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Abstract 

The actuator failure and sensor bias pose very important challenges in the aerospace industry. Why 

adaptive control is a good way to deal with these problems? The paper addresses the problem of 

actuator failures and sensor bias compensation using the combination of a model reference adaptive 

control (MRAC) approach and Kalman filter (KF) for state tracking objective. To comply this 

condition, an enhanced MRAC method is introduced for state tracking based on state feedback 

configuration and a number of adaptation laws have been formulated to maintain the desired system 

performance. The Kalman filter is used to estimate the states despite sensor bias, providing excellent 

and reliable estimates. Simulation results demonstrate the effectiveness of the presented method to 

achieve good state tracking performances in spite of the presence of actuator failures and sensor bias. 
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1. INTRODUCTION 
 

One of the important applications of adaptive 

control is in actuator failures and sensor bias 

compensation which has many applications 

including aircraft, flight control systems and 

so on. 

An adaptive control system is defined as a 

 

 
 feedback control system intelligent enough 

to adjust its characteristics in a changing 

environment so as to operate in an optimum 

manner according to some specified criterion 

[8]. By using MRAC, systems can eventually 

achieve stability, closed-loop signals 

boundedness and desired system 

performance. MRAC method can be used for 

state tracking or output tracking, related to a 
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reference model, by using the matching 

parameters from the point of view of the 

stability and control ability [5]. 

 Actuator fault can be unknown, in other 

words, the type and value of fault and the fact 

that which actuator failing is occurring are 

uncertain. For example, some unknown 

inputs may be stuck at some unknown fixed 

values at unknown time instants. Adaptive 

control of systems with actuator failures 

intends to compensate for uncertain failures 

with adaptive tuning of controller parameters 

based on system response errors to achieve 

desired system performance. 

 Unknown biases can appear during 

operation in sensors such as rate gyros, 

accelerometers, altimeter and etc. It should 

be noted that using standard MRAC laws 

cannot achieve closed-loop stability in the 

presence of sensor bias in state feedback [11]. 

Sensor bias estimation and compensation are 

important challenges in the past researches. 

For example, in Patre and Joshi (2011), a 

method is provided for sensor bias estimation 

as a part of the adaptive control law. In Bevly 

and David M (2004) [1], Vemuri.A.T (2001) 

[18], Healey.A.J et al. (1998) [4] bias 

estimation for multisensory systems has been 

investigated. A multivariable MRAC scheme 

with sensor uncertainty compensation has 

been studied in [3]. Adaptive detection of 

sensor uncertainties and failures was 

presented in [16]. Output feedback MIMO 

MRAC schemes with sensor uncertainty 

compensation was presented in [12]. In 

addition, both actuator failures and sensor 

bias compensation were studied in [6]. In the 

latest research, Ge Song and Gang Tao in 

2017 [14] designed new adaptive controller 

structure that has the capability of ensuring 

plant-model matching with ability of 

compensating all possible uncertain sensor 

failures at the same time. It can also 

guarantee asymptotic output tracking and 

closed-loop signal boundedness in the 

presence of the various uncertainties. 

Furthermore, Zehui Mao and Gang Tao [10] 

presented an adaptive failure compensation 

scheme with the adaptive controller for 

healthy system, which are developed to deal 

with the unknown parameters in the plant and 

traction system actuator failures [14].  

In this paper, KF is used for sensor bias 

estimation as the optimal observer. KF can 

estimate the system states and outputs based 

on measurement noise and random inputs [2]. 

As a result, an unbiased estimation is 

achieved that is crucial for enhanced MRAC 

tracking control. The enhanced MRAC 

control can stabilize the closed loop system 

provided that the unbiased estimation is in 

hand.  

 The organization of the paper is as 

follows; in section 2 the system architecture 

and bias estimation are presented, section 3 

describes the enhanced MRAC control and 

section 4 shows the result of simulation. 

 

2. SYSTEM ARCHITECTURE AND 

BIAS ESTIMATION 

 

Consider the linear plant dynamics as: 
 

�̇�(𝑡) = 𝐴𝑥(𝑡) +  𝐵𝑢(𝑡)  

𝑦 = 𝑥(𝑡) + 𝛽 

 

(1) 

 

where 𝐴 ∈ 𝑅𝑛×𝑛 is the system matrix, 𝐵 ∈

𝑅𝑛×𝑚 is a known input matrix, 𝑥(𝑡) ∈ 𝑅𝑛 is  
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Fig. 1. KF Performance. 

 

the system states, 𝑢(𝑡) ∈ 𝑅𝑚 is the control 

input and 𝑦(𝑡) ∈ 𝑅𝑛 is the available state 

measurement with an unknown constant bias 

𝛽 ∈ 𝑅𝑛 . 

 

2.1. Sensor Bias Compensation 
 

To achieve the state tracking and sensor bias 

estimation, firstly, states and output 

estimation is performed by KF, which results 

an unbiased estimation. 

 The KF is an optimal observer. An 

observer is used to calculate state variables 

that are not accessible from the output [9]. 

Due to the presence of sensor bias, the state 

variable cannot be measured. Actually, KF is 

a dynamical system whose inputs are the 

plant inputs and outputs. The system states 

and outputs may be accompanied by process 

or measurement noises respectively. KF 

outputs are estimates of the state variables 

and the output without noise [2], [7]. When 

state variables are not measurable for state 

feedback and when the plant output has bias, 

KF can be used. Figure 1 shows the KF filter 

inputs and outputs. 

 To compensate sensor bias, 'corrected' 

state �̅�(𝑡) ∈ 𝑅𝑛 is defined as: 
 

�̅� = 𝑦 − �̂� (2) 
 

 Therefore, we can define corrected-state 

equation as: 

�̇̅� = 𝐴�̅� + 𝐵𝑢 (3) 

�̅� = 𝐶�̅� 
 

 Considering (3), the state-space equation 

for above KF dynamical system is: 
 

�̇̂� = 𝐴�̂�(𝑡) + 𝐵𝑢(𝑡) + 𝐿(�̅� − �̂�) 

�̂� = 𝐶�̂� 

(4) 

 

where �̂� ∈ 𝑅𝑛 and 𝐿 should be selected so 

that the estimation error converges to zero 

asymptotically. Subtracting equation (4) 

from (3) gives: 
 

(�̇̅� − �̇̂�) = 𝐴(�̅� − �̂�) − 𝐿(�̅� − �̂�) 

(�̅� − �̂�) = 𝐶(�̅� − �̂�) 

(5) 

 

 and substituting the output equation into 

the state equation results: 
 

(�̇̅� − �̇̂�) = (𝐴 − 𝐿𝐶)(�̅� − �̂�) (6) 
 

Letting �̃� = �̅� − �̂�, therefore 
 

(�̇̃�) = (𝐴 − 𝐿𝐶)�̃� (7) 
 

 If all eigenvalues of (𝐴 − 𝐿𝐶) are 

negative, then the estimated state vector 

error, �̃� , will decay to zero. 

 For the values of 𝐿 to yield a desired 

characteristic equation and good response in 

equation (7), the equation: 
 

det  [𝜆𝐼 − (𝐴 − 𝐿𝐶)] = 0 (8) 
 

is solved for 𝐿, given desired eigenvalues. 

 

3. ADAPTIVE CONTROLLER 

STRUCTURE 
 

The adaptive controller guarantees 

boundedness and state tracking in the 

presence of actuator failures and unknown 

sensor bias. The type of actuator failures is 

modeled as: 
 

𝑢𝑗(𝑡) =  �̅�𝑗  , 𝑡 ≥ 𝑡𝑗  , 𝑗𝜖{1,2, … , 𝑚} (9) 
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Fig. 2. Control system with actuator failures [15]. 

 

 

where the constant value �̅�𝑗  and the failure 

time instant 𝑡𝑗 are unknown. For example, we 

can mention an aircraft control surface (such 

as the rudder or an aileron) is stuck at some 

unknown fixed value. As a basic assumption, 

the remaining actuators (controls) can still 

achieve a desired control objective for any 

value up to m − 1 actuator failures. 

 In the presence of actuator failures, the 

input vector 𝑢(𝑡) can be described by:  
 

𝑢(𝑡) = 𝑣(𝑡) +  𝜎(�̅� −  𝑣(𝑡)) (10) 

 

where 
 

�̅� =  [�̅�1 , �̅�2, … , �̅�𝑚]𝑇 

𝜎 = diag{𝜎1, 𝜎2, … , 𝜎𝑚} 

𝜎𝑖 = 1  if the 𝑖th actuator fails, 

 i. e. , 𝑢𝑖 =  �̅�𝑖 

𝜎𝑖 = 0        otherwise. 

 

 

 

(11) 

 

𝜎 is a diagonal matrix (failure pattern matrix) 

whose entries are piecewise constant signals 

that take on the values of zero or one as 

shown in Fig. 2. The actuator failures are 

uncertain in value, pattern and time of 

occurrence. The objective is to design an 

adaptive feedback control law using the 

available measurement 𝑦(𝑡) with unknown 

bias 𝛽  that closed-loop signal boundedness 

is ensured and the system states 𝑥(𝑡) track the 

states of a reference model described by: 
 

�̇�𝑚(𝑡) = 𝐴𝑚𝑥𝑚(𝑡) + 𝐵𝑚𝑟(𝑡) (12) 
 

where 𝑥𝑚 ∈ 𝑅𝑛 is the state of reference 

model, 𝐴𝑚 ∈ 𝑅𝑛×𝑛, 𝐵𝑚 ∈ 𝑅𝑛×𝑚𝑟, and 𝑟(𝑡) ∈

𝑅𝑚𝑟  (1 ≤ 𝑚𝑟 ≤ 𝑚) (this paper considers 

𝑚𝑟 = 1) is a bounded reference input used in  

the system operation (e.g., pilot input in the 

case of aircraft).  

 For every failure pattern the following 

conditions are assumed in a way that there are 

gains 𝐾1 ∈ 𝑅𝑛×𝑚 , 𝐾2 ∈ 𝑅𝑚, and 𝐾3 ∈ 𝑅𝑚 

which satisfy following equation [6]: 
 

𝐴 + 𝐵(𝐼 − 𝜎) 𝐾1
𝑇 =  𝐴𝑀  

𝐵(𝐼 − 𝜎) 𝐾2 =  𝐵𝑀     

𝐵𝜎�̅� =  −𝐵(𝐼 − 𝜎)(𝐾1
𝑇𝛽 + 𝐾3).   

 

 

(13) 
 

 The reference model must  have been 

designed using optimal and robust control 

methods such as LQR, 𝐻2, or 𝐻∞. For the 

adaptive control scheme, only 𝐴𝑀 and 𝐵𝑀 

should be known. Because 𝐴𝑀 is a Hurwitz 

matrix, there are positive definite matrices 

𝑃 = 𝑃𝑇 , 𝑄 = 𝑄𝑇 ∈ 𝑅𝑛×𝑛 in a way that the 

following Lyapunov inequality holds: 
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𝑃𝐴𝑀 +  𝐴𝑀
𝑇 𝑃 ≤  −𝑄. (14) 

 

 Using the KF theory, we have: 
 

�̂� = y − ŷ (15) 
 

where �̂� is an estimate of the unknown sensor 

bias 𝛽. From equation (2), we have: 
 

�̅� = 𝑥 + 𝛽 − �̂� = 𝑥 + 𝛽 (16) 
 

that 𝛽 = 𝛽 − �̂� is the sensor bias estimation 

error. An adaptive control law is defined as: 
 

𝑣 = �̂�1
𝑇𝑦 + �̂�2𝑟 + �̂�3 (17) 

 

 
 

where �̂�1(𝑡) ∈ 𝑅𝑛×𝑚, �̂�2(𝑡) ∈ 𝑅𝑚×𝑚𝑟 and 

�̂�3(𝑡) ∈ 𝑅𝑚 are the adaptive gains. 

Therefore, the closed-loop corrected-state 

equation is: 
 

�̇̅� = 𝐴𝑥 + 𝐵(𝐼 − 𝜎)(�̂�1
𝑇𝑦 + �̂�2𝑟

+ �̂�3) + �̇� + 𝐵𝜎�̅� 

    = 𝐴𝑥 + 𝐵(𝐼 − 𝜎)(𝐾1
𝑇𝑦 + 𝐾2𝑟

+     𝐾3)

+ 𝐵(𝐼 − 𝜎)(�̃�1
𝑇𝑦

+ �̃�2𝑟 + 𝐾3) + �̇�

+ 𝐵𝜎�̅� 

    = (𝐴 + 𝐵(𝐼 − 𝜎)𝐾1
𝑇)𝑥

+ 𝐵(𝐼 − 𝜎) (�̃�1
𝑇𝑦

+ �̃�2𝑟 + 𝐾3)

+ 𝐵(𝐼 − 𝜎)𝐾2𝑟

+ 𝐵(𝐼 − 𝜎)𝐾1
𝑇𝛽

+ 𝐵(𝐼 − 𝜎)𝐾3 + �̇�

+ 𝐵𝜎�̅� 

 

 

 

 

 

 

 

 

 

 

(18) 

where �̃�1 = �̂�1 − 𝐾1, �̃�2 = �̂�2 − 𝐾2, and 

�̃�3 = �̂�3 − 𝐾3. Using (13) in (18), we have: 
 

�̇̅� = 𝐴𝑚�̅� + 𝐵𝑚𝑟 + 𝐵(𝐼 −

𝜎)(�̃�1
𝑇𝑦 +     �̃�2𝑟 + �̃�3) − 𝐴𝑚𝛽 +

�̇�.  

(19) 

 Define a measurable auxiliary error 

signal �̂�(𝑡) ∈ 𝑅𝑛 as: 

 

�̂� = �̅� − 𝑥𝑚.  (20) 
 

 Therefore, from (16), we have: 
 

�̂� = 𝑥 − 𝑥𝑚 + 𝛽 = 𝑒 + 𝛽.  (21) 
 

where 𝑒 = 𝑥 − 𝑥𝑚 denotes the state tracking 

error. Differentiating (21) with respect to 

time, the closed-loop auxiliary error system 

can be expressed as: 
 

�̇̂� = �̇̅� − �̇�𝑚.  (22) 
 

 Substituting (19) and (12) into (22) 

yields: 
 

�̇̂� = 𝐴𝑚�̂� + 𝐵(𝐼 − 𝜎)(�̃�1
𝑇𝑦 + �̃�2𝑟 +

�̃�3) − 𝐴𝑚𝛽 + �̇�.  

(23) 

 

 Theorem 1: By using the KF theory, the 

bias estimation error converges to zero 

asymptotically.  

 

 Proof 1: from equation (16), we have: 
 

𝛽 = �̅� −  𝑥 
(24) 

 

 Differentiating the above equation and 

using (3) and (1), the following equation is 

obtained: 
 

�̇� = �̇̅� −  �̇� = 𝐴�̅� + 𝐵𝑢 − 𝐴𝑥 −

𝐵𝑢 = 𝐴(�̅� − 𝑥) . 

(25) 

 

Therefore  
 

�̇� = 𝐴𝛽 (26) 

 

 Given that 𝐴 is a known Hurwitz matrix, 

𝛽 converges to zero asymptotically.  
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 Theorem 2: For the system given by (1), 

(12); the adaptive controller (10), and the 

gain adaptation laws: 
 

�̇̂�1 = −𝜂1𝑦�̂�𝑇𝑃𝐵  

�̇̂�2 = −𝜂2𝐵𝑇𝑃�̂�𝑟𝑇 

�̇̂�3 = −𝜂3𝐵𝑇𝑃�̂�  

 

(27) 

 

 
 

where 𝜂1 ∈ 𝑅𝑛×𝑛, 𝜂2 ∈ 𝑅𝑚×𝑚, 𝜂3 ∈ 𝑅𝑚×𝑚 

are constant symmetric positive definite 

matrices and P was defined in (14) guarantee 

that all the closed-loop signals including 

adaptive gains are bounded and the tracking 

error is bounded accordingly. 
 

 Proof 2: Define 
  

𝑉 = �̂�𝑇𝑃�̂� + ∑ �̃�1𝑖
𝑇 𝜂1

−1�̃�1𝑖 +𝑛
𝑖

∑ �̃�2𝑖
𝑇 𝜂2

−1�̃�2𝑖 + �̃�3
𝑇𝜂3

−1�̃�3 +
𝑚𝑟
𝑖

𝛽𝑇𝑃𝐴𝛽  

 

(28) 

 

where the subscript 𝑖 denotes the 𝑖𝑡ℎ column 

of �̃�1 , �̃�2; and 𝑃𝐴 = 𝑃𝐴
𝑇 ∈ 𝑅𝑛×𝑛 is a positive 

definite solution to the lyapunov inequality: 
 

𝑃𝐴𝐴 +  𝐴𝑇𝑃𝐴 ≤  −𝑄𝐴 (29) 
 

 For some positive definite matrix 𝑄𝐴 =

𝑄𝐴
𝑇 ∈ 𝑅𝑛×𝑛. Differentiating (28) with 

respect to time, using (14), (23), (26), (29), 

and properties of the matrix trace, the 

following expression is obtained: 
 

�̇� ≤ −�̂�𝑇𝑄�̂� + 2𝑇𝑟 [�̃�1
𝑇 (𝑦�̂�𝑇𝑃𝐵 +

𝜂1
−1�̇̂�1)] + 2𝑇𝑟 [�̃�2

𝑇 (𝐵𝑇𝑃�̂�𝑟𝑇 +

𝜂2
−1�̇̂�2)] + 2�̃�3

𝑇 (𝐵𝑇𝑃�̂� + 𝜂3
−1�̇̂�3) −

2�̂�𝑇𝑃(𝐴𝑚 − 𝐴)𝛽 − 𝛽𝑇𝑄𝐴�̃�  

 

 

 

(30) 

 

 Using the gain update laws (27) in (30), 

we get: 
 

�̇� ≤ −�̂�𝑇𝑄�̂� − 2�̂�𝑇𝑃(𝐴𝑚 − 𝐴)𝛽 −

𝛽𝑇𝑄𝐴𝛽 .  

(31) 

 

 By defining 𝜓 ∈ 𝑅2𝑛 as: 
 

𝜓 = [�̂�𝑇  𝛽𝑇]𝑇 (32) 
 

and 𝛿 ∈ 𝑅2𝑛×2𝑛 as: 
 

𝛿 = [
𝑄 𝑃(𝐴𝑚 − 𝐴)

(𝐴𝑚 − 𝐴)𝑇𝑃 𝑄𝐴
] 

(33) 

 

we have: 
 

�̇� ≤ −𝜓𝑇𝛿𝜓 (34) 
 

 The determinant of 𝛿 is: 
 

det(𝛿) = det(𝑄) . det (𝑄𝐴 − (𝐴𝑚 −

𝐴)𝑇𝑃𝑄−1𝑃(𝐴𝑚 − 𝐴))  

(35) 

 

 Since 𝑄 is positive definite, so 𝛿 is 

positive definite if:  
 

𝑄𝐴 − (𝐴𝑚 − 𝐴)𝑇𝑃𝑄−1𝑃(𝐴𝑚 − 𝐴)

> 0 . 

(36) 

 

 Accordingly, 𝑄𝐴 should be chosen in a 

way that the relation (36) is satisfied. 

Therefore,    �̇� ≤ 0 and 𝑉(𝑡) is bounded for 

all T, �̂�(𝑡), �̂�(𝑡), 𝑦(𝑡), �̂�1, �̂�2, �̂�3 are all 

bounded too and �̂�(𝑡) ∈ 𝐿2.  For the closed-

loop signal boundedness, we have �̇̂�(𝑡) ∈ 𝐿∞. 

Therefore, lim𝑡→∞ �̂�(𝑡) = 0.  

 

4. SIMULATION RESULTS 
 

Simulation studies are performed on a fourth-

order longitudinal dynamics model of a large 

transport aircraft in a wings-level cruise 

condition with known nominal trim 

conditions presented in [6]. The linear time-

invariant plant is described by (1) and the 

state variables are as follows: pitch rate 

𝑞(𝑡) (𝑑𝑒𝑔/𝑠), true airspeed 𝑣(𝑡) (𝑚/𝑠),  
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Fig. 3. Reference command. 

 

 

angle of attack 𝛼(𝑡)(𝑑𝑒𝑔), pitch angle 

𝜃(𝑡)(𝑑𝑒𝑔), and {i.e., 𝑥 = [𝑞 𝑣 𝛼 𝜃] 𝑇}. The 

system matrices are:  
 

𝐴

= [

−0.6803 −0.0115 −1.0490 0
−0.0026 −0.0062 −0.0815 −0.1709
1.0050 −0.0344 −0.5717 0
1.0000 0 0 0

] 

 

𝐵 = [

−44.5192 −44.5192
0 0

−11.4027 −11.4027
0 0

] 

 

  The actuators are two identical elevators 

(i.e., two pairs of elevators operating 

symmetrically): 𝑢𝑒1(𝑡) and 𝑢𝑒2(𝑡) (𝑑𝑒𝑔), 

and we will assume that the second elevator 

gets stuck at 𝑡 = 15.1 𝑠. We consider an

 unknown constant bias in the state 

measurement which is arbitrarily chosen as: 

𝛽 = [5 2 −1 10]𝑇 for 𝑡 > 10 𝑠. The 

reference model is chosen in a way that the 

closed-loop system has 𝐴𝑚 = 𝐴 + 𝐵𝐾1
𝑇 and 

𝐵𝑚 = 𝐵𝐾2 , where 𝐾1 is the LQR gain 

designed to minimize a quadratic 

performance function. All control and 

adaptation parameters (𝜂𝑖) are chosen by trial 

and error. The plant and reference model 

states, tracking errors, bias estimates by KF, 

bias estimates error and adaptive control 

input are shown in figures 4, 5, 6,7 and 8 

respectively. The figures indicate that in the 

presence sensor bias and actuator failure, 

state tracking and the closed-loop signal 

boundedness or bounded tracking error can 

be proved. 

r 
(t

) 
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Fig. 4. Plant and reference model states in the presence of actuator failures and sensor bias. 

 
Fig. 5. State tracking error. 

𝜃
( 𝑡

)(
𝑑

𝑒𝑔
)  

   
   

   
   

 𝛼
( 𝑡

)(
𝑑

𝑒𝑔
)  

   
   

   
  𝑣

( 𝑡
)  

(𝑚
/𝑠

) 
   

   
   

𝑞
( 𝑡

)  
(𝑑

𝑒𝑔
/𝑠

) 
  

    𝑥𝑚  

𝑥 

Zoom in t=10s 

𝑒 𝜃
(𝑑

𝑒𝑔
) 

   
   

   
   

   
  𝑒

𝛼
(𝑑

𝑒𝑔
) 

   
   

   
   

   
𝑒 𝑣

 (
𝑚

/𝑠
) 

   
   

   
   

𝑒 𝑞
 (

𝑑
𝑒𝑔

/𝑠
) 

   
   

   
 



Signal Processing and Renewable Energy, June 2019                                                                                                45 

 
Fig. 6. Bias estimates by KF. 

 

 
Fig. 7. Bias estimates error. 
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Fig. 8. Adaptive control input. 

 

 

5. CONCLUSION 
  

The state feedback for state tracking by an 

enhanced MRAC method is presented based 

on the state feedback for state tracking 

objective in the presence of actuator failure 

and sensor bias. A KF was developed to 

obtain an accurate estimate of the sensor bias. 

Simulation results prove that the system state 

𝑥(𝑡) can effectively track the desired state 

trajectory based on a reference model. 
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