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Starting from two-dimensional (2D) equations of motion, discretized formulations for 
transient behavior of soil-structure interaction problems have been derived. Two different 
dynamic infinite elements taking into account single and two-wave types are presented in 
transformed space. By coupling the infinite elements with standard finite elements, an 
ordinary finite element procedure is used for simulation of wave propagation in an 
unbounded foundation due to external forces. 
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1. Introduction 

The simulation of unbounded domains in numerical methods is a very important topic in dynamic 

soil-structure interaction and wave-propagation problems. Historically, unbounded media 

problems have been treated by finite-difference method (FDM) and finite elements together with 

transmitting boundaries. The finite element formulation with standard viscous boundary 

conditions gives approximate results since some of the wave energy is trapped in closed region. 

The use of dynamic infinite elements has been introduced as an alternative tool to transmitting 

boundaries for unbounded domain problems. All of these works are concerned about harmonic 

loading alone. The usual method for treating dynamic soil-structure interaction problems is to 
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divide the unbounded medium into two regions: (1) near field; and (2) far field. The near field 

part is discretized using standard finite elements and the far field part is discritized using dynamic 

infinite elements. The use of coupled finite and infinite elements is in the context of standard 

FEM procedure.  

More recently, boundary element method (BEM) has been used for the analysis of soil-structure 

interaction problems. However, for systems with complicated geometry and material properties, 

application of BEM proves to be difficult. Although BEM is suitable for unbounded soil domain 

problems, even in the presence of simple structure, BEM cannot be applied directly for the 

analysis of soil-structure interaction system alone. It is to be accompanied by FEM. 

The objective of the study is to obtain the transient behavior of a soil-structure interaction system 

under the action of an arbitrary dynamic loading. Two-dimensional new transient infinite 

elements taking into account multiwave types are presented in Laplace transform domain. 

Solution in time domain is obtained by using an appropriate numerical inverse Laplace transform 

technique (Durbin 1974). 

 

1.1. Dynamic Finite and Infinite Elements 

While solving a soil-structure interaction problem numerically, finite element network is 

established by discretizing the solution domain into elements. This network contains some finite 

elements in the near field and some infinite elements in far field. 

In this study, a standard eight node isoparametric, quadratic plane element is chosen as the finite 

element. For discritization of far field, two types of infinite elements with decay function, which 

can cover single or multiwave components, have been derived. The first one is an infinite element 

that includes a single-wave character. The second one is an infinite element that takes into 

account any two of the three different wave types: pressure (P); shear (S); Rayleigh (R) waves. 

 

2. Formulation 

2.1. Infinite Element with Single-wave Type 

For this case, a five-node infinite element is used. One direction extends to infinity (ξ- direction, 

0≤ξ≤∞), while the other is finite (η-direction, -1≤η≤+1).  

The mapping relationship between real and reference elements is given as: 

 

 
ݔ ൌ ܯ

ହ

ୀଵ

 (1a)ݔ

ݕ  ൌ 	∑ ܯ
ହ
ୀଵ  Where Mi (i=1-5) = mapping shape functions (1b)	ݕ
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Figure 1. Mapping relationship between elements: a)  Reference element; b) Real element 

 

Where:    

 M1 =
ଵ

ଶ
ሺ1 െ ሻሺ1ߦ െ ሻ ; (2a)ߟ

 M2 = 0 (2b)

 M3 =
ଵ

ଶ
ሺ1 െ ሻሺ1ߦ  ሻ ; (2c)ߟ

 M4 =
ଵ

ଶ
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 M5 =
ଵ

ଶ
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In the Laplace transform domain the displacement field for this dynamic infinite element can be 

written as:  

 
തݑ  ൌ ∑ పܰഥ

ଷ
ୀଵ పഥݑ ݒ̅  ,   ൌ ∑ పܰഥ

ଷ
ୀଵ పഥݒ  (3)

 

Where Ni (i=1-3) = displacement shape functions of this infinite element expressed as: 

 
 

ଵܰതതതሺߦ, ,ߟ ሻݏ ൌ ܲሺߦ, ሻݏ 
1
2
ߟሺߟ െ 1ሻ൨ (4a)

 
ଶܰതതതതሺߦ, ,ߟ ሻݏ ൌ ܲሺߦ, ሻሾሺ1ݏ െ ଶሻሿ (4b)ߟ

 
ଷܰതതതതሺߦ, ,ߟ ሻݏ ൌ ܲሺߦ, ሻݏ 

1
2
ߟሺߟ  1ሻ൨ (4c)

Where ܲሺߦ,  ሻ = wave propagation function of the elementݏ

 

 ܲሺߦ, ሻݏ ൌ ݔ݁ ቂെ ቀߙ 
ݏ
ܿ
ቁܮ ቃ (5)ߦ

 

Where ߙ = decay coefficient; s= Laplace transform parameter; c= one of the wave velocities (cp, 

cs or cr); L= distance between Nodes 1 and 4(or 3 and 5). 
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2.2. Infinite Element with Two-wave Type 

 
തݑ  ൌ ∑ పܰഥ

ହ
ୀଵ పഥݑ ݒ̅ ;  ൌ ∑ పܰഥ

ହ
ୀଵ పഥݒ  (6)

 

Where Ni (i=1-5) = displacement shape functions of this infinite element expressed as: 

 
 

ଵܰതതതሺߦ, ,ߟ ሻݏ ൌ ܲሺߦ, ሻݏ 
1
2
ߟሺߟ െ 1ሻ൨ (7a)
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1
2
ߟሺߟ  1ሻ൨ (7c)

 
ସܰതതതതሺߦ, ,ߟ ሻݏ ൌ ܲሺߦ, ሻݏ 

1
2
ሺ1 െ ሻ൨ (7d)ߟ
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Where ܲሺߦ,  ሻ = wave propagation function of the elementݏ
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Where 

 decay coefficient; s= Laplace transform parameter; sk = a + i.(2πk/T) ; ci= wave velocities = ߙ

(cp, cs or cr); ai= undetermined constants; L= distance between Nodes 1 and 4(or 3 and 5); ai is 

determined by considering eq.6. Equating nodal displacements on any infinite side of element to 

displacements expressed by eq. 6.For this purpose considering one side of element with nodes 1 

and 4 (or 3 and 5) the following relationships are obtained: 
 ൜ ଵܲ

ସܲ
ൠ ൌ 

1 1
ߙሾെሺݔ݁  ሿߦଵሻߚ ߙሾെሺݔ݁  ሿߦଶሻߚ

൨ ቄ
ܽଵ
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ܽଵ
ܽଶ
ቅ (9)

 

and the solution of this Equation gives 

 
 ቄ

ܽଵ
ܽଶ
ቅ ൌ ሾܧሿ ൜ ଵܲ

ସܲ
ൠ ; ሾܧሿ ൌ ሾܣሿିଵ (10)

 

Case 1 

For node 1 (0=ߦ) to satisfy (1), ଵܲ and ସܲ must be equal to 1 and 0. 
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Case 2 

For node 4 (1=ߦ) to satisfy (1), ଵܲ and ସܲ must be equal to 0 and 1. 
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By substituting these values of shape functions, Equation for displacements u and v can be 

obtained. For obtaining stiffness matrix, the ሾBሿ is obtained by differentiating the shape functions 

containing the decay functions.  
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Derivative of shape functions (Equation 13) are given as follows. The variable a = 6/T. 
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݄ = thickness ݀݁ݐሾܬሿ is obtained from the mapping relationship.  

Based on the above formulation, two cases were analyzed. A ramp load applied on the soil model 

and a soil frame structure, where the frame is carrying a transient loading. 

 

3. Analysis of 2D Soil Model with Ramp and Triangular Load 

The B-spline impulse response analysis concept as developed by Rizos is shown in Figure 2. A 

unit B-spline impulse of the form is applied to the elastodynamic system and the time history of 

the response is computed by the BEM. This response is a unique characteristic of the 

elastodynamic system and represents the B-spline impulse response function (BIRF) in a discrete 

form that is independent of the type of external excitation. In addition, the BIRF functions are 

only calculated for the degrees of freedom, M, that is expected to be excited by an external force 

at any time during the response of the system to arbitrary excitations.  

 

 
Figure 2. B-spline impulse response analysis concept 
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The foundation BIRF functions are calculated for a massless, rigid, square foundation, of side w 

= 3.048 m (120 in.), resting on a homogeneous elastic half-space. This system is considered as a 

reference system. The properties of the half space are shown in Table 1. 

 

Table 1. Input data for BEM rigorous solution 

                                            Property            Value SI (USA) 

                             Square foundation side, wr                3.048 m 

                                           Lame’s λ                      4.57x10+07kPa 

                                    Shear modulus, G            2.286x10+07 kPa 

                                          Density, ρ               3.017 kg/m3 

                                  B-spline support, ∆tr                 0.00010 s 

                                       Time step, δtr                0.000025 s 

                             Pressure wave velocity, vp                           5507.83 m/s 

                              Shear wave velocity, vsr              2753.92 m/s 

 

The boundary of the half space is discretized into 8-node boundary elements as shown in Figure 

3. The foundation is assumed to remain always in contact with the soil and the rigid surface 

boundary element introduced by Rizos is adopted in this work. The motion of the rigid 

foundation is expressed by the 3 translations and 3 rotations  

 
Figure 3. Discretized free field and contact (Interface) surface with 8 node boundary elements 

 

of a reference node, R, at the foundation centre, as shown in Figure (3). Each of the six degrees of 

freedom (DOF) of the discrete soil–foundation system is excited by a 4th order B-spline impulse, 
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of duration ∆=1x10-4 s, and the associated time histories of the response of all DOFs are 

computed using the BEM method at discrete times tn=n∆t/4.  

Considering the parameters mentioned in table 1, the following plots for vertical displacement 

using time domain analysis of a system subjected to a step impulse with finite rise time and 

triangular load pulse are given: 

 

 
Figure 4. Time domain analysis of a system subjected to a step impulse with finite rise time 

 

 
Figure 5. Time domain analysis for a system subjected to a triangular load pulse 
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4. Study Problems 

A soil model with ramp loading, as shown in Figure (6), is analyzed using FEPro (computer 

program). Vertical displacement at a point within the soil is noted. In order to validate the nature 

of vertical displacement, the results of the problem (mentioned in Figure 6, 7), are compared with 

the results of aforesaid BIRF problem (Figure 6, 4). 

Then 2D soil model having infinite element with two wave type is analyzed. To simulate the 

effect of foundation, point loads are applied at few points as shown in Figure (6). Later on 

parameters are considered for the analysis of this 2D model in FEPro. 

Esoil (modulus of elasticity of soil) = 2x106 kN/m2; ν (Poisson’s ratio) = 1/3 ; ρsoil(density of soil) 

= 3 kg/m3 ; wave velocity = 2754 m/sec; point loads = 100 KN. 

 

Table 2. Time history input for ramp load 

Time (sec) Px(kN) Py(kN) Mz(kN-m) 
0.5 0 100 0 
1 0 500 0 

1.5 0 900 0 
2 0 1000 0 

2.5 0 1000 0 
3 0 1000 0 

3.5 0 1000 0 
4 0 1000 0 

4.5 0 1000 0 
5 0 1000 0 

 

 
 

 

                                                                             P(t)                                                            

              ∞    ∞         P(t) 

                       ν = 1/3                                              Load         1000       

                                        Soil E = 2e06kN/m2  (kN) 
   ∞                             ∞       

Fixed base           2 

Time (sec) 

Figure 6. 2D soil model with ramp loading 
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Figure 7. Vertical displacement plot for ramp loading 

 

Keeping all other parameters the same, the following (Table 3) input time history is used to 

analyze 2D soil model for a particular triangular loading. 

 

Table 3. Time history input for triangular load 

Time  (sec) Px(kN) Py(kN) Mz(kN-m) 
1 0 100 0 
2 0 500 0 
3 0 1000 0 
4 0 500 0 
5 0 100 0 
6 0 0 0 
7 0 0 0 
8 0 0 0 
9 0 0 0 

10 0 0 0 

 

               

Figure 8. Soil model with triangular loading 
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Figure 9. Vertical displacement plot for triangular loading 

 

5. Conclusions 

From Figures 4, 5, 7 and 9, it can be concluded that the nature of the vertical displacement of 

nodes, where transient load is applied, is the same. Variation of peak values is mainly due to 

different values of loading. This concept can be extended to analyze the transient response of 

soil-structure interaction problems. 
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