system 

(7) move to the sliding surface (8) in the 

finite–time and remain on it. 

Proof: The Lyapunov candidate function can 

be considered as follows: 

( ) 0.5 ( ( )) ( ( ))
T

     =    (11) 

 According to TSMC theory, the sliding 

surface and its derivative to reach the slippery 

surface must be ( ( )) 0  =  and ( ( )) 0.  =  

Therefore, by deriving Equation (8), we will 

have: 

( ( )) ( ) ( ( ))( ( ) ( ) )


       =  +    +   (12) 

Substituting the (7) in (12), we will have 

 ( ( )) ( ( )) ( ) ( )

( ( ))( ( ) ( ) )

       


  

 =  +  +

+   + 
 (13) 

 Taking the derivative of the Lyapunov 

candidate (11) and substituting FTSMC (9) 

into the system (7), we will have 

( ) ( ( )) ( ( ))

( ) ( ( ))
        = ( ( ))

( ( ) ( ) )

( ( )) ( ( ))

        = ( ( )) ( ) ( ( ))

( ( ) ( ) )

( ( )) ( ( ))
        = ( ( ))

( ) ( ( )

   

T

T

T

T

     

  
  

 

  

    


 

  
  

   

=  

 +  


 + 

 +  

 + +  

 + 

 +  


−  +  

 
 
  

 
 
 
 
 

  
  
 

     + ( ( ))( ( ) ( ) )


     +  


 (14) 

 Using (9) and (14), we obtain: 

   

1
( ( )) ( ( ))

0.5
( )


     


  

+
 −  − 

 −

 (15) 

where 2 =  , 2


 =  and ( 1) 2. = +   

 Equation (15) shows that, the Lyapunov 

function (11) is decreased gradually and the 

sliding surface converges to origin in the 

finite–time. So, this completes the proof. 

 

4.2. Disturbance Formulation 

Assumption 2: In general, consider the 

constraints on the disturbance and 

uncertainty as 
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( ( ))  , ( )
1 2

F D       (16) 

where 1  and 2  denote positive unknown 

constants. 

Definition 1: To prove the efficiency of the 

controller, we consider the disturbance term 

as follows: 

( )
1 0.1sin(20 ) 18

( )
2 0.3cos(30 ) 1.5

( ) 1.5sin(12 ) 3.23
( )

( ) 2 cos(14 ) 7.2
4

6 sin(24 ) 12( )
5

7 cos(9 ) 4.7
( )

6

d
t

d
t

d t
D

d t

td

t
d














+

− +

− +
= =

−

−

+

 
  
  
  
  
  
  
  
    

 (17) 

 The hyper-chaotic system (1) by entering 

perturbation (17) as: 

( ) ( ) 0.1sin(20 ) 18
1 2

( ) 0.3cos(30 ) 1.5
3 4

2
( ) 1.5sin(12 ) 3.2

5

( ) ( ) 2 cos(14 ) 12
6

( ) 6 sin(24 ) 12
7

( ) 7 cos(9 ) 4.7
8 9

dx d a y x a v t

dy d a x a u y xz t

dz d a z xy x t

du d a y v w kyz t

dv d a y x w t

dw d a x a u v t

 

 

 

 

 

 

= − − + +

= − − − − +

= − + + − +

= + + + + −

= + − + −

= − + − + +

 

(18) 

 Fig.  display the 3-D phase portraits 

system (18) in the presence of disturbance. 

As it is known, compared to Fig. , the system 

has undergone many fluctuations and 

changes. 

 

4.3. Finite-Time Synchronization 

Formulation 
 

To achieve secure communication 

transmission, we need to design the master- 

 

 

 
Fig. 8. 3-D phase portrait system (18) with disturbance in (a) x-y-z space, (b) x-y-u space, (c) x-y-v 

space, (d) x-y-w space, (e) y-z-v space and (f) u-v-w space. 
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Fig. 9. 2-D phase portrait of master-slave systems in (a) x-y plane, (b) y-z plane, (c) z-v plane and (d) x-

w plane. 

 

slave systems. The master system is selected 

according to the main system (1) as follows: 

1 2

3 4

2

5

6

7

8 9

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

m m m m m m

m m m m m m m m

m m m m m m

m m m m m m m m

m m m m m

m m m m m m

dx d a y x a v

dy d a x a u y x z

dz d a z x y x

du d a y v w k y z

dv d a y x w

dw d a x a u v

 

 

 

 

 

 

= − −

= − − −

= − + +

= + + +

= + −

= − + −

 (19) 

with parameters as follows 

1 2 3

4 5

6 7

8 9

13.47,  0.85,  37.2,

19.41,  8.13,

2.92,  5.17,

4.32,  0.54,  0.01

m m m

m m

m m

m m m

a a a

a a

a a

a a k

= = =

= =

= =

= = =

 (20) 

 And initial conditions 

0 0

0 0

0 0

( ) 1.06,  y ( ) 2.8,

z ( ) 5.75,  u ( ) 1.4,

v ( ) 4.2,  w ( ) 0.3

m m

m m

m m

x  

 

 

= − =

= − =

= − =

 (21) 

 Similarly, for the slave system, we will 

have 

1 2

3 4

2

5

6

7

8 9

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

s s s s s s

s s s s s s s s

s s s s s s

s s s s s s s s

s s s s s

s s s s s s

dx d a y x a v

dy d a x a u y x z

dz d a z x y x

du d a y v w k y z

dv d a y x w

dw d a x a u v

 

 

 

 

 

 

= − −

= − − −

= − + +

= + + +

= + −

= − + −

 (22) 

with parameters as follows 

13,  0.95,  37,  19,
1 2 3 4

 8, 3.5,  6,  3,
5 76 8

 0.6,  0.049
9

a a a a
s s s s

a a a as ss s

a kss

= = = =

= = = =

= =

 

(23) 
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 And initial conditions 

( ) 7,  y ( ) 6,  z ( ) 0.1,
0 0 0

u ( ) 3.3, v ( ) 1.4,  w ( ) 5.7
0 0 0

x
s s s

s s s

  

  

= − = =

= − = = −
 (24) 

 The two-dimensional phase diagram of 

master-slave systems with different initial 

conditions and parameters is shown in Fig. 9. 

As you can see, the two systems behave 

differently and must be synchronized to 

transfer secure communication. 

Definition 2. The master system (19) with 

parameters (20) and initial conditions (21) 

and slave system (22) with parameters (23) 

and initial conditions (24)  can be 

synchronized in a limited time   [60]. 

lim || || 0,   j=1,2,...,Njs jm
t →

 − =  (25) 

Assumption 3: Suppose ( ) ( )i iy x =  implies 

that lim ( ) 0ie



→

= . 

Assumption 4: Let the synchronization and 

finite–time synchronization errors of System 

(19) and System (22) be as: 

 (i=1,...,6)i is ime x x= − . 

 Based on Assumption 4, to study chaos 

synchronization, the error according to 

Systems (9) and (11) can be designed as 

follows 

1

2

4
3

1 4

5

6

( )

( )

( )

( )

( )

( )

i i i

i

e

e

e
e y x

e

e

e













=

 
 
 
 

= −  = 
 
 
 
 
 

  

1 1 1 2 2 5

3 3 2 4 4

2 2

5 3

6 2 6 5 6

7 2 1 6

8 1 9 4 5

s s m m

s s m m s m

s s m m

a e a e a e

a e e a e x z x z

a e x y x y x x

a e a e e ky z ky z

a e e e

a e a e e

− + − 
 

− − − + 
 − + − + −
 

+ + + − 
 

− −
 
 − + − 

 (26) 

 According to system (7), system (26) can 

be written in matrix form 

    0    0    0( )
1 1 21

 0  1      0   0( )
3 42

( )  0    0     0    0   053

 0        0    0      1( )
6 64

( ) 1       0    0    0 15 7

( )  0     0     1 
6 8 9

a a ae

a ae

e a

a ae

e a

e a a













− −

− −

−
=

− −

− −

 
 
 
 
 
 
 
 
 
 

( )
1

( )
2

( )
3

( )
4

( )
5

( )  0
6

               01

         0

2 21
( )+

1     

1                0

0              

e

e

e

e

e

e

x z x zm m s s

x y x x y xm m m s s su
ky z ky zm m s s















−

− − + +
+

− +

  
  
  
  
  
  
  
  

  
  

 
 
 
 
 
 
  
    0

0.1sin(20 ) 18

0.3cos(30 ) 1.5

1.5sin(12 ) 3.2

2 cos(14 ) 7.2

6 sin(24 ) 12

7 cos(9 ) 4.7

t

t

t

t

t

t

+

− +

− +
+

−

−

+

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

(27) 

Definition 3. For chaos-based secure 

communication scheme, master system (19) 

and slave system (22) are synchronized in the 

finite-time using TSMC Controller (9). 

 Fig.  and Fig. 3 displays the complete 

hyper–chaos synchronization of System (19) 

and (22). According to the error Equation  
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Fig. 10. Synchronization between two master–slave systems in x-y-z states. 

 

 
Fig. 3. Synchronization between two master–slave systems in u-v-w states. 
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Fig. 4. The errors of synchronization with the controller 

 

 
Fig. 5. Comparison of controllers in the presence of a reference signal. 

 

 
Fig. 6. Tracking errors. 
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(27), when the controller is activated, the 

errors of synchronization obtained are as 

those in Fig. 4. According to the simulation 

results, it is easy to observe that the master–

slave systems are synchronized in finite-time. 

 In the following, we will compare the 

effectiveness of the designed controller (9) 

with the controller presented in [7]. Fig. 5 

compares the output of the controller (9) and 

the controller presented in [7] with respect to 

the sine reference signal. Tracking errors are 

shown in Fig. 6. As it turns out, the controller 

presented in this article provides a faster 

response than the proposed controller in [7]. 

Remark 1: The sliding-mode control 

approach is a robust control method with 

 

many powerful characteristics, such as low 

sensitivity to external disturbances and 

robustness to the uncertainties due to 

structural variations and unmolded dynamics. 

Furthermore, the finite-time control 

strategies have demonstrated better 

robustness and disturbance rejection 

properties [61]. However, the TSMC law 

introduced in this paper can overcome time-

varying parametric uncertainties and time-

varying external disturbances. 

 

5. CHAOS-BASED SECURE COMMU-

NICATION SCHEME 

In the last section, the chaotic secure 

communication system by analog signal is 

also analyzed. The analog message signal 

 

 
Fig. 7. Analog message, (a) original and recovered message signals, (b) encrypted message 

signal. 
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)(tp  is composed of a sequence of sine 

waves with frequencies  2,=  and 

sec/3 red  . In the real case, transmission 

channel adds the noise )(tnd  to the 

transmitted signals. Therefore, in the 

simulations, transmitted signals are 

impregnated with the additive white 

Gaussian noise (AWGN). To clean the 

signals from the noise, a bank of filters is 

considered as the butter worth type at the 

input of the base station and mobile 

equipment [62]. The original and recovered 

message signals are illustrated in Fig. 15. In 

this figure, the top subfigures show the 

original message signal )(tp  and the 

reiterative message signal )(~ tp . The bottom 

subfigure shows the encrypted message 

signal )(tpe
 for the analog message, 

respectively. As it can be confirmed from 

these figures, the encrypted message signal is 

recovered in st 1=  approximately. 

 

6. CONCLUSIONS 
 

A novel exponential 6D hyper–chaotic 

system was reported in this study. The 

dynamic behavior of the proposed system 

was analyzed. The new hyper–chaotic system 

had extremely complicated dynamics and 

structure. Next, a terminal sliding-mode 

controller was designed for stabilizing the 

new hyper–chaotic system with uncertainty 

and unknown disturbances. The results 

obtained from the fast terminal SMC were 

verified using the Lyapunov stability theory. 

A new controller was designed for finite-time 

synchronization between the two identical 

proposed hyper–chaotic systems in the 

presence of unequal parameters, different 

initial conditions and matched disturbances. 

The new controller feature was that the 

sliding surface designed with the high–order 

power function of error and the derivative of 

error was new and stable. Finally, the 

numerical simulations showed the viability of 

the designed methods. The simulations 

demonstrated that the analytical results and 

computational results are similar. 
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