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Abstract 

Nowadays, vehicles must be able to localize themselves in all environments, including urban areas 

and indoor environments where the performance of Global Navigation Satellite Systems (GNSS) 

may be reduced. In the studies conducted so far in urban environments, an inertial measurement 

unit (IMU) and an extended Kalman filter (EKF) have been presented. For indoor environments, 

a light and range detection system (LiDAR) has been developed, which was more accurate than 

previous methods. However, the accuracy of diagnosis should be improved by providing newer 

methods  .Therefore, in this article, in order to increase the accuracy of the position error of the 

internal navigation system, an integrated developed IMU/LiDAR Kalman filter was used, and then 

by optimizing the parameters of the Kalman filter and the gray wolf meta-heuristic algorithm, an 

attempt was made to reduce the position error. In order to check the performance of the presented 

method, the results before using the optimization algorithm and after the optimization were 

evaluated using three different paths. The obtained results, including position, speed, and direction 

show that the accuracy of the results increases by using the gray wolf algorithm compared to the 

conventional model. 

 

Keywords: Indoor Vehicular Navigation, IMU/LiDAR, Extended Kalman Filter (EKF), Grey Wolf 

optimization. 

  

1. INTRODUCTION 
 

 The ability to self-localize is essential for 

many mobile systems, including autonomous 

vehicles, virtual reality setups, and domestic  

 

 

 
robots [1]. Such systems have many 

applications including entertainment, 

delivery services, and emergency response. 

These systems use the knowledge of their 

location to perform tasks like avoidance of 

dangerous situations, navigation to *Corresponding Authors Email:     
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objectives, and mapping of unknown areas. A 

Global Navigation Satellite System (GNSS) 

is a powerful tool for localization involving 

communication between a receiver and 

satellites in Medium Earth orbit (MEO) [2]. 

In urban environments where GNSS is 

mostly available, GNSS, an exteroceptive 

system, is often fused with Inertial 

Navigation Systems (INS), which use 

proprioceptive sensors that measure linear 

and angular motion of a platform. In indoor 

navigation where GNSS is unavailable, 

common sensor setups are used including 

Light Detection and Ranging (LiDAR) 

and/or cameras as exteroceptive components 

and Inertial Measurement Units (IMUs) 

and/or wheel odometry as proprioceptive 

components [3]. Radio Detection and 

Ranging (radar) sensors as exteroceptive 

point cloud scanners are a relatively new 

development with unique characteristics 

compared to LiDAR technology. 

 To address the urban and indoor 

localization problem, fusion of both 

exteroceptive and proprioceptive sensors is 

necessary and effective for several reasons. 

Exteroceptive sensors receive information 

from the environment to perform localization 

using targets with known poses, resulting in 

low drift estimations in many situations. 

They can also be used to recognize areas that 

have been seen before and use this 

information to improve the pose trajectory 

estimate. This use of exteroceptive sensors to 

learn and recognize the environment is 

known as Simultaneous Localization and 

Mapping (SLAM) which is a very effective 

method for localization. Proprioceptive 

sensors do not depend on the environment 

and, in the case of IMUs, can provide pose 

data in any situation. These sensors use dead 

reckoning to determine pose, which results in 

drift over time. 

 Therefore, proprioceptive sensors are 

best used for short-term localization data, and 

exteroceptive sensors are best used for 

periodic accurate localization and mapping 

corrections. The complementary effect of 

both types of sensors allows for a well 

performing localization system in favorable 

conditions. Current state of the art 

autonomous vehicles emphasize the reliance 

on a fusion of imperfect sensors since there is 

no single ideal sensor for every situation, and 

therefore primarily use a combination of 

LiDAR, radar, GNSS, IMU, and vision [4]. 

 The rest of this paper is organized as 

follows: Section 2 gives the workflow of 

Indoor Localization and Navigation methods. 

Section 3 presents the LiDAR/IMU 

integrated system using optimal EKF and 

describes the mathematic principle of the 

proposed method; Section 4 presents the test 

results and discusses the results; conclusions 

are drawn in Section 5. 

 

2. INDOOR LOCALIZATION AND 

NAVIGATION METHODS 
 

2.1. Indoor Localization  
 

In indoor settings, LiDAR scanners are 

common sensors used in localization without 

GNSS. 2D LiDAR scanners are commonly 

used for ground vehicles due to their reduced 

cost and complexity. However, 2D LiDAR 

systems also perform poorly under certain 

circumstances, such as in environments 

where limited distinguishable geometry 

exists like in long corridors (Figure 1). 
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Fig. 1. Long hallway where short range LiDAR detects parallel straight lines. 

 

 

 Because 2D LiDAR scans detect most 

solid objects on a horizontal plane, a hallway 

appears as points arranged in two parallel 

lines. Scan matching with such features 

results in poor performance [5].  

 In another article, it was proposed a 

fingerprint-based indoor localization method, 

named FPFE (fingerprint feature extraction), 

to locate a target device (TD) whose location 

is unknown. in this method Bluetooth low 

energy (BLE) beacon nodes (BNs) are 

deployed in the localization area to emit 

beacon packets periodically. The 

experimental results show that FPFE 

achieves an average error of 0.68 m, which is 

better than those of other related BLE 

fingerprint-based indoor localization 

methods [6]. 

 In the article [7] the Kalman Filter-Based 

Data Fusion of Wi-Fi RTT and PDR for 

Indoor Localization is used. Firstly, an 

adaptive filtering system consisting of 

multiple Extended Kalman Filter (EKF) and 

a new outlier detection method is proposed to 

reduce the localization error of Wi-Fi RTT. 

Secondly, the fusion algorithm based on the 

Federated Filter (FF) and observability is 

designed to combine Wi-Fi RTT with PDR. 

Finally, to further improve the localization 

performance of the fusion algorithm, a real-

time smoothing method with fixed interval is 

used. The results show that the proposed 

indoor localization method has better 

stability and robustness, and the average 

localization error decreased by 37.4-67.6% 

compared with the classic EKF-based 

method. 

 In reference [8], Smartphone-based 

indoor localization techniques are presented. 

Smartphone is now undeniably essential and 

a very functional tool for everyone. As the 

need for more powerful computations, faster 

communications, and more sophisticated 

location-based services, the number of 

powerful embedded sensors also becomes 

indispensable in smartphones. This article 
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explores the sensing capabilities of different 

smartphone sensors and how they become 

more functional in the context of wireless-

based localization. It identifies the different 

techniques for efficient indoor localization 

using the modalities inherent in smartphones. 

A taxonomy based on the notable approaches 

used in the system such as mapping, path loss 

prediction, and dead reckoning is also 

defined. The strengths and weaknesses of 

each system and identification and 

comparison of the technologies used are 

highlighted. Finally, open issues and 

challenges for future works are presented. 

 In [9] a method is proposed using multi-

view variational deep learning with 

application to practical indoor localization. 

This article introduces a view-selective deep 

learning (VSDL) system for indoor 

localization using CSI of WiFi. The multi-

view training with CSI obtained from 

multiple groups of access points (APs) 

generates latent features on a supervised 

variational deep network. This information is 

then applied to an additional network for 

dominant view classification to minimize the 

regression loss of localization. As 

noninformative latent features from multiple 

views are rejected, we can achieve a 

localization accuracy of 1.28 m, which 

outperforms by 30% the best known accuracy 

in practical applications in a complex 

building environment. 

 The matching results from using this 

geometry only provide localization 

confidence in the direction perpendicular to 

the hallway. Wheel odometry or Inertial 

Measurement Unit (IMU) dead reckoning is 

often used to aid in these systems when the 

exteroceptive sensors fail, and therefore can 

provide estimates along the uncertain 

dimensions. However, such dead reckoning 

systems have their own sources of 

uncertainty that accumulate the longer 

traversal of the environment continues 

without updates from external measurements. 

 

2.2. Inertial Measurement Unit (IMU) 
 

Micro-Electromechanical Systems (MEMS) 

IMUs are widely used motion sensors due to 

their low cost, low power, and small form 

factor. Most importantly, the fact that IMUs 

are completely proprioceptive and do not 

need any contact or transmission from the 

external world makes them an attractive 

technology. They are often used in most 

mobile systems for their ability to calculate 

attitude and pose with low resource cost. 

 IMUs measure accelerations and rates of 

rotations using accelerometers and 

gyroscopes, respectively. Sensing these 

motions is done using Newton’s first law of 

motion, which states that an object’s 

acceleration is proportional to the applied 

external forces on the object. In MEMS IMU 

sensors, an accelerometer uses a mass 

connected to a method of suspension with the 

displacement of the mass indicating the force 

(which is proportional to acceleration) 

applied in the direction along the suspension. 

Gyroscopes measure rates of rotations using 

the same concept applied to vibrating masses 

affected by Coriolis forces [10]. 

 MEMS IMUs suffer from a high degree 

of error, including biases, scale factors, cross-

coupling, and random noises. Without 

accurately characterizing these errors, the use 

of IMUs to estimate pose is often extremely 

limited in effectiveness due to the double 

integration necessary to calculate position 
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from acceleration. Methods for 

characterizing IMU errors have been 

developed to correct this issue, including use 

of Gauss-Markov (GM) random processes 

and Allan Variance (AV) techniques. The 

current approach of using these techniques is 

to generate long records of static 

measurements to obtain modelling 

parameters [11-12]. However, these methods 

do not handle disturbances or changes in the 

environment and may not result in accurate 

tuning for practical dynamic motions. In 

general, pose estimates are accurate within a 

few seconds, but errors quickly grow 

unbounded to hundreds of meters in a few 

subsequent seconds. Therefore, IMUs are 

often good with estimating pose in the short 

term but cannot be relied upon in the long 

term. 

 The current literature contains several 

attempts to estimate movement smoothness 

using data from IMUs, many of which 

assume that the translational and rotational 

kinematics measured by IMUs can be 

directly used with the smoothness measures 

spectral arc length (SPARC) and log 

dimensionless jerk (LDLJ-V). However, 

there has been no investigation into the 

validity of these approaches. [13-14], But 

Authors In [15], systematically evaluated the 

use of these measures on the kinematics 

measured by IMUs. They demonstrated that 

the accuracy of LDLJ-A depends on the time 

profile of IMU orientation reconstruction 

error. 

 

2.3. Light Detection and Ranging (LiDAR) 
 

LiDAR sensors send out beams of light and 

measure reflections to create 2D or 3D scans. 

They are often used to make high-resolution 

3D maps for land surveying, geology, 

forestry, and navigation. LiDAR sensors are 

often known for being powerful technology 

with a large price tag and complex 

mechanical structure. However, recent 

developments have produced cheaper 

designs with similar characteristics to high 

end systems, making them more accessible to 

a wider audience [16]. 

 LiDAR emits ultraviolet, visible, or near 

infrared light in a beam commonly steered by 

rotating mirrors. These beams can detect 

most materials at very high resolutions, 

resulting in a system that is able to map 

physical structures at a centimeter level 

resolution. By measuring the difference in 

time between transmitting and receiving a 

beam, the distance travelled by the beam can 

be determined. By measuring the angle of the 

rotating mirrors with rotary encoders at the 

time of reception, the direction of the beam 

can be recovered with high angular 

resolution. The output of LiDAR scanners is 

typically point cloud data, which represents 

3D or 2D points for every beam emitted in 

one cycle of the mirror rotations [17]. 

 LiDAR as a navigation tool suffers from 

issues such as being obstructed by rain, 

aerosols, and dust. Furthermore, moving 

components pose more risk for mechanical 

failure and wear and tear. In summary, 

LiDAR sensors have high potential in being 

an accurate source of localization data in 

many environments but cannot be relied upon 

for every situation yet. Authors in [18] 

evaluated Lidar for Autonomous Driving. 

This article presents a review of state-of-the-

art automotive lidar technologies and the 

perception algorithms used with those 

technologies. Lidar systems are introduced 
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first by analyzing such a system's main 

components, from laser transmitter to beam-

scanning mechanism. The advantages/ 

disadvantages and the current status of 

various solutions are introduced and 

compared. Then, the specific perception 

pipeline for lidar data processing is detailed 

from an autonomous vehicle perspective. The 

model-driven approaches and emerging deep 

learning (DL) solutions are reviewed. 

Finally, provided an overview of the 

limitations, challenges, and trends for 

automotive lidars and perception systems. 

 

3. PROPOSED METHOD 
 

3.1. IMU/LIDAR System 
 

The mathematical model of the traditional 

sequential integrated LiDAR/IMU system is 

shown in Figure 2. The IMU can calculate 

position (rn
IMU), velocity (Vn

IMU), and 

attitudes (Cn
bIMU) using a mechanized 

algorithm, when no LiDAR observation 

information is received. The North, East, and 

Lower Local Area Frame (NED), called the 

n-frame navigation frame, is used as a 

reference framework for inertial navigation. 

The b-frame is defined in the center of the 

IMU, and the axes are forward, straight, and 

down, respectively. In fact, the IMU output 

contains errors, and errors cause navigation 

results to change rapidly over long periods of 

time. Therefore, an error propagation model 

should work alongside the system motion 

model to further correct and obtain better 

navigation results. The error state vector in n-

frame is defined as follows [19]: 
 

𝛿𝑥(𝑡) = [(𝛿𝑟𝐼𝑀𝑈
𝑛 )𝑇(𝛿𝑣𝐼𝑀𝑈

𝑛 )𝑇𝜖𝑇𝑏𝑔
𝑇𝑏𝑎

𝑇]       (1) 

 

where the error state 𝛿𝑥 consists of the errors 

of position (𝛿𝑟𝐼𝑀𝑈
𝑛 ), the errors of velocity 

(𝛿𝑣𝐼𝑀𝑈
𝑛 ), the errors of attitude (𝜖), the bias of 

gyroscope (𝑏𝑔), and the bias of acceleration 

(𝑏𝑎), which is a 15-dimension vector. 

The biases of gyroscope and accelerometer 

are modeled as a first-order Gauss-Markov 

process with correlation time 𝑇 and mean 

square value 𝜎2. The model is described by: 

 

 
Fig. 2. System architecture diagram of the estimation of navigational solution based on LiDAR/IMU. 
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�̇�𝑔(𝑡) = −
1

𝑇𝑔𝑏
𝑏𝑔(𝑡) + 𝜔𝑔𝑏(𝑡)                    (2) 

 

�̇�𝑎(𝑡) = −
1

𝑇𝑎𝑏
𝑏𝑎(𝑡) + 𝜔𝑎𝑏(𝑡)                    (3) 

 

 In equations (2) and (3), the bias of 

gyroscope (𝑏𝑔), and the bias of acceleration 

(𝑏𝑎), correlation time 𝑇, and 𝜔 is the forcing 

vector of white noise. The INS error model 

with the sensor error models in continuous 

time can be expressed by 
 

𝛿𝑥(𝑡)̇ = 𝐹(𝑡)𝛿𝑥(𝑡) + 𝐺(𝑡)𝜔(𝑡)              (4) 
 

𝐹 is the dynamic matrix, 𝐺 is a noise-input 

mapping matrix, and 𝜔 is the forcing vector 

of white noise, according to the system 

motion model and concrete formation of 𝐹, 𝐺 

that can be found in the works of Shin, 2001 

and 2005 [20, 21]. The discrete form of (4) is: 
 

∅𝑘/𝑘−1 = exp(𝐹(𝑡𝑘)∆𝑡) ≈ 𝐼 + 𝐹(𝑡𝑘)∆𝑡   (5) 

 

 In the above relationship  𝑤𝑘−1 is a 

sequence of zero-mean random variable and 

covariance matrix associated with 𝑤𝑘 is 

given by: 
 

𝐸[𝑤𝑘𝑤𝑗
𝑇] = {

0      𝑘 = 𝑗
𝑄𝑘   𝑘 ≠ 𝑗

 

                              (6) 

 

𝑄𝑘 ≈ ∅𝑘𝐺(𝑡𝑘)𝑄𝐺(𝑡𝑘)𝑇∅𝑇∆𝑡                    (7) 
 

𝑄 = 𝑑𝑖𝑎𝑔(𝑣𝑟𝑤2, 𝑎𝑟𝑤2,
2𝜎𝑔𝑏

2

𝑇𝑔𝑏
,

2𝜎𝑎𝑏
2

𝑇𝑎𝑏
)            (8) 

 

𝑄𝑘 is the covariance matrix; 𝑄 is the spectral 

density matrix; vrw and arw are velocity 

random walk and angular random walk, 

which are given by the IMU user manual; 𝑇𝑔𝑏 

and 𝑇𝑎𝑏 are the correlation times of 

gyroscopes and accelerometers, respectively; 

𝜎2
𝑔𝑏 and 𝜎2

𝑎𝑏 are the mean square values of 

gyroscopes and accelerometers. 

 

3.2. EKF Parameter Tuning 
 

The IMU/LIDAR EKF system contains both 

parameters that are approximately 

measurable and parameters that are 

completely unknown. The process 

covariance matrix for instance, commonly 

denoted Q, contains the random walk error of 

the IMU sensors, which can be estimated 

through certain modelling techniques but 

cannot be calculated optimally. The 

measurement noise covariance matrix, 

denoted R, is unknown and can often only be 

tuned in a manual trial and error method. 

These matrices are of high importance since 

they directly impact the degree to which the 

filter favors one sensor reading over another, 

and small variations in some values may 

result in a complete divergence in the 

estimation. Therefore, optimal tuning of 

these matrices is strongly desired. 

 The LiDAR and IMU measurements are 

fused by the EKF algorithm only at the epoch 

in which LiDAR scan information is 

obtained. The EKF observation functions are 

given briefly: 
 

𝑧𝑘 = [
𝑟𝐼𝑀𝑈

𝑛 𝑟𝐿𝑖𝐷𝐴𝑅
𝑛

𝜖𝐼𝑀𝑈
𝑛 𝜖𝐿𝑖𝐷𝐴𝑅

𝑛 ] = 𝐻𝑘𝛿𝑥𝑘 + 𝑣𝑘)      (9) 

 

where 𝑧𝑘 is a 4-dimensional measurement 

vector; 𝑟𝑛
IMU is the predicted position from 

the IMU mechanization; 𝑟𝑛
LiDAR is the 

observed position from LiDAR; 𝜖𝑛
IMU and 

𝜖𝑛
LiDAR are the predicted and observed 

heading angles, respectively, which are 

expressed as Euler angles. They make up the 
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four observations. 𝐻𝑘 is the designed matrix 

that describes the relation between the state 

vector and the measurements and is given in 

(10); V𝑘 is the driven response of the input 

white noise at time (𝑘+1). The measurement 

covariance matrix is written as: 
 

𝛿𝑥𝑘=1
− 𝐸[𝑣𝑘𝑣𝑗

𝑇] = {
0   𝑘 = 𝑗

𝑅𝑘   𝑘 ≠ 𝑗
                    (10) 

 

𝑅𝑘 = 𝑑𝑖𝑎𝑔(𝛿𝑟
2, 𝛿𝑐

2)                                 (11) 
 

𝑅𝑘 is a 4-dimension covariance matrix. 𝛿𝑟, 𝛿𝜖 

are the errors of position and heading, which 

approximate values based on the properties 

of the laser scanner device, and the angle and 

range searching intervals of the LiDAR scan 

matching algorithm. The estimates of the 

EKF prediction functions are: 
 

𝛿𝑥𝑘+1
− = ∅𝑘𝛿𝑥𝑘

                                          (12) 
 

𝑃𝑘+1
− = ∅𝑘𝑃𝑘∅𝑘

𝑇 + 𝑄𝑘                                 (13) 
 

The Kalman gain is: 
 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)−1                (14) 
 

The state vector is updated as: 
 

𝛿𝑥𝑘 = 𝛿𝑥𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘𝛿𝑥𝑘

−                 (15) 
 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
−                                    (16) 

 

where 𝛿𝑥− 𝑘 and 𝑃− 𝑘 are the prior estimate 

and its error covariance. The 𝑃 matrix, 

namely, the estimated standard deviations of 

the estimated states. 

 

3.3. EKF Parameter Optimization using 

GWO 
 

Meta-heuristic algorithm is one of the 

optimizing techniques. It is inspired by the 

principles or structures of nature and is used 

to solve optimization problems [22-24]. In 

the past 20 years, the optimization algorithm 

has received extensive attention and has been 

well developed. After all, it is a new type of 

optimization method, and can describe all 

aspects of nature to create a different 

optimization model. There are many aspects 

in this area, such as particle swarm 

optimization (PSO) [25], genetic algorithm 

(GA) [26], Teaching and Learning Based 

Optimization (TLBO) [27]. 

 GWO is a bionic optimization algorithm. 

It mimics the behavior of grey wolves to 

capture prey with a clear division of labor and 

mutual cooperation. At the top of the food 

chain, grey wolves mostly prefer to live in a 

pack [28]. Usually, there are 5–12 wolves in 

each group. They have a strict hierarchical 

management system that constitutes a 

hierarchical pyramid as shown in Fig. 3. This 

hierarchy allows the grey wolf pack to 

efficiently kill the prey. α layer is the head 

wolf, which is the strongest and most capable 

individual. It is also the only leader in a wolf 

pack, who directs the team’s predation 

actions, food distribution, and other decision-

making tasks. β and δ layers are two wolves 

that are second only to α, their responsibility 

is mainly to assist α in the behavior of group 

organizations. ω is at the bottom of the 

pyramid, which occupies the majority of the 

total, and is mainly responsible for balancing 

the internal relationship of the population and 

looking after the young. 

 GW is well suited for the large search 

space and complex relationships of the EKF 

parameters. This GWO is used to optimize 

the performance of the EKF, which is 

represented by minimizing a fitness function 
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shown in Figure 4. The fitness function takes 

an input in the form of a parameter set and 

uses the parameters in the EKF to estimate a 

trajectory. The corresponding position, 

velocity, and attitude ground truth solution 

for this trajectory is provided by a separate 

high-end INS/GNSS system, further 

described below. After the collection of both 

raw data and ground truth, the EKF tuning 

process is done offline. The difference 

between the EKF estimation and the known 

ground truth trajectory is used to produce the 

Root Mean Square Error (RMSE) of each 

state estimation. The RMSE of each state is 

then weighted and summed according to the 

equation in Figure 4, where the state errors 

are shown as east, north, and altitude in 

meters; and roll, pitch, and heading in 

degrees. The fitness function takes into 

account the scale differences between meters 

and radians by a separate weighting factor for 

each RMSE. The relative impact of the 

heading error is then compensated by a larger 

weight relative to the weights of the other 

errors. These weights are chosen through trial 

and error to achieve the best pose RMSE as 

determined by the users. 

 The process of the algorithm starts with 

generating a population of parameter sets 

uniformly distributed between bounds. The 

upper and lower bounds are empirically 

selected to leniently encompass all feasible 

values of the parameters, and the population 

is set to 100, chosen through trial and error. 

Each parameter set is evaluated by the fitness 

function and ranked according to fitness. A 

standard GWO and an example of the results 

is shown in Figure 5. 

 

 
Fig. 3. Different grades of grey wolves. 

 

 
 

Fig. 4. Block diagram of fitness function. 
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Fig. 5. Grey Wolf Optimization results. 

 

Table 1. Nominal parameters. 

 

GM Standard Deviation GM Time Constant(s) AV random Walk 

x y z x y z x y z 

Gyro(rad/s) 0.034 0.028 0.025 5194 4062 7439 0.13 0.14 0.14 

Accel(m/s2) 0.007 0.034 0.003 3619 103.32 6319 0.02 0.02 0.03 

 

4. RESULTS 
 

4.1 Nominal Design Point 
 

First, GM and AV methods are applied to 

find the nominal design point. From the 

autocorrelation function of a 7-hour 

stationary IMU data recording, the GM bias 

time constants and standard deviations are 

calculated and displayed in Table 1. The AV 

random walk is also displayed in Table 1. For 

the rest of the parameters, values were tuned 

manually by trial and error over a few 

iterations. 

 

4.2. Nominal and GWO Results 
 

The above nominal values are then used with 

the EKF to estimate the trajectory. The 

performance results in RMSE are displayed 

in Table 2. The Grey wolf is then run to tune 

all parameters, where individuals are defined 

as sets of EKF parameters and wolves are 

individual parameters. 

 Using the m-file in MATLAB and Grey 

Wolf Algorithm Coding, with the population 

set to 100, the Grey wolf algorithm tuned 

EKF performed significantly better than that 

of the nominal EKF. In the results shown in 

Table 2, Grey wolf particularly improved the 

heading divergence that was produced by the 

nominally tuned EKF. 
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Table 2. RMSE result with Nominal and optimization Tuned parameters (Dataset 1). 

RMSE 

Nominal Tuned parameters Grey wolf Tuned parameters 

Position(m) Velocity(m/s) Orientation(deg) Position(m) Velocity(m/s) Orientation(deg) 

East 0.86 0.32 0.59 0.59 0.08 0.38 

North 2.20 0.66 0.51 0.51 0.11 0.13 

Altitude 0.55 0.11 7.88 7.88 0.02 1.52 

 
Table 3. RMSE Results for Datasets 1 and 2 with Grey wolf optimization. 

RMSE 

Dataset2 Dataset3 

Position(m) Velocity(m/s) Orientation(deg) Position(m) Velocity(m/s) Orientation(deg) 

East 0.06 0.05 0.27 0.09 0.09 0.29 

North 0.11 0.10 0.14 0.08 0.09 0.61 

Altitude 0.09 0.03 1.84 0.09 0.05 1.69 

 

 

4.3. Filter Validation 
 

EKF validation is done to confirm that the 

tuned parameters allow the EKF to properly 

model sensor characteristics and converge to 

accurate estimations for multiple trajectories 

that have not been used in the tuning and have 

not been seen by the filter before checking for 

over fitting. Using a GWO tuned parameter 

set, the performance results of an EKF 

estimation for two other trajectories are 

shown in this section. Three datasets named 

dataset 1, dataset 2, and dataset 3 were 

analyzed using Kalman filter without 

optimization and then using gray wolf 

optimization and localization accuracy was 

obtained which is given in the table below.

 

 Table 3 shows the RMSE results of using 

tuned parameters in the EKF for test datasets 

1 and 2. The parameters used have been tuned 

by the GWO on the tuning dataset only. The 

low error shows that the tuned EKF performs 

well for a variety of trajectories in addition to 

the dataset used to tune the parameters which 

verifies that there is no overfitting and the 

tuned filter can be used for other data sets that 

have not been used in the tuning process. 

 Table 3 shows the RMSE results of using 

tuned parameters in the EKF for 3 sets. The 

low error shows that the tuned EKF performs 

well for a variety of trajectories. In other 

words, path estimation using the gray wolf 

optimization algorithm is much more 

accurate than the conventional method. 
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(a) 

 
(b) 

 

 
(c) 

Fig. 6: Trajectories used and results. 
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5. Conclusion 
 

In this paper, we tried to investigate the 

Indoor Vehicular Navigation using IMU and 

LiDAR and optimize the parameters of the 

Extended Kalman filter in this navigation 

system using the Grey Wolf optimization 

algorithm. To do this, the conventional IMU 

/ LiDAR system was described and its 

mathematical relations were presented. Then, 

the Gray Wolf meta-heuristic algorithm was 

used to optimize its filter parameters. The 

results include comparisons between 

conventional and optimized IMU / LiDAR 

systems. It was shown that the application of 

meta-heuristic algorithm in optimizing the 

Kalman filter parameters can perform the 

navigation results of Indoor Vehicular 

Navigation more accurate.  Therefore, for 

future work, it is suggested that the power of 

other meta-heuristic algorithms in vehicle 

navigation be examined and that other 

vehicle navigation systems be examined with 

this approach. 
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