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Abstract 

In this paper, a new method for signal modulation classification based on Linear Discrimi-

nant Analysis for multi-class cases is introduced and its results are compared with two other 

methods of automatic modulation classification. Higher-order complex cumulants are used as 

feature vectors in the first place. Then, linear Fisher discriminant analysis maps these vectors 

to another space to separate different classes efficiently. One versus all support vector ma-

chine classifier and kernel Fisher discriminant analysis methods with radial basis function 

kernel is used. The achieved results in comparison with two research papers show that the 

proposed method classifies the classes in a shorter time with equal or better accuracy.  

 

 

Keywords: Automatic Modulation Classification, Automatic Modulation Recognition, AMC, 
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1. INTRODUCTION 
 

Automatic Modulation Classification (AMC) 

plays an important role in Communication 

Intelligence (COMINT) [1] [2] [3] and is an 

intermediate step between detection and de-

modulation of a signal. It has applications 

such as signal confirmation and spectrum 

monitoring. AMC also is a key technology in 

cognitive radio and software radio [4]. AMC 

is a difficult task due to lack of data about the 

transmission parameters such as signal pow-

er, phase offset, timing information, and car-

rier frequency at the receiver. Also, in real 

world, the difficulty increases because of 

presence of factors such as multipath fading, 

time-varying, and frequency-selective chan-

nels. Various methods have been proposed to 
*Corresponding Author’s Email: b.mahboobi@srbiaun.ac.ir  
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determine unknown parameters of a detected 

signal [5] [6] [7] [8] [9]. 

In general, modulation classification can 

be divided into two categories of inter-class 

and intra-class [10]. Inter-class identification 

refers to distinguishing between ASK, FSK, 

PSK, etc., whereas intra-class identification 

refers to distinguishing within a single class, 

such as between BPSK and QPSK.  

AMC is performed in two general steps: 

preprocessing and classification. Prepro-

cessing task includes operations for noise 

reduction, estimation of the carrier frequen-

cy, symbol period, signal power and equali-

zation [2]. Depending on the level of sensi-

tivity of the classification algorithm to un-

known parameters, preprocessing task with 

different levels may be applied [2]. 

There are two main approaches to classify 

the modulation type of a received signal: 

maximum likelihood-based approach and 

feature-based (FB) approach [2]. The former 

offers an optimal solution in a Bayesian 

sense. It is based on the likelihood function 

of the received signal and decision is made 

by comparing the likelihood ratio against a 

threshold. The main drawback of likelihood-

based approach in general is computational 

cost [2] [1]. In FB approach, several features 

of the received signal are extracted and then 

a decision is made according to the feature 

values. A disadvantage of FB approach is its 

non-optimality, however, it is easy to imple-

ment, and in a proper implementation, it can 

give a near optimal performance [11].  

It was shown that by using high order cu-

mulants, a wide variety of modulated signals 

can be classified [12] [13] [14]. Relevant 

AMC works based on FB approach are brief-

ly reviewed in following. 

Many types of features like instantaneous 

amplitude, phase and frequency, Fourier and 

wavelet transform, high order moments and 

cumulants and cyclostationary have been al-

ready used for classification [15] [16] [17] 

[18] [19]. Also, pattern recognition methods 

including artificial neural networks [20] [21], 

clustering, decision tree [22] and support 

vector machines (SVMs) [18] are used to 

make decisions in related cases.  

As machine learning field is growing in 

recent years, using kernel functions makes 

linear classifiers cope with non-linear prob-

lems, which was called the 3rd revolution of 

pattern analysis methods [23]. In kernel 

method, the following steps should be fol-

lowed [24]: first, adjust the algorithm to the 

form of the inner product of the input vector 

and then combine the algorithm and kernel 

function. Therefore, the kernel method falls 

in two parts: the design of kernel function 

and design of the algorithm. In [4] some 

fourth-order complex cumulants and their 

ratios were chosen in order to build a feature 

matrix in the first place. Then, the kernel 

function is used to map the feature matrix 

impliedly to a high dimensional feature space 

and finally, linear Fisher discriminant analy-

sis (FDA) is applied to do the classification. 

Radial basis kernel is chosen as the kernel 

function. Cross-validating grid search meth-

od is used to select the kernel function’s pa-

rameters. Comparing with SVM, the kernel 

FDA (KFDA) method is appropriate and 

much faster because there is no need to solve 

an optimization problem and train the classi-

fier. There is a good accuracy in low signal 

to noise ratios (SNRs) because of using high-

er order cumulants, which are robust against 

noise. 

In [25] cyclostationary features was used 

for classification. Barathram et al. [25]used 

peak values of second spectral correlation 

called cyclic domain profile as features and 
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compared neural networks (NNs) and hidden 

Markov model (HMM) for classification of 

BPSK, QPSK, MSK, and FSK modulations. 

Cyclostationary feature extraction, in this 

case, makes classifier robust against station-

ary noise and separates signals with overlap-

ping power spectral densities. The second 

order cyclic spectrum is not capable of classi-

fying higher order QAM or higher order PSK 

modulations. 

In this paper, the multi-class FDA method 

is used in order to classify the MPSK and 

MQAM modulated signals. Also, a compari-

son between some AMC methods is done. 

The FB approach is employed, using higher 

order cumulants as features and three differ-

ent classifier results are compared. Once the 

modulation format is recognized, the next 

step would be demodulation and data extrac-

tion.  

The rest of this paper is organized as fol-

lows: Background knowledge, including 

problem statement and cumulants, are given 

in Section 2. SVM classifier and FDA are 

explained in Section 2.3. Finally, simulation 

results and the paper conclusion are given in 

Sections 3 and 4, respectively. 

 

2. BACKGROUND 
 

2.1. Problem Statement 
 

In this paper, the problem of the classifica-

tion of linear modulated signals under exist-

ing additive white Gaussian noise (AWGN) 

is considered. The environment is considered 

interrelated and synchronized and received 

signal has carried out carrier frequency and 

timing synchronization. 

Consider the complex baseband model as,  

 x(t) = v(t) + w(t)                   
(1)

 

where w(t) is the complex AWGN and v(t) is 

a complex baseband linear modulated signal: 

( ) ( )0= k

k

v t c h t kT t− −
            

(2)
 

and T is the symbol period, t0 the timing off-

set, h(t) is the shaping filter and  kc   is 

an iid (independent and identically distribut-

ed) symbol sequence. The following six 

types of linear modulations are considered: 

MPSK, M = 2,4,8, and M-QAM, M = 

16,64,256.  

The problem is to decide which one of these 

six modulations, the noisy received signal 

belongs to. The performance is computed as 

the ratio of correct classification versusall 

classifications. 

 

2.2. Feature Extraction 
 

2.2.1. Cumulants 
 

A real signal moment generating function is 

defined as:  

( )( ) tX tM t E e =                         
(3)

 

and for a complex modulated signal, single 

moments are calculated as: 

( ) ( )
p q q

pqM E X k X k
− =

                 
(4)

 

Cumulant generating function also is de-

fined as [26]: 

( )( )( ) log tX tK t E e =                       
(5)

 

where the coefficients of power series expan-

sion of the cumulant generating function are 

cumulants. Cumulants have additivity prop-

erty. White noise's 4th and higher order cu-

mulates are zero and because of additivity 

property of cumulants, it would be a well-

defined feature for classifying signals in 

AWGN channels. The joint cumulant of sev-
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eral random variables is defined by a similar 

cumulant generating function: 

( ) 1

1 2, ,..., log
n

j jj
t X

nK t t t E e =
  

=   
  

       (6) 

A consequence is that: 

( ) ( )
1

1( ,..., ) 1 ! 1n i

B i B

x x E X


 

 
−

 

 
= − −  

 
  

                        (7) 

where   runs through the list of all partitions 

of {1,..., }n  B runs through all the list of 

blocks of partition   and   is the number 

of partitions. Under the assumption of inde-

pendent, identically distributed data symbols, 

normalized complex cumulants of order n 

can be computed by Eq. (7). The fourth and 

sixth-order cumulants are chosen because of 

their robustness against additive Gaussian 

noise and because they are invariant with re-

spect to shift, scale and rotation of MPSK 

signal constellation [27]. The norm of ideal 

higher-order cumulants of a signal is ex-

pressed in Table. 1 [28]. 

 

2.2.2 Feature Selection 
 

After forming the feature matrix, the value of 

each feature should be specified. Applying 

principal component analysis (PCA) on the 

feature matrix, the most important and effi-

cient features that make classes more separa-

ble are selected. The final feature matrix is: 

  40

1 2 3 40 61

42

, , , ,x x x x

C
F f f f C C

C

 
= =  

        
(8)

 

By using the result in Table.1, the ideal 

values of Fx are: 

 

 

 

 

 

 

2,16,1

1,4,1

0,0,0 8

0.68,2.08,1 16

0.619,1.797,1 64

0.604,1.734,1 256

x

BPSK

QPSK

PSK
F

QAM

QAM

QAM






−
= 

−


−

 −  

Table 1. Theoretical Cumulants for signal constellations under the constraint of unit variance. 

Mod. 

Cm,n 

B
P

S
K

 

Q
P

S
K

 

8
-P

S
K

 

1
6

-Q
A

M
 

6
4

-Q
A

M
 

2
5

6
-Q

A
M

 

C4,0 2 1 0 0.68 0.619 0.604 

C4,1 2 0 0 0 0 0 

C4,2 2 1 1 0.68 0.619 0.604 

C6,0 16 0 0 0 0 0 

C6,1 16 4 0 2.08 1.797 1.734 

C6,2 16 0 0 0 0 0 

C6,3 16 4 4 2.08 1.797 1.734 

C4,0/C4,2 1 1 0 1 1 1 

C4,1/C4,2 1 0 0 0 0 0 



Signal Processing and Renewable Energy, December 2018                                                                                          5 

2.3. Classifiers Based On Kernel Function 
 

2.3.1. Support Vector Machine(SVM) 
 

SVM is a two-class classifier and it is based 

on the idea of "large margin" and "mapping 

the data to a higher dimensional space" and 

the kernel functions. The cost function of this 

optimization problem is defined as 
2

w , so it 

should be minimized to find an optimal dis-

criminant hyperplane that maximizes the 

margin between the two classes and satisfy,   

2

0

0

1
( , )

2

( ) 1 1,2,...,T

i i

J w w w

y w x w i N


=


 +  =          

(9)
 

KKT (Karush–Kuhn–Tucker) conditions 

should also be satisfied to find an optimal 

solution for the hyperplane: 

( )

0

0

0

0

( , , ) 0

( , , ) 0

0, 1,2,...,

1 , 1, 2,...,

i

T

i i i

w w
w

w w
w

i N

y w x w i N

 

 






=


 =




 =
  + − =  

        (10) 

In cases that classes are not linearly sepa-

rable, SVM maps the data into a higher di-

mensional feature space with a non-linear 

mapping and find an optimal hyperplane in 

that space as [29] : 

( ) ( )
1

1
min , . 1, 2,...,

2

n

i

i

w w w C i n  
=

= + =  

 . 1

0

i i i

i

y w x b 



 +  −



              (11) 

According to the Eq. (11), and Lagrange the-

orem, the quadratic problem can be repre-

sented by kernel function: 

1 1 1

1

1
max ( ) ( , )

2

0 1,2,...,
. .

0

m n n

i j i j i j i

j i i

n

i i

i

i

Q y y k x x

y i n
s t

C

   





= = =

=

= − +


= =


  

 



(12)
 

where ( , ) ( ) ( )i j i jk x x x x =  is the kernel 

function that fulfills the Mercer theorem, so 

the discriminant function can be expressed 

as:  

( ) ( ) sgn .

sgn ( , )
i

i i i j

x SV

f x w x b

y k x x b


= +

  
= + 

  


     (13) 

where 

( )
i

i i i

x SV

w y x 


=              (14) 

According to the optimal problem (11), the 

complexity of SVM is not related to the di-

mension of features but it is restricted by the 

number of samples. The reason is that SVM 

needs to compute the kernel function be-

tween every two samples of training data, to 

generate a kernel matrix of n n  elements, 

where n is the number of training samples. 

So for big value of n, sorting the kernel ma-

trix in SVM needs big memory. As a conclu-

sion, matrix operations makes SVM too cost-

ly to implement. 

 

2.3.2. Fisher Discriminant Analysis for 

Multi Class Cases (Proposed Method) 
 

In this method, the main goal is finding a 

vector and multiply it to the feature matrix 

and map it to a new feature space with more 

separability [30]. In multi-class cases, the 

mapping vector is replaced with a transfor-

mation matrix. The major task can be sum-

marized as follows: If x is an m-dimensional 
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vector of samples, transform it into another l-

dimensional vector y, so that an adopted 

class separability criterion is optimized. The 

first step is to find between class scatter ma-

trix wS  and within-class scatter matrix bS   

that indicates the separability between classes 

and samples of each class,  

1

M

w i i

i

S P
=

=                         (15) 

( ) ( )0 0

1

M
T

b i i i

i

S P    
=

= − −           (16) 

where  

0

M

i i

i

P =                 (17) 

The mixture scatter matrix would be the 

sum of Eqs. (15) and (16): 

( ) ( )0 0

T

m

m w b

S E x x

S S S

  = − −
 

= +
         (18) 

A separability measure called FDR (Fisher 

Discriminant Ratio) is defined as [30]: 

b

w

S
J trace

S

 
=  

 
                    (19) 

In the next step, y vector that maps the fea-

ture matrix should be found 

y Ax=                        (20) 

Now, the scatter matrixes (15) and (16) are 

computed for y according to values for fea-

ture data: 

 

T

yw xw

T

yb xb

S A S A

S A S A

 =


=

                  (21) 

As the goal is maximizing the between-

class scatter matrix and minimizing the with-

in-class scatter matrix, the element A should 

satisfy: 

( )
0

J A

A


=


                  (22) 

According to Eqs. (20) and (21), we have: 

( ) ( )( ) ( )
1 1 1

( )

2 2 0
T T T T

xw xw xb xw xb xw

J A

A

S A A S A A S A A S A S A A S A
− − −


=



− + =

or 

( ) ( )1 1

xw xb yw ybS S A S S A− −=                 (23) 

This is an eigenvalue problem and to solve 

this, the matrixes 
ybS  and ywS  are to be diag-

onalized simultaneously by a linear transfor-

mation: 

T

yw

T

yb

B S B I

B S B D

 =


=

                    (24) 

The transformed features would be like: 

ˆ Ty B=
 

T Ty B A x=
                  (25) 

and here is the verification of equality of (y 

and ŷ  ) 

 

( ) ( ) 
 

 

1

ˆ

1

1 1

1 1

( )

( )

yw yb

T T

yw yb

yw yb

yw yb

J y trace S S

trace B S B B S B

trace B S S B

trace S S BB J y

−

−

− −

− −

=

=

=

= =

 

The final vector to be multiplied to x is 
T TA B and this matrix with size of m l  maps 

the features to another space with higher rep-

arability. 

After mapping, each feature would be as-

signed to the class that has the shortest dis-

tance between its mean and the feature sam-

ple. 
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2.3.3. Kernel Fisher Discriminant Analysis 
 

The procedures of KFDA is given in [31]: 

first, map the feature data samples through a 

non-linear mapping to a higher dimensional 

feature space. Then, perform the linear Fisher 

discriminant analysis to realize the nonlinear 

discriminant analysis relative to input space. 

According to the Mercer theorem [30], non-

linear mapping ( )x  maps input data into a 

high dimensional feature space, 

( )x x H→  , where H is a Hilbert space. 

For each two data samples as the input, the 

inner product operation is represented as  

( ), ( ) ( , )x z K x z  =
             (26) 

where .,.   denotes the inner product oper-

ation in H and K(x,z) is an asymmetric con-

dition function which satisfy,  

( , ) ( ) ( ) 0
C C

K x z g x g z dxdz             (27) 

For any ( ), lg x x C R    such that 

2( )
C

g x dx  +                 (28) 

where C is a finite subset of Rl. In this case, 

training data are converted from  to ( )x x  . 

Then one can perform linear FDA (Section 

2.3.2) in the new feature space. 

 

2.3.4 The Design of a Robust Multi Class 

Classifier 
 

The design of a multi-class classifier has two 

essential stages: first the selection of kernel 

function and second, multi-class classifier 

decomposition. 

 

2.3.4.1. Selection of the Kernel Function 
 

Selection of the kernel function is important 

because the value of every parameters in ker-

nel function affect the mapping function and 

change the complexity of samples distribu-

tion in feature space. Some of the kernels 

used in pattern recognition applications are 

as follows [30]: 
 

1) Polynomials 

( )( , ) 1 , 0
q

TK x z x z q= + 
               (29) 

where p and d are two constant parameters. 

In the case of p=0 and d=1, it is called a line-

ar kernel function. The operation speed of 

this kernel is fast. 
 

2) Radial Basis Functions 

2

2
( , ) exp

x z
K x z



 −
= − 

 
 

             (30) 

where   controls the width of the kernel 

function and needs to be obtained. 
 

3) Hyperbolic Tangent 

( )( , ) tanh TK x z x z = +
             

(31)
 

It is also called neural network kernel func-

tion. Due to the limitlessness of radial basis 

function feature space, the limit sample in 

this space must be linearly discriminable, so 

it is most commonly used in classification 

[4]. There are many algorithms such as grid 

searching, evolution method, and simulated 

annealing approach [4] to obtain the kernel 

function parameters 

 

2.3.4.2. Multi-Class Classifier Decomposi-

tion 
 

As SVM and linear FDA are binary classifi-

ers, for multiclass classification, one should 

combine them in one of these ways [30]; 1- 

One against one 2- One against all 3- Binary 

Tree 4- Error-correcting output code  
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3. SIMULATION RESULTS 
 

Parameter selection procedure: At first 200 

every MPSK (M =2, 4, 5) and M-QAM (M = 

16, 64, 256) signals every 2 dB from -20 to 

40 in AWGN channel are generated. Cumu-

lant features are extracted from signals and 

made up feature matrix. The samples of each 

class are grouped randomly into train and 

test.Using the multi-class FDA method, RBF 

kernel with 1 =  is chosen as initialization. 

In the grid search, the logarithm of the initial 

value is computed, then the best value in 

 2 2 2 2

0 0 0
log log , log 1,..., 1    − +  is chosen. 

In this case, as written in Table 2, 4.47 =  

is chosen. Similarly, as the parameter selec-

tion for KFDA, SVM kernel function param-

eters are initialized. Searching after initializa-

tion results in C = 10 and 1 =  as the RBF 

kernel function parameters (see Table. 3). 

 

Table 2. Classification accuracy of parameter 

selection of KFDA classifier for 100 samples as 

train and test. 

log  -2 -1 0 1 1.3 

Classification 

accuracy 
0.75 0.71 0.82 0.84 0.84 

 

Table 3. Classification accuracy of parameter 

selection of SVM classifier for 100 samples as 

train and test. 

    ( )log C  

log  

-2 -1 0 1 1.3 

-2 0.51 0.67 0.67 0.62 0.66 

-1 0.65 0.67 0.67 0.83 0.71 

0 0.53 0.5 0.67 0.83 0.83 

1 0.5 0.5 0.5 0.5 0.5 

1.3 0.34 0.58 0.5 0.5 0.5 

Simulations: In this experiment, the classifi-

cation accuracy of MPSK modulation and 

MQAM modulations in AWGN channel, un-

der different SNR are obtained.  

• Test (1) 

Phase 1: Simulations are done in different 

SNR,signal length, and data samples for 

training and testing. Training data are gener-

ated under SNRs from -10 to 20 dB, and for 

each training, data classification is done for 

test data under SNRs from -20 to 40 dB. The 

number of samples and signal length are con-

stant. 

Phase 2: for signals in phase 1, the number 

of samples used in training data varies from 

10 to 1000 for a specific SNR and a constant 

signal length. the results are recorded. 

Phase 3: In this phase, the length of sam-

ples varies between 1000 and 10000 data 

points. This results in a specific SNR and a 

constant signal length is recorded. 

Classifications are done with SVM classi-

fier in one against all mode and KFDA and 

multi-class FDA classifier (the proposed 

method) at the same time to do the compari-

son. In this test, all modulations (MPSK and 

MQAM) are included. 

From Fig. 1 it can be concluded that alt-

hough in high SNR, the performance of all 

classifiers are similar, in low SNR case, mul-

ti-class FDA method is outstanding as well.  

It can be seen from Fig. 2 that when classi-

fiers trained at a low SNR (e.g. 0 dB), in-

creasing the signal length of test signals, 

causes a better accuracy. Also, according to 

Fig. 2, when classifiers are trained at low 

SNR, SVM does not perform as well as mul-

ti-class FDA and KFDA. 



Signal Processing and Renewable Energy, December 2018                                                                                        9 

 

 

Fig. 1. Classification accuracy using 1000 training and 1000 testing samples in different SNR for SVM 

and KFDA and multi-class FDA classifiers. 

 

 

Fig. 2. Classification accuracy by using 1000 training and 1000 testing samples in different signal 

lengths (1000 and 10000) for SVM and KFDA and multi-class FDA classifiers. 

 

Increasing the number of samples from 100 

to 1000, as shown in Fig. 3 does not affect 

the classification accuracy, significantly. On 

the other hand, it takes much more time to do 

classification. 
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(a) 

 
(b) 

 
(c) 

Fig. 3. Classification accuracy by using different data samples for test data (a). 10 samples, (b). 100 

samples, (c).1000 samples, for SVM and KFDA and multi-class FDA classifiers. 
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Table 4. Comparison of the performance time of different classification methods in the different 

 number of testing samples. 

Classifier 
Number of test 

samples 
Time (s) 

SVM 

10 0.865 

100 0.844 

1000 1.18 

Multi-class 

FDA 

10 0.045 

100 0.024 

1000 0.116 

KFDA 

10 0.144 

100 0.155 

1000 0.246 

 

Table 5. Comparison of the performance accuracy of different classification methods with 10 testing 

samples and 10000 and 100000 training samples. 

Classifier 

Accuracy 

(10000 training 

samples) 

Accuracy 

(100000 train-

ing samples) 

SVM 80% 82% 

Multi-Class 

FDA 
81% 83% 

KFDA 78% 82% 

 

 

4. CONCLUSION 
 

In this paper, the performance of the pro-

posed FDA method for the multi-class case, 

i.e. the classification of 6 classes, is evaluat-

ed and a comparison between SVM, KFDA, 

and multi-class FDA classifier without using 

a kernel function, in the case of classification 

of MPSK (M=2,4,8) and MQAM 

(m=16,64,256) signals, is given. Multi-class 

FDA and KFDA perform better than SVM in 

different SNR and with different training and 

testing data samples. 

In cases that data is normally distributed 

and all groups are identically distributed and 

have different covariance matrixes, linear 

discriminant analysis methods perform bet-

ter. 

However, in SVM with the aim of general-

izing the optimally separating hyperplane, 

the assumption is all groups are separable. In 

cases that groups are not linearly separable, 

SVM does not perform as good as LDA 

methods. SVM is an optimization problem, 

but LDA has an analytical solution. The op-
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timization problem for SVM has a dual and a 

primal formulation that allows the user to 

optimize over either the number of data 

points or the number of variables, depending 

on which method is the most computationally 

feasible. It takes much more time for SVM 

classifier to solve the optimization problem, 

but in comparative, the LDA classifier com-

putational time is really shorter. In this case, 

as shown in Table 4, multi-class FDA and 

KFDA perform faster than SVM and also  

more accurate than SVM in low SNRs. As 

the results written in Table 5, the number of 

training and testing samples is not affecting 

the classification accuracy for high SNRs, 

though the proposed method (Multi-Class 

FDA) is appropriate in terms of achieved ac-

curacy for low SNRs and small sample size 

as well.   
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