

سنتز و شناسایی نانو ذرات TiO₂ دوپه شده با La³⁺ + بررسی شکاف انرژی و فعالیت فوتوکاتالیتیکی آنها

سیمین جانی تبار درزی * و علیرضا محجوب ۲

۱- سازمان انرژی اتمی ایران، پژوهشگاه علوم و فنون هسته ای، پژوهشکده چرخه سوخت هسته ای، تهران، ایران ۲- دانشگاه تربیت مدرس، دانشکده علوم پایه، تهران، ایران

دریافت: فروردین ۱۳۸۹، بازنگری: شهریور ۱۳۸۹، پذیرش: آبان ۱۳۸۹

چکیده: نانو ذرات Lio₂ دوپه شده با ⁺¹La با روش سل- ژل و با استفاده از مادههای اولیهی Licl₄ و TiCl₂ و TiCl₃. (NO₃)₃.6H₂O و فراورده با استفاده از روشهای La³⁺ با روش سل- ژل و با استفاده از مادههای اولیه می Ficl₄ مد. نتیجهها نشان میدهند که مادهی سنتزی حاوی فراورده با استفاده از روشهای EET-BJH ناتاز و روتیل Cicl₃ SEM SED³ SEM انجام شد. نتیجهها نشان میدهند که مادهی سنتزی حاوی ۶ درصد یون ⁺¹La بوده و حضور فازهای آناتاز و روتیل TiO₂ در کنار La₂O₃ تأیید شد. شکاف انرژی این ماده VV-vis SET-BJH ویژه آن ۶ درصد یون ⁺¹La³ بوده و حضور فازهای آناتاز و روتیل TiO₂ در کنار La₂O₃ تأیید شد. شکاف انرژی این ماده VV ماحت سطح ویژه آن ۶ ماده ک² TiCl₂ محاصر یون ⁺¹La³ بوده و حضور فازهای آناتاز و روتیل TiO₂ در کنار Aa₂O₃ تأیید شد. شکاف انرژی این ماده VV ماحت سطح ویژه آن ² مار² m²/g و متوسط قطر حفرات آن Aa³ محاسبه شد. فعالیت فوتوکاتالیتیکی نانوکاتالیست سنتز شده و TiO تجاری (دگوسا Pa²) جهت تجزیه رنگ آزوی کنگورد تحت تابش نورهای فرابنفش و مرئی مورد مقایسه قرار گرفت. TiO₂ دوپه شده با ⁺¹La در مقایسه با TiO تجاری (دگوسا) کارایی فوتوکاتالیتیکی بسیار بالاتری در حذف رنگ تحت نور مرئی نشان داد به طوری که راندمان رنگ زدایی با استفاده از TiO دوپه شده با ⁺¹La در کارایی فوتوکاتالیتیکی بسیار بالاتری در حذف رنگ تحت نور مرئی نشان داد به طوری که راندمان رنگ زدایی با استفاده از TiO دوپه شده با ⁺¹La در مدت زمان ۲۱۰ دقیقه ۸۸ درصد محاسبه شد

کلمات کلیدی: ₂TiO، سل- ژل، شکاف انرژی، ^۱La³⁺ نانو ذرات

مقدمه

تیتانیم دی اکسید به دلیل دارا بودن ضریب شکست بالا، قابلیت جذب پرتو فرابنفش، فعالیت فوتوشیمیایی، هزینهی سنتز پایین، پایداری شیمیایی و فیزیکی تحت شرایط واکنش، قابلیت اکسایش بالا و غیر سمی بودن [۱–۶] علاوه بر کاربردهای متنوعی که در پیگمنتها، نگهدارندهها، کاتالیستها، سرامیکها و غشاهای معدنی دارد، به عنوان فوتوکاتالیست در زمینه حذف آلایندههای

زیست محیطی بسیار مورد استفاده قرار گرفته است [۷ – ۱۳]. فرایندهای تصفیهی فتوکاتالیتیکی که ظرفیت استفاده از انرژی پاک و لایزال خورشید را دارند میتوانند بهعنوان جانشینی مناسب برای روشهای متداول تصفیه که هزینه و انرژی بالایی دارند، پیشنهاد شوند. شکاف انرژی فوتوکاتالیست TiO در گسترهی پرتو فرابنفش قرار دارد. گسترهی پرتو فرابنفش تنها ۸٪ از گسترهی طیف خورشیدی را تشکیل میدهد در حالیکه ۸٪ از

siminjanitabar@yahoo.com هعهدهدار مكاتبات: siminjanitabar@yahoo.com

سیمین جانیتبار درزی و همکاران

طیف خورشید مربوط به ناحیه مرئی است. از آنجایی که بکار گیری انرژی خورشیدی باعث پاک و اقتصادی شدن روش تصفیه فوتوکاتالیتیکی میشود، بنابراین لزوم تحقیقات بیشتر در زمینه استفاده از نور مرئی در سیستمهای فوتوکاتالیتیکی اجتناب ناپذیر بوده و توانایی تغییر حساسیت نوری از ناحیه فرابنفش به ناحیه مرئی از نکات مهم در توسعه یفرایند فوتوکاتالیتیکی است [۱۴].

دوپه کردن $_{2}^{1}$ TiO با برخی یونها سبب تغییر مکان لبه جذب این ماده به سمت طول موجهای بزرگتر میشود. این تغییر مکان که تحت عنوان جابجایی قرمز^(۱) نامیده میشود، گاهی اوقات UTO شبب حساس شدن ماده به نور مرئی میشود. بنابراین ذرات TiO خالص با $_{2}^{1}$ TiC در حالتی که یونهای فلزات واسطه در شبکه و یا خالص با $_{2}^{1}$ TiC در حالتی که یونهای فلزات واسطه در شبکه و یا متفاوت هستند. در بسیاری از موارد، یونهای فلزی میتوانند باعث جدایی مؤثر الکترون و حفره شده، فعالیت فوتوکاتالیتیکی را افزایش دهند [۱۵ – ۱۸]. ولی در برخی مقالات این یونهای فلزی به عنوان مکانی مناسب برای بازترکیب الکترون وحفره گزارش شدهاند [۱۹]. بنابراین گزارشهای ضد و نقیضی در مورد فعالیت فوتوکاتالیتیکی $_{2}$ TiC دوپه شده با فلزات واسطه وجود دارد و این مسأله لزوم مطالعه و پژوهش بیشتر در این راستا را روشن میکند.

از طرف دیگر در سالهای اخیر دوپه کردن TiO₂ با یونهای لانتانیدی بسیار مورد توجه قرار گرفته است. یونهای لانتانیدی به دلیل دارا بودن اوربیتالهای f توانایی بالایی را برای کمپلکس شدن با بازهای لوئیس متفاوت نشان میدهند. بنابراین، مواد آلی با

دارا بودن گروههای اسیدی، آمینی، آلدهیدی، الکلی، تیولی و غیره میتوانند به راحتی با یونهای لانتانیدی برهم کنش داشته باشند. بنابراین ملحق کردن لانتانیدها به ساختار TiO₂ میتواند عامل تأثیرگذاری در میزان جذب مواد آلی در سطح فوتوکاتالیزور بوده، سبب افزایش ویژگی کاتالیتیکی شود [۲۰]. در گزارشهای قبلی [۲۲–۲۲] بیشتر مسألههایی چون میزان تأثیر یون لانتانید بر انتقال فاز آناتاز به روتیل مورد توجه قرار گرفته بودند و تأثیر عاملهایی چون ساختار اتمی و شعاع یون لانتانید، درصد یون لانتانید دوپه شده و ریز ساختار ماده بر انتقال فاز و ویژگیهای فوتوکاتالیتیکی مورد بررسی قرار گرفته بودند. بعلاوه بررسیهای فوتوکاتالیتیکی نتیجههای نور مرئی انجام شده بودند. به نظر میرسد قابلیت بسیار بالای نانو ذرات Tio دوپه شده با یون لانتانید در جذب سطحی مواد آلی، میتواند سبب رقم خوردن کارایی فوتوکاتالیتیکی بسیار

در این پژوهش نانو ذرات ₂ TiO دوپه شده با ⁺³ La³⁺ سنتز و ویژگیهای فوتوکاتالیتیکی آن جهت حذف رنگ کنگورد (شمای شماره ۱) در نور مرئی و فرابنفش در مقایسه با TiO₂ خالص مورد بررسی قرار گرفت.

مواد و روش ها مواد شیمیایی و دستگاهها

مواد مورد استفاده در این تحقیق لانتانیم نیترات ۶ آبه (AgNO₃)، اوره(NH₂)₂CO)، نقرهنیترات (AgNO₃).6H₂O)

شمای ۱ ساختار مولکولی رنگ کنگورد

1. Red Shift

نشریه پژوهشهای کاربردی در شیمی (JARC)

سال پنجم، شماره ۳، پاییز ۹۰

و رنگ کنگورد ($C_{32}H_{22}N_6Na_2O_6S_2$) از شرکت Merck، تیتانیم Fluka و رنگ کنگورد ((HCl) و هیدروکلریک اسید ((HCl) از شرکت Degussa تیتانیم دی اکسید (TiO_2) P۲۵ بود.

در این پژوهش، دستگاههای آنالیز پراش پرتو ایکس (XRD) مدل (Philips X-pert)، میکروسکوپ الکترونی روبشی (SEM) تجهیز شده با (EDX)، مـدل (Philips XL-300) و دستگاه طیف سنج جذبی UV 2100-Shimadzu مدل UV-vis ویژه و توزیع اندازه حفرات دستگاههای اندازه گیری مساحت سطح ویژه و توزیع اندازه حفرات با روش BET-BJH، مدل audor 200 و (Oxford ED 2000) مدل (XRF) مدل Audor) مدل (Cxford ED 2000)

سنتز نانو ذرات ₂ TiO دوپه شده با ۲۵

در دمای صفر درجه ی سانتی گراد، به ۸ میلی لیتر HCl غلیظ، با همزدن مداوم، قطره قطره ۲ میلی لیتر TiCl₄ افزوده شد. به سل حاصل ۱۴۰ میلی لیتر آب مقطر یون زدایی شده افزوده شد. ۲۶ گرم لانتانیم نیترات ۶ آبه را در ۵۰ میلی لیتر آب مقطر یون زدایی

شده حل و سپس به محیط واکنش افزوده شد. در مرحله پس، ۱۵ گرم اوره به محیط واکنش افزوده و مخلوط واکنش به دمای ۱۰۰ درجه سانتیگراد رسانده و به مدت ۱۲ ساعت همزده شد. رسوب بهدست آمده پس از فیلتر شدن، با آب مقطر یون زدایی شده، شستشو شد تا یونهای کلر موجود در مخلوط واکنش حذف شوند. حذف یون کلر با آزمایش نقره نیترات تأیید شد. سپس فراورده در دمای اتاق خشک و در نهایت پودر سفید رنگ حاصل در دمای ۵۰۰ درجه سانتیگراد به مدت ۶ ساعت کلسینه شد.

روش انجام واکنشهای فوتوشیمیایی و واکنشگر مورد استفاده

در این پژوهش، برای انجام واکنشهای فوتوکاتالیتیکی تحت پرتو فرابنفش و مرئی، از یک واکنشگر که مطابق شکل ۱ طراحی شد، استفاده شد. در واکنشهای تحت پرتو فرابنفش، منبع تابش یک لامپ کم فشار جیوه (UV-C) ساخت شرکت فیلیپس و در واکنشهای تحت نور مرئی، منبع تابش لامپ کم مصرف، ساخت شرکت اسرام استفاده شد. در این واکنشگر، غلاف محافظ لامپ یک لوله ته بسته کوارتزی از نوع کوارتز ضد تولید ازن و محفظهی

شکل ۱ فتو واکنشگر طراحی شده برای واکنشهای فوتوکاتالیتیکی در نور UV

سال پنجم، شماره ۳، پاییز ۹۰

سیمین جانیتبار درزی و همکاران

واکنش از جنس شیشه یپرکس انتخاب شد. محفظه ی واکنش دو جداره ساخته شد تا در طول واکنش، با استفاده از ژاکتی از آب سرد دمای واکنش ثابت نگه داشته شود. سوسپانسیون موجود در محفظه واکنش همواره به وسیله ی یک همزن مغناطیسی هم زده شد. در طول واکنش ها، جریان ثابتی از هوا به وسیله یک پمپ آکواریوم به درون محفظه داخل شد. برای نمونه برداری از واکنش در زمان های مورد نظر، یک لوله ی پلاستیکی با قطر کم به درون محفظه ی واکنش هدایت شده و نمونه به وسیله پواری که به سر دیگر لوله وصل شده بود، خارج شد.

در بررسیهای فوتوشیمیایی درصد تخریب رنگ کنگورد (X) برحسب زمان در mN $\lambda =$ ۴۹۷ nm با استفاده از فوتوکاتالیست سنتز شده و TiO₂ دگوسا مقایسه شد. X نشان دهنده درصد تخریب فوتوکاتالیتیکی رنگ بوده که بر طبق معادله ($100 \times \frac{A_0 - A}{A_0} = X$) محاسبه شد [۲۰و۲۱]. در این معادله مانشان دهنده می جذب محاسبه شد [۲۰و۲۱]. در این معادله مانشان دهنده میزان محاسبه محلول رنگ در mn ۲۹۷ = λ در زمان نمونه برداری جذب محلول رنگ در mn ۲۹۷ = λ در زمان نمونه برداری است. در تمامی این واکنشها غلظت رنگ mpd ۵ و مقدار فوتوکاتالیست Jg/L انتخاب شد.

نتيجهها و بحث

شناسایی نانوذرات ₂ TiO دوپه شده با ^۲۰ La³⁺ دلما شکل ۲ الگوی پراش XRD نانوذرات ₂ TiO دوپه شده با ۲a³⁺

را نشان میدهد. این شکل نشان میدهد که ماده سنتز شده حاوی فاز آناتاز و فاز روتیل $_{2}\mathrm{TiO}$ در کنار هم است. حضور $_{1}^{3}\mathrm{Ea}$ به دلیل همپوشانی پیکهای مربوط به $_{2}\mathrm{La}_{2}\mathrm{O}$ با پیکهای آناتاز $_{2}\mathrm{TiO}$ از طریق آنالیز انجام شده قابل رویت نیست اما تشکیل فاز روتیل به مقدار زیاد در کنار فاز آناتاز، میتواند نشانه الحاق یونهای $_{1}^{4}\mathrm{La}^{3+}$ به شبکه بلوری $_{2}\mathrm{TiO}$ باشد. بر اساس گزارشهای ارایه شده، الحاق یونهای با شعاع کوچک و با بار کمتر از چهار، مانند شده، الحاق یونهای با شعاع کوچک و با بار کمتر از چهار، مانند مکانهای کمبود اکسیژن شده، در نتیجه سبب افزایش سرعت انتقال فاز آناتاز به روتیل میشوند [۲۲ – ۲۴].

La³⁺ lichi e, the equation of the set of

ماده سنتزی به منظور بررسی نوع ترکیب^(۲) به وسیله آنالیز اسپکتروسکوپی فلورسانس پرتو ایکس (XRF) مورد بررسی قرارگرفت. بر اساس این آنالیز، ماده حاوی ۹۳٬۰ درصد TiO₂ و ۲٫۷ درصد La₂O₃ است.

 ${
m La^{3+}}$ شکل ۲ الگوی پراش XRD نانو ذرات TiO $_2$ دوپه شده با

سال پنجم، شماره ۳، پاییز ۹۰

^{1.} Deby- Scherer

^{2.} Composition

شکل ۳ تصویر SEM نانو ذرات آناتاز دوپه شده با ۱۲a³⁺

شکل ۴ نمودار EDX نانو ذرات آناتاز دوپه شده با +La³⁺

سیمین جانیتبار درزی و همکاران

شکل ۵ نمودار جذب vis نانو ذرات TiO₂ دوپه شده با La^{3+} و تعیین لبه جذب آن

شکل ۳ مورفولوژی نانو ذرات TiO₂ دوپه شده با ³ La³⁺ را با استفاده از آنالیز SEM نشان میدهد. بر اساس این تصویر، نانو ذرات تولید شده تقریباً کروی شکل هستند.

به منظور بررسی نوع و درصد عناصر تشکیل دهنده، ماده سنتزی از طریق آنالیز EDX مورد بررسی قرار گرفت. شکل ۴ نمودار EDX این ماده را نشان میدهد. مطابق این شکل ماده سنتزی حاوی ۶ درصد یون ⁺³La

شکل ۵ منحنی جذب Uv-vis نانوذرات $_2^{2}$ TiO دوپه شده با La^{3+} و مکان لبه جذب آن را نشان می دهد. برای تعیین شکاف λ و مکان لبه جذب آن را نشان می دهد. برای تعیین شکاف λ انرژی این ماده از معادله ($Eg = \frac{1240}{\lambda}$) استفاده شد. در این معادله λ نشان دهنده لبه جذب نیمه هادی در طیف جذبی Uv-vis است [۶۶]. براساس معادله فوق و با توجه به شکل ۵، شکاف انرژی

نانوذرات $_{2}^{TiO}$ دوپه شده با $_{1}^{3+}$ La³⁺ معادل TiO₂ تخمین زده شد. شکاف انرژی این ماده نسبت به شکاف انرژی نانوذرات $_{2}^{TiO}$ دگوسا (Eg = 7,1 eV)، یک جابجایی قرمز نشان میدهد. این مسأله به طور عمده ناشی از ایجاد یک سطح انرژی جدید در ناحیه شکاف انرژی یعنی در حد فاصل نوار ظرفیت و نوار هدایت $_{2}^{TiO}$ است. سطح انرژی جدیدی که در اثر دوپه کردن یون فلزی در شبکه بلوری TiO ایجاد شده است، به دو صورت میتواند باعث جابجایی بلوری حدید و یا از سطح انرژی جدید به نوار هدایت میتواند باعث جابجایی انرژی جدید و یا از سطح انرژی جدید به نوار هدایت میتواند لبه جذب $_{2}^{TiO}$ را به سمت ناحیه ی مرئی جابجا کند [Y0 و ۲۸].

شکل ۶ ایزوترمهای جذب و واجذب نیتروژن و منحنی توزیع اندازاهی حفره را برای نانو ذرات ₂TiO دوپه شده با ⁺¹a³⁺ نشان

شکل ۶ ایزوترمهای جذب و واجذب نیتروژن و منحنی توزیع اندازهی حفرهی نانو ذرات TiO₂ دوپه شده با ۲a³⁺

سال پنجم، شماره ۳، پاییز ۹۰

میدهد. این شکل نشان میدهد که ایزوترمهای جذب و واجذب نیتروژن برای این ماده از نوع IV و ماده سنتزی مزوحفره است. از آنجایی که شاخههای جذب و واجذب منحنی موازی یکدیگرند و تقریباً حالت افقی دارند، در نتیجه لوپ هیسترسیز ماده از نوع H_4 است. لوپ هیسترسیز نوع H_4 ، نشانگر تولید حفرههای شکاف مانند در ماده سنتزی است [۲۹]. مساحت سطح ویژه ذرات با استفاده از روش BET، معادل ۵۹٬۳۰ مترمربع بر گرم محاسبه شد و مبهوسیلهی قطر حفرات ماده با استفاده از شاخه واجذب منحنی و با روش HJ، nm، BJH به دست آمد.

بررسی نتیجههای آزمایشهای تخریب فوتوکاتالیتیکی رنگ کنگورد با استفاده از نانو ذرات ₂TiO دوپه شده با^{+د}La

شکل ۷ درصد تخریب رنگ کنگورد (X) را برحسب زمان در شکل ۷ درصد تخریب رنگ کنگورد (X) را برحسب زمان در mm $\lambda = 4$ ۹ mm را استفاده از فوتوکاتالیست نانو ذرات 100_2 دوپه شده با $\lambda = 4$ با استفاده از فوتوکاتالیست دگوسا در مقایسه با نشان میدهد. براساس این شکل تخریب نوری رنگ کنگورد در پرتو فرابنفش با استفاده از فوتوکاتالیست دگوسا در مقایسه با فوتوکاتالیست 100_2 دوپه شده با 10^+ بهتر انجام میپذیرد. در نور مرئی فوتوکاتالیست دگوسا برای تخریب این رنگ مؤثر واقع نمی شود ولی فوتوکاتالیست 100_2 دوپه شده با 100_2 بهتر انجام میپذیرد. در نور شود ولی فوتوکاتالیست 100_2 دوپه شده با 100_2 بهتر اندمان بالایی شود ولی فوتوکاتالیست 100_2 دوپه شده با 100_2 با راندمان بالایی تادر به رنگ زدایی محلول کنگورد در نور مرئی است. بر اساس نتیجههای بهدست آمده از واکنشهای فوتوکاتالیتیکی، میزان

در مدت زمان ۱۱۰ دقیقه ۸۸ درصـد است. در پرتو فرابنفش TiO₂ دوپه شده با ⁺²La³⁺ نسبت به دگوسا، راندمان پایین تری در تخـریب فوتوکاتالیتیکی این رنگ نشـان میدهد بطوریکه میزان تخریب رنگ در پرتو فرابنفش با استفاده از این ماده در مدت زمان ۱۱۰ دقیقه ۵۵ درصد است. افزون بر آن، کارایی این فوتوکاتالیست در نور مرئی بیشتر از پرتو فرابنفش است. این نتیجه با یافتههای انپو و همکارانش مطابقت دارد.

پژوهشگران گزارش کردند که زمانی که یونهای فلزی با روشهای شیمیایی به کاتالیست TiO₂ دوپه میشوند، باعث کاهش کارایی آن تحت تابش پرتو فرابنفش میشوند. افزون بر آن، این اثر را به دلیل افزایش بازترکیب الکترونها و حفرهها در محل سطوح انرژی جدیدی که در اثر دوپه شدن یونهای فلزی در شکاف انرژی_TiO ایجاد شدهاند، نسبت دادهاند [۳۰ – ۳۳].

نتيجه گيري

نانو ذرات $_{2}^{2}$ TiO دوپه شده با $_{2}^{+}$ La³⁺ با شکاف انرژی eV م⁷, به منظور استفاده در واکنشهای فوتوکاتالیتیکی سنتز و جهت حذف رنگ کنگورد در مقایسه با $_{2}^{2}$ TiO تجاری (دگوسا) در پرتو فرابنفش و مرئی مورد استفاده قرار گرفتند. مطالعههای فوتوکاتالیتیکی تخریب رنگ کنگورد نشان داد که برخلاف $_{2}^{2}$ TiO (دگوسا) که در نور مرئی فاقد ارزش فوتوکاتالیتیکی است، نانو ذرات $_{2}^{2}$ TiO دوپه شده با $_{2}^{3}$ La³⁺ فعالیت فوتوکاتالیتیکی بسیار بالایی را در حذف رنگ در ناحیه مرئی نشان میدهند.

شکل ۷ مقایسه درصد تخریب رنگ کنگورد (X) برحسب زمان در λ = ۴۹۷ nm با استفاده از نانو ذرات TiO₂ دوپه شده با La³⁺

سال پنجم، شماره ۳، پاییز ۹۰

مراجع

- Xia, B; Xie, H.Y; Mater. Sci. Eng. B. 57, 150-154; 1999.
- [2] Seoa, B.S; Leea, T.K; Kimb, H; J. Crystal Growth 233, 282-302; 2001.
- [3] Ito, S; Inoue, S; Kawada, H; Hara, M; Iwasaki, M; Tada, H; J. Coll. Int. Sci. 216, 59-64; 1999.
- [4] Sugimoto, T; Zhou, X; Muramatsu, A; J. Coll. Int. Sci. 259, 43-52; 2003.
- [5] Shi, L; Li, C; Chenb, A; Zhub, Y; Fang, D; Mater. Chem. Phys. 66, 51-57; 2000.
- [6] Kwon, C; Kim, T.H; Jung, I.S; Shin, H; Yoon, K. H; Ceram. Inter. 29, 851-856; 2003.
- [7] Chen, Y.C; Smirniotis, P; Ind. Eng. Chem. Res. 41, 5958-5965; 2002.
- [8] Ao, C.H; Lee, S.C; Chem. Eng. Sci. 60 103-109; 2005.
- [9] Dmitry, G.S; Dmitry, V.S; J. Photoch. Photobiol. C: Photochem. Rev. 7, 23-39; 2006.
- [10] Hirakawa, T; Yawata, K; Nosaka, Y; Appl. Catal. A. 325, 105-111; 2007.
- [11] Habibi, M.H; Vosooghian, H; J. Photochem. Photobiol. A. 174, 45-52; 2005.
- [12] Ilisz, I; Dombi, A; Mogyorósi, K; Farkas, A; Dékány, I; Appl. Catal. B: Environ. 39, 247-256; 2002.
- [13] Chun, H; Yizhong, W; Hongxiao, T; Chemosphere 41,1205-1209; 2000.
- [14] Kumar, S; Fedorov, A. G; Gole, J.L; Appl. Catal. B: Environ. 57, 93-107; 2005.
- [15] Yuan, Z; Zhang, J; Li, B; Li, J; Thin Solid Films 515, 7091-7095; 2007.
- [16] Pantelides, S.T; Rev.Mod. Phys. 50, 797-858; 1978.
- [17] Lukac, J; Klementova, M; Bezdicka, P; Bakardjieva, S; Subrt, J; Szatmary, L; Bastl, Z; Jirkovsky, J; Appl. Catal. B: Environ. 74, 83-91; 2007.
- [18] Twesme, T.M; Tompkins, D.T; Anderson, M.A; Root, T.W; Appl. Catal. B: Environ. 64, 153-160; 2006.

- [19] Fox, M.A; Dulay, M.T; Chem. Rev. 93, 341-357; 1993.
- [20] Zhang, Y; Zhang, H; Xu, Y;Wang, Y; J. Solid State Chem.177, 3490-3498; 2004.
- [21] Liqiang, J; Xiaojun, S; Baifu, X; Baiqi, W; Weimin, C; Honggang, F; J. Solid State Chem.177, 3375-3382; 2004.
- [22] Yuan, S; Sheng, Q; Zhang, J; Chen, F; Anpo, M; Zhang, Q; Micro. Meso. Mater.79, 93-99; 2005.
- [23] Muruganandham, M; Swaminathan, M; Dyes Pigments 62. 271-277; 2004.
- [24] Mahmoodi, N.M; Arami, M, Limaee, N.Y; Tabrizi, N.S; Chem. Eng. J. 112, 191-196; 2005.
- [25] Shannon, R.D; Pask, J. A; Am. Mineral. 49, 1707-1717; 1964.
- [26] Arrayo, R; Codoba, G; Padilla, J; Lara, V.H; Mater. Lett. 54, 397-402; 2002.
- [27] Karvinen, S; Solid State Sci. 5, 811-619; 2003.
- [28] Stengl, V; Bakardjieva, S; Murafa, N; Vecernikova, E; Subrt, J; Balek, V; J Nanopart. Res. 2007; 9, 455.
- [29] Yoneyama, H; Haga, S; J. Phys. Chem. 93, 4833-4837; 1981.
- [30] Nagaveni, K; Sivalingan, G; Hegde, M.S; Madras, G; Appl. Catal. B. 48, 83-93; 2004.
- [31] Zhao, J; Takeuchi, M; Ray, A.K; Anpo, M; Zhao, X.S; J. Colloid. Interf. Sci. 311, 497-501; 2007.
- [32] Kruk, M; Jaroniec, M; Chem. Mater. 13, 3169-3183; 2001.
- [33] Neppolian, B; Seock, H; Anpo, M; Chem. Lett. 33, 1562-1563; 2004.
- [34] Anpo, M; Kishiguchi, S; Ichihashi, Y; Takeuchi, M; Yamashita, H; Ikeue, K; Morin, B; Davidson, A; Che, M; Res. Chem. Intermed. 27, 459-467; 2001.
- [35] Anpo, M; Takeuchi, M; Ikeue, K; Dohshi, S; Current Opinion in Solid State and Materials Science 6, 381-388; 2002.

سال پنجم، شماره ۳، پاییز ۹۰

Synthesis and characterization of La³⁺ doped TiO₂ nanoparticles investigation of their band gap and photocatalytic properties

S. Janitabar Darzi1* and A. R. Mahjoub2

1- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute AEOI, Tehran, Iran

2 Faculty of Science, Tarbiat Modares University, Tehran, Iran.

Recieved: April 2010, Revised: September 2010, Accepted: November 2011

Abstract: La^{3+} doped TiO₂ was synthesized via sol-gel technique using TiCl₄ and La(NO₃)₃.6H₂O as raw materials. Characterization of the product was carried out by means of XRD, XRF, SEM, EDX, UV-Vis, and BET-BJH analyses. The results of analyses showed that synthesized material was composed of 6% La³⁺ and existence of anatase and rutile phases of TiO2 beside La₂O₃ was confirmed. The band gap of the matter estimated to be 2.5 eV also its specific surface area and average pore diameter calculated to be and 59.3 m²/g and 4.61 nm, respectively. Photocatalytic properties of the synthesized nanocatalyst and commercial TiO₂ (Degussa P25) were compared for degradation of congo red azo dye in UV and Vis lights irradiation. In comparison to Degussa TiO₂, La³⁺ doped TiO₂ showed superior photocatalytic efficiency towards the removal dye in visible light so that, decolorization efficiency using La³⁺ doped TiO₂ during 110 minute calculated to be 88%.

Keywords: TiO₂, sol-gel, band gap, La³⁺, nanoparticles

^{*}Corresponding author Email: siminjanitabar@yahoo.com