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Abstract: Geometrically nonlinear governing equations for a plate with linear 

viscoelastic material are derived. The material model is of Boltzmann superposi-

tion principle type. A third-order displacement field is used to model the shear 

deformation effects. For the solution of the nonlinear governing equations the 

Dynamic Relaxation (DR) iterative method together with the finite difference 

discretization technique is used. Finally, the numerical results for the critical 

buckling load for simply supported edge constraints are reported. In order to justify 

the accuracy of the results, the elastic plate critical buckling loads are obtained and 

compared with the existing results. The correlations are very satisfactory. The 

numerical results are presented for Classical Plate Theory (CPT), First order- Shear 

Defonmation Plate Theory (FSDT) and Higher Order- Shear Deformation Plate 

Theory (HSDT). In the case of thick plate the differences among the three theories 

are highlighted, however, for thin plate the variations are very small. 

Keywords: Viscoelastic Plate, Mindlin Plate, Buckling, Rectangular Plate, 

Dynamic Relaxation, Higher-Order Shear Deformation 

1. Introduction 

With increasing application of composite struc-

tures made with polymeric matrix, the design and 

analysis of such structures is also growing. Fiber-

reinforced laminated composite beams, plates and 

shells with epoxy matrix behave mostly elastically 

up to their point of fracture. On the other hand, such 

structures as mentioned above, with polymeric 

matrix, have inelastic behaviour even in room 

temperatures. Consequently, it is more appropriate 

to first analyze a rectangular plate made of visc-

oelastic material and then add the reinforcing 

elements. 

The study of viscoelastic plates under dynamic 

loading has been carried out in various forms [1]. 

The stability of a viscoelastic plate with non-linear 

integrodifferential equations under dynamic loading 

is considered in [2]. The plate is assumed to be thin 

but with non-linear in-plane strain-displacement 

relations. In [3], the postbuckling behaviour of 

viscoelastic laminated plates taking into account the 

shear-deformations is presented. The higher-shear 

deformation theory, as originally developed by 

Reddy [4-6], is applied. The effects of viscoelastic 

behaviour are shown, and the results for lower order 

theories are compared with the results obtained 

using the higher order theory.  

In [7], the dynamic stability of viscoelastic lami-

nated plates, subjected to a harmonic in-plane 

excitation is considered. The viscoelastic behaviour 

is caused by the polymeric matrix of the fiber-

reinforced laminated plate. The Boltzmann visc-

oelastic material model is used in the stress-strain 

relations of the laminated plate. This leads to an 

integro-differential equation of motion, obtained 

within the first-order shear deformation theory. The 

free vibration analysis of rectangular viscoelastic 

plates with simply supported boundary conditions is 

presented in [8]. In [8], a three dimensional def-

ormation of linear viscoelastic material is consi-

dered but the normal stress in the plate thickness 

direction is neglected and a simplified form of the 

constitutive equations is used.  

Mindlin theory of plates together with first-order 

shear deformation theory is applied. However, the 

same author has presented the free vibration 

analysis results of viscoelastic plates obtained by 

using a higher-order shear deformation theory [9]. 

However, the so called simple higher-order plate 

theory is employed where two terms are added to 

the displacement field equations in the plane of the 

plate and the deflections are taken as in the first-

order shear deformation theory. An exact series 

form of solution is presented. The chaotic dynamic 
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analysis of viscoelastic plates is presented in [10].  

The dynamic buckling of viscoelastic plates with 

large deflection is investigated in [10] by using 

chaotic and fractal theory. The material behaviour is 

given in terms of Boltzmann superposition 

principal. In [11], the post buckling analysis of 

imperfect non-linear viscoelastic cylindrical panels 

is presented. The material in modeled according to 

the Schapery representation of non-linear viscoe-

lasticity. They have developed solutions to calculate 

the growth of the initial imperfection in time by 

using the Donnell equilibrium equations for 

geometrically non-linear cylindrical panels. The 

buckling, vibration and damping characteristics of 

rectangular plates with composite stiff-layers and an 

isotropic viscoelastic core are studied under thermal 

loads using finite element method [12]. The 

inherent composite the damping and damping due to 

viscoelastic layer are compared and parametric 

study is conducted with ply lay-up, fiber angle and 

core thickness as parameters. In [13], the dynamic 

stability and nonlinear vibrations of viscoelastic 

orthotropic rectangular plates are investigated. The 

theory is based on the Kirchhoff-Love assumptions 

and Reissner-Mindlin generalized plate theory in a 

nonlinear geometry. The weakly singular Koltunov-

Rzhanitsyn type kernel is utilized with three 

rheological parameters. A numerical method, based 

on quadrature formulae, is used.  

A comparison of the results based on the above 

assumptions is presented and the implications of 

material viscoelasticity on vibration and dynamic 

stability are presented. Finally, the dynamic stability 

of a non-conservative viscoelastic rectangular plate 

is investigated in [14]. The thin-plate theory and the 

two-dimensional viscoelastic constitutive relation 

are used. The differential equation of motion of the 

viscoelastic rectangular plate subjected to uniformly 

distributed tangential follower force in Laplace 

domain is obtained. This equation is suitable for 

different viscoelastic models of differential nature. 

Based on the differential quadrature method, the 

generalized eigenequations of non-conservative 

viscoelastic rectangular plate with all edges simply 

supported, two opposite edges simply supported and 

other two edges clamped are established. The 

curves of real and imaginary parts of the first three-

order dimensionless complex frequencies versus 

uniformly distributed tangential follower force are 

obtained. The factors influencing the dynamic 

stability of the viscoelastic rectangular plate are 

discussed. 

In this paper the von Karman type of equilib-

riumequations taking into account the effect of 

shear deformations are used. The strain-displace-

ment relations for the plate with large deflections, 

originally developed by Sander [15] are applied. 

The material behaviour is given in terms of 

Boltzmann superposition principle. The set of 

nonlinear plate governing equations are numerically 

solved using the DR iterative method in real and 

imaginary time domains. Finally, numerical results 

for the variations of dimensionless deflections, 

stress resultants and stress couples with time are 

illustrated. 

2. Plate geometry 

The geometry of the rectangular plate considered 

in this paper is shown in Fig. 1. 

The plate is loaded in its plane and its buckling 

behaviour is studied. The Cartesian coordinate 

system (x,y,z) is used and the equations are derived 

in this system. The dimensions of the plate are 'a' 

parallel to the x-axis, 'b' parallel to the y-axis and 

the thickness is 'h'. 

3. Non-Linear plate governing equations 

Higher-order shear deformation effects are taken 

into account via third-order displacement fields. 

Nonlinear strain/displacement relations are of the 

same type as originally developed by Sanders [15] 

for thin shells. Obviously, in the present work, the 

out-of-planeshear strains are added to the in-plane 

strain/ displacement relations to account for the 

shear deformation effects. The curvature/ displace-

ment relations are also given. The equilibrium 

equations which also represent the coupling 

between bending and stretching of the plate are 

stated. The standard solid model, i.e. Boltzmann 

superposition principle is used to represent the plate 

material behaviour. The time dependent stress 

resultant and stress couple/ strain relations are 

given. Finally, simply supported, clamped and free 

edge constraints are stated. The series of the 

equations mentioned above are given below in the 

order of their applications in the software developed 

for this purpose. 

3.1. Equilibrium Equations 

The equilibrium of a plate element in the x, y and 

z directions are considered. Taking moments about 

x and y axes provide two more equations. Conse-

quently, there are five equilibrium equations for the 

plate element. They are stated as follows: 
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Fig. 1. Plate geometry and positive coordinate system 
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In this equations sN , sM  and sQ  are the compo-

nents of stress resultants, stress couples and shear 

forces respectively. w  is the deflection of the plate. 

3.2. Higher-Order displacement field 

In order to take an accurate measure of the shear 

deformations in the plate, the displacement field 

suggested by Reddy [5] is applied. 
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A simplified form of the third expression of the 

Eqs. (2) is used: 

),,(),,( 0 tyxwtyxw =  

where vu,  and w  are plate displacement compo-

nents and oo vu , and ow  are plate mid-plane dis-

placement components and ξψ,  and ζ are plate 

mid-plane rotations. 

3.3. Strain/ curvature relations 

The nonlinear strain/curvature relations including 

three in-plane strains and two out-of-plane shear 

strains are given below [5]: 
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In which the plate mid-plane strain/ displacement 

relations are as follows [5]:
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and the plate mid-plane curvature/ displacement 

relations are as stated below [5]:
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3.4. Linear viscoelastic material constitutive law 

The standard solid (Boltzmann superposition 

principle) linear viscoelastic stress-strain relations 

as given below are used. 
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In these equations, µ  is Poisson's ratio, 2
k is the 

shear correction factor which in higher order shear 

deformation theory is taken to be 2/3 and 
t

BeAtY
α−+=)(  is relaxation function for standard 

solid media and *
R  is an integration operator in 

time domain: 
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The stress resultants are obtained by the 

following equations: 
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The shear force expressions in terms of the shear 

stresses are given as the following: 
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The stress couples are stated as below: 
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Finally, the constitutive equations in terms of the 

stress resultants, stress couples and shear forces and 

plate mid-plane strains are presented below: 
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3.5. Calculation of stress resultants and couples and 

shear forces 

The stress resultants, stress couples and shear 

forces as stated in Eqs. (11), (12) and (13) in terms 

of the relaxation function and the integration 

operator have to be evaluated. As an example, the 

first expression of Eqs. (11), for simplicity, is 

restated below: 
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The integration operator in time domain, Eq. (7) 
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For the evaluation of the integration part of Eq. 

(14), the trapezoidal rule of integration is applied. 

The time t is defined in terms of time increment 

t∆ and the real time iteration number n as the 

following relation: 
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Where o
xN  is the constant term in every iteration. 

Finally, the stress resultant in the x-direction for the 

n
th
  real time iteration is obtained to be as follows: 
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In general the equation is in the form given 

below: 
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After simplification, the equation for o
xN  

becomes: 
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A similar procedure is utilized for determining 

the remaining equations for stress resultants as 

stated below: 
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The shear forces are: 
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The stress couple equations are: 
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3.6. Plate boundary conditions 

Various plate edge conditions may how be 

defined. These can include simply supported and 

clamped or a combinations of these two and free 

edge. However, here only a simply supported edge 

condition is considered. This condition may be 

applied to all the four edges of the plate or at least 

one edge must have this constraint. Consequently, 

the constraints that the clamped condition imposes 

on the displacements and stress couples along the 

plate edges may be expressed as follows: 

Along the x -axis: 
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4. Numerical solution technique 

The solution procedure for the plate equations is 

outlined here. The DR numerical method is used 

together with the finite-difference discretization 

technique to obtain numerical results for the 

problem. 
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In order to complete the transformation process, 

the velocity and the acceleration terms must be 

replaced with the following approximate finite-

difference expressions: 
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substituting Eqs. (21) into the RHS of Eqs. (20), 

they become: 
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Where: 

),,,,(
2

*
yxwvu

tk
K ψψ=α

αρ

δα=α  

In order to be able to calculate the displacements 

and rotations from the five velocity components of 

Eqs. (22), simple integration expressions are used, 

as stated below: 

a
tu

b
u

a
u δ+=  

a
tv

b
v

a
v δ+=  

a
tw

b
w

a
w δ+=                                                        (23) 

a
xt

b
x

a
x ψδ+ψ=ψ

 

In Eqs. (23), the superscripts 'a' and 'b' are similar 

to those defined under Eqs. (21). Eqs. (22) and (23) 

constitute the complete set of transformations and 

modifications required for the application of the DR 

algorithm in the solution of the plate non-linear 

equations. The DR algorithm comprises the 
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following simple sequence of operation on Eqs. (3)- 

(5), (11)-(15), (22) and (23). 

Step 1: Set all variables except the transverse 

pressure, xN  to zero. 

Step 2: Calculate velocities using Eqs. (22). 

Step 3: Integrate velocities to obtain displacement 

util-izing Eqs. (23). 

Step 4: Apply displacement boundary conditions 

along the x  and y  axes using the 

appropriate parts of Eqs. (18) and (19). 

Step 5: Calculate the mid-plane strains and curva-

tures using Eqs. (3), (4) and (5). 

Step 6: Calculate the stress resultants, shear forces 

and stress couples using Eqs. (11), (12) and 

(13). 

Step 7: Apply stress couple boundary conditions 

using the appropriate parts of Eqs. (18) and 

(19). 

Step 8: Check if velocities are negligibly small, i.e. 
610−≤  on all the interior nodes, and the 

static solution is obtained. 

Step 9: If step 8 is satisfied store the results 

otherwise return to step 2 and repeat the 

sequence. 

Step 10: Increment the real time and repeat steps 

(2)-(9) until the maximum specified time is 

reached, then print out all the results for the 

specified real time. 

The computational steps described above are 

dependent on the proper choice of damping factors, 

densities and the fictitious time increment which all 

together add up to eleven parameters. In the present 

analysis the diversity of choice is reduced by using 

fictitious densities in conjunction with a unit time 

increment as adopted by Cassell and Hobbs [17]. 

Therefore, only the five damping factors, αk  where, 

yxwvu ψψα ,,,,=  have to be selected using the 

following simple relation. 

Fk /min)( αρα =                                                   (24) 

The factor F  is in the range: 101.0 ≤≤ F  that in 

the present analysis the value 0.04 suits best and it 

gives a minimum number of iterations. 

5. Finite- Difference forms of plate equations 

In the process of numerical solution, after 

transforming the equilibrium equations into their 

DR format, the velocity expressions were obtained. 

The differential terms on the RHS of the velocity 

expressions must be discretized so that numerical 

solution can be carried out. Consequently, the DR 

equations are first non-dimensionalized and then 

Eqs. (22), (23), (4), (5), (11)-(13) are discretized. 

The discretization technique may be finite-differ-

ence, finite-element, boundary element, etc. The 

technique adopted here is the finite-difference 

which suits the DR method and has also been 

previously used in [18, 19] and many others, some 

of which are given in [19]. In most DR applications 

an interlacing finite-difference is used, here 

however, due to minor differences in the final 

results, non-interlacing meshes are used. 

6. Numerical results 

Thin and moderately thick viscoelastic plate 

results for simply supported edges with in-plane 

fixed and free conditions are presented. Due to 

unavailability of viscoelastic buckling loads, elastic 

buckling loads are used for comparison purposes. 

CPT, FSDT and HSDT are used to generate three 

sets of results for plate centre deflections versus 

time, through-thickness in-plane displacements and 

normal stress and through-thickness in-plane and 

out-of-plane shear stresses for Polymethyl meth-

acrylate (Plexiglass) or PMMA with A=2.24 MPa, 

B=2.24 GPa (material constants), µ =0.365, 

α =0.00931/h, (a) 01.0/ =Lh and (b) .1.0/ =Lh  

6.1. Comparison results 

Elastic buckling loads for CPT and HSDT are 

utilized for comparison purposes. Table 1 gives the 

in-plane buckling loads Ncr as determined using the 

HSDT and those given in [20] using the CPT. Four 

sets of results for different aspect ratios are pre-

sented. The correlations of the two sets of results 

are very satisfactory and that the CPT results are 

higher than the HSDT results. This illustrates a 

more accurate prediction by HSDT. 

6.2. Deflection and stress results 

Figs. 2 (a,b) present dimensionless plate centre 

deflections versus time for simply supported plate 

with in-plane fixed movements for two slenderness 

ratios under uniformly distributed load. As pre-

dicted, the differences in deflections among the 

various theories are minor for thin plate, Fig. 2(a). 

However, there are significant differences between 

the CPT results and the present FSDT and HSDT, 

Fig. 2(b). 
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Dimensionless deflections versus time curves for 

simply supported plate with in-plane free edge 

conditions are presented in Figs. 3. The deflection 

values are larger, in this case, compared to those 

presented in Figs. 2. The deflection results for thin 

plates for the three plate theories are very close to 

one another. On the other hand, for the thick plate, 

the CPT results are much smaller than those 

predicted by the other two theories. From the 

physical considerations point of view, such 

behaviour is expected. In deed, this differences 

show the need for HSDT in thick plates.The 

through-thickness in-plane displacements in the x- 

direction as obtained from CPT and HSDT analyses 

are illustrated in Figs. 4. The CPT and FSDT results 

are very similar, consequently, only CPT results are 

included. These results are presented at time t=6000 

minutes for thin plate in Fig. 4(a) and for thick 

viscoelastic plate in Fig. 4(b). Similar results to 

those illustrated in Fig. 4, are presented in Figs. 5 

for elastic plates. The through-thickness in-plane 

normal stress in the x- direction is shown in Fig. 6 

for CPT and HSDT.  

The linear and non-linear natures of the stresses 

for the two plate theories are evident. Figs. 7 show 

the in-plane and out-of-plane shear stresses in the 

thickness direction of the plate, using HSDT. The 

non-linear behaviour of the stress variations is 

pronounced. 

Table 1. Comparison of elastic buckling loads for CPT and HSDT (present results) 0.25,�69GPa,E ==  simply supported 

a(cm) b(cm) h(cm) 
w/h 

(centre point) 

Ncr(Kn/m) 

HSDT 

Ncr(Kn/m) 

CPT 

50 50 1 0.0246 942.425 968 

100 50 1 0.0428 938.482 961 

175 50 1 0.0612 1420.012 1438 

240 50 1 0.1098 998.164 1004 

�

��

(a) 
��

(b) 

Fig. 2. Comparison of dimensionless plate centre deflections versus time for a simply supported plate with out-of-plane fixed  

edges for various plate theories. A= 2.24MPa, B=2.24GPa, µ =0.365, α =0.0093/h, (a) h/L=0.01 and (b)���������

��
(a) 

��
(b)��

Fig. 3. Comparison of dimensionless plate centre deflections versus time for a simply supported plate with out-of-plane free edges  

along the x-axis for various plate theories. A= 2.24MPa, B=2.24GPa, µ =0.365, α =0.0093/h, (a) h/L=0.01 and (b)�������� 
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(a) 

��
(b)��

Fig. 4. Comparison of through thickness in-plane displacements for a simply supported plate with out-of-plane fixed edges  

for various plate theories. A=2.24MPa, B=2.24GPa, µ =0.365, α =0.0093/h, (a) h/l=0.01and (b) h/L=0.1 

��
(a) 

��
(b)��

Fig. 5. Comparison of through thickness in-plane displacements for a simply supported elastic plate with out-of-plane fixed  

edges for various plate theories. A=2.24MPa, µ =0.365, (a) h/L=0.01 and (b). h/L=0.1 

��

Fig. 6. Comparison of through thickness in-plane normal stresses for a simply supported plate with out-of-plane  

fixed edges for various plate theories. A=2.24MPa, B=2.24GPa, µ =0.365, α =0.0093/h and h/L=0.1 

xσ

h 



Non-Linear Analysis …, M. Salehi and A. Safi-Djahanshahi                                                                                            20 

�

xyτ

��

xyτ

��

yzτ

h 
��

��

(a) 

��

(b)��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

(c )��

Fig. 7. Shear stresses for a simply supported plate with out-of-plane fixed edges for various plate theories. A=2.24MPa, B=2.24GPa, 

µ =0.365, α =0.0093/h and h/L=0.1, (a) in-plane xyσ , (b) out-of-plane xzσ  and (c) out-of-plane yzσ  

7. Conclusions 

The DR iterative numerical method has been 

applied for the first time to solve viscoelastic 

material plate non-linear governing equations. For 

this purpose, the plate equilibrium equations have 

been transformed into DR format. Then, the 

governing equations are discretized using the finite-

difference discretization technique. The loading is a 

uniformly distributed pressure and the boundary 

condition is simply supported in-plane fixed and 

free. Using higher-order displacement field in non-

linear strain/ displacement relations is the other 

originality of the present work. The standard 

Boltzmann superposition principle viscoelastic 

material model is adopted. In order to generate 

numerical results, the finite difference equations are 

then used to prepare computer software. Because of 

having a fictitious and a real time a much longer 

computer time is required to obtain numerical 

results, although, the number of iteration are very 

low for every static solution in fictitious time 

increment. The elastic results for buckling loads are 

compared with existing results and the correlations 

are very satisfactory. However, the viscoelastic 

plate results are compared for three different plate 

theories (i.e. CPT, FSDT and HSDT). The plate 

centre deflections versus time, through-thickness 

displacements, normal stresses, in-plane and out-of-

plane shear stresses are presented graphically. The 

differences in the results for the three theories used 

are very significant for thick plates, but small 

variations observed for thin plates. The present 

results can be used as a benchmark for other 

researchers. 
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Nomenclature 

a,b plate dimensions 
)0(A  elastic extensional stiffness 

)0(/)0()0( 2
EhAA ο=  

non-dimensional elastic 

extensi-onal stiffness 
)0(D  elastic bending stiffness 

)0(/)0()0( 3
EhDD ο=  non-dimensional elastic 

bending stiffness 

yx
KKKKK wvu ψψ ,,,,  damping factors 

***** ,,,,
yx

KKKKK wvu ψψ  non- dimensional damping 

factors 

xyyx MMM ,,  stress couples 

xyyx NNN ,,  stress resultants 

yx QQ ,  shear stress resultants 

h h 
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*
R  integral operator 

α

1
=rt  relaxation time 

wvu ,,  displacement components 

οοο wvu ,,  plate mid-plane displacement 

components 
)(tY  relaxation function 

)0(Y  relaxation function at time 

zero 
)(∞Y  relaxation function at time 

infinity 

z  distance from plate mid-plane 
α  inverse of relaxation time 
tδ  time increment 

yzxzxyzyx εεεεεε ,,,,,  normal and shear strain 

components 
000000 ,,,,, yzxzxyzyx εεεεεε  plate mid-plane normal and 

shear strain components 
οοο
xyyx kkk ,,  plate mid-plane curvature 

components 
µ  Poissons ratio 

yxwvu ψψ ρρρρρ ,,,,  fictitious densities 

yzxzxyzyx σσσσσσ ,,,,,

 

normal and shear stress 

components 
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