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The pseudo-elastic behavior of Shape memory alloy (SMA) truss and cantilever beam are 
investigated. Brinson’s one-dimensional material model, which uses the twinned and 
detwinned martensite fractions separately as internal variables, is applied in the algorithm to 
establish the SMA stress-strain characteristics. This material model also incorporates 
different young’s modulus for austenitic and martensite phase to represent the true SMA 
characteristics. In this model, a cosine function was used to express the evolution of the stress 
induced martensite fractions during the forward and reverse martensite phase transformation. 
A finite element formulation for the SMA truss member considering the geometric 
nonlinearity is proposed and the results are compared with the corresponding linear analysis. 
As a step forward, a finite element formulation for an SMA cantilever beam with an applied 
end moment is proposed. The load displacement characteristic for both the loading and 
unloading phases are considered to check the full pseudo-elastic hysteretic loop. In the 
numerical investigation, the stress-strain variation along the beam depth is also examined 
during the loading and unloading process to investigate the forward and reverse martensite 
phase transformation phenomena. Newton-Raphson’s iterative method is applied to get 
convergence to the equilibrium for each loading steps. During a complete loading-unloading 
process, the temperature is kept constant as the model is essentially an isothermal model. 
Numerical simulation is performed considering two different temperatures to demonstrate the 
effect of temperature on the hysteretic loop. 
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1. Introduction 

Shape Memory Alloys (SMA) is a special class of alloy materials that displays an unusual 
property of sustaining a large strain without inducing permanent deformation. Funakubo (1987), 
Otsuka and Wayman (1998), Bhattacharya (1992) demonstrated that this special characteristic at 
the macroscopic level is the manifestation of a solid to solid, diffusion-less, self-accommodative 
crystallographic forward and reverse phase transformation between a highly symmetric crystal 
lattice structure (austenite phase) and a comparatively lower symmetric crystal lattice structure 
(martensite phase), within a particular stress-temperature domain. Another important fact is that 
if the strain recovery is constrained, considerably large forces can develop. These stresses may 
reach the order of magnitude of 1000 MPa. However, for actuator applications with a large 
number of load cycles, one should reduce the stress to ~200 MPa in order to prevent premature 
fatigue. Hollerbach et al.  (1992) demonstrated that, compared to other actuating systems, the 
high work output achievable with these materials becomes even more pronounced when the 
dimensions and weight of the specimen decrease. A detailed experimental analysis of thermo-
mechanical behavior of NiTi alloys is presented by Shaw and Kyriakides (1995). Duerig et al. 
(1999) and Lagoudas et al. (1999) discussed that due to this large strain recovery phenomenon, 
SMA have been found in a vast application areas ranging from aerospace industry, automobile 
industry, structural vibration control systems, different sensors and actuator systems, to even the 
medical field.  

The stress induced forward and reverse phase transformation phenomena, known as pseudo-
elasticity, results in high damping capacity. Seelekce (2002) proposed a mathematical model for 
dynamic behavior of SMA. The damping property of SMA is potentially useful with respect to 
civil structures like buildings and bridges which need an efficient seismic isolation or protection 
against wind induced vibrations. The related applications are discussed by Aizawa et al. (1998), 
Wilde et al. (2000) and DesRoches and Delemont (2002). 

The present work investigates this pseudo-elastic behavior of NiTi based SMA truss and 
cantilever beam. This article is divided into five sections. After the introduction in section 1, a 
brief review of internal variable based one dimensional SMA constitutive model is presented in 
section 2. Section 3 presents a nonlinear finite element formulation for a two-node SMA truss 
element. Total Lagrangian formulation is expressed in one-dimensional finite element form 
considering both the material and geometric nonlinearity and Newton-Raphson’s iterative form is 
applied. As a numerical example, a SMA truss member is considered with two different loading 
conditions. The loading-unloading curves and the results are compared with the analysis results 
of the same structure considering the material nonlinearity alone. As a step forward, in section 4, 
a FE formulation for a two-node SMA cantilever beam element is proposed. A numerical 
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example of the two-node SMA cantilever beam is presented. Lastly, a comparative study of the 
pseudo-elastic behavior of the truss and beam is presented. 
 
2. Review of SMA Constitutive Laws 

Extensive investigations on the mechanism of martensite phase transformation phenomena have 
revealed that the material stress-strain-temperature relationship, which is highly nonlinear in 
nature, changes with the evolution of the transformation process. A detailed survey of different 
approaches for deriving the SMA constitutive law is presented by Prahalad and Chopra (2001) 
and Seelecke and Müller (2004). A model originally developed by Achenbach and Müller (1985), 
Achenbach et al. (1986) and Achenbach (1989) is particularly important for SMA actuator 
application emphasizing the thermo-mechanical coupling and simulation of actuator behavior. 
Tanaka and Nagaki (1982), Tanaka (1986) and Tanaka et al. (1986) proposed a model that uses 
the fraction of martensite (ξ ) as an internal variable and gives a phenomenological equation of 
state which depends on the stress and temperature in the form of an exponential function. This 
model provided the basis for a related model suggested by Liang and Rogers (1990), who found a 
cosine law for the evolution of the martensite fraction to be more convenient. However, both the 
exponential and cosine functions were only applicable to the high temperature case of pseudo-
elasticity. The material phase state, presented by the internal variable called martensite volume 
fractionξ , varies from '0 ' , signifying fully austenite state, to '1' , for fully martensite state. 
Brinson (1993) introduced a decomposition of the martensite fraction (ξ ) into twinned (ξT ) and 
detwinned martensite (ξS ), that the quasiplastic behavior could be described as well. At any state,  

  ξ + ξ = ξS T   (1) 

Due to the phase diagram necessary to distinguish between the different branches of the 
martensite fraction equation, these models are also called state-space models, which were 
generalized by Bekker and Brinson (1997). All these models are purely mechanical in the sense 
that the temperature is considered as a parameter. 

The internal variable approach described by Brinson to establish the SMA constitutive law has a 
number of advantages over the others for its simple mathematical expression. This methodology 
includes only quantifiable engineering variables and material parameters in its expression. The 
constitutive law derived by Brinson (1993) is briefly reviewed here for clarity. 

Based on the energy balance equation, the basic differential form of the stress-strain-temperature 
relationship was derived as: 

  ( , , ) ( , , ) ( , , )ε ε ε= ξ +Ω ξ ξ +Θ ξSdS D T dE T d T dT   (2) 
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Here, ‘ S ’ represents the second Piola-Kirchhoff stress, ‘ E ’ is the Green-Lagrange 
strain, ( ), ,ε ξΘ T  is related to the thermal coefficient of expansion for the SMA material and T  is 
the temperature in Celsius scale. ( ), ,ε ξΩ T  represents the “phase transformation tensor” which 
is related with the material modulus ( ), ,ε ξD T through a material parameter called maximum 
residual strain ε L . The material modulus D  is assumed to vary linearly with the martensite 
fraction ξ , between AD  in austenite phase and MD  in martensite phase.    

In addition to the stress-strain-temperature relationship, the equations for the evolution of 
martensite fraction within the stress-temperature domain were derived and coupled with equation 
(2) to obtain a complete set of equations for shape memory alloy behavior. For different 
transformation zones separate empirically based cosine functions were established for the 
martensite fraction ξ . The linearised form of SMA constitutive law in one-dimensional space 
which expresses the Second Piola-Kirchhoff stress and the Green strain is: 

               ( )= +S S H Dgrad u   (3) 

Where, H is the multiplication factor varying with the transformation and temperature zones. For 
the case of forward martensite transformation at a temperature greater than  SM : 
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f  are the critical stresses at the start and finish of the forward martensite 
phase transformation. The constants MC  and AC  are material properties which describe the 
relationship of temperature and the critical stress to induce transformation. 

For the case of forward martensite transformation at temperature less than SM , 
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For the case of reverse martensite transformation, 
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In the above equations for transformation kinetics an over-bar is provided to denote the current 
value of the respective quantity. Lastly, ( )grad u  denotes the increment of the infinitesimal 
strain.  
 
3. Shape Memory Alloy Truss 

A nonlinear finite element formulation for a two-node SMA truss element is proposed. The truss 
element is considered to be in one-dimensional space. The total Lagrangian formulation is 
applied in an incremental form to obtain the displacement corresponding to each axial load 
increment. To simplify the problem the load is assumed to be independent of the deformation. 
 
3.1. Finite Element Formulation 

In the total Lagrangian formulation all quantities are measured with respect to the initial 
configuration as derived by Zinno and Barbero (1995), Bathe (2005), and Reddy (2005), in which 
the weak form of the virtual work principle was expressed as  

 ( ) ( )
0 0 0

0 0 0
0 0 0 0 0 0 0( ) ( )t t t t

ijkl kl ij ij ij ij ij
V V V

C e e d V S d V R S e d V+Δδ + δ η = δ − δ∫ ∫ ∫    (7) 

The SMA constitutive model is used for the evaluation of stress ( )0
t

ijS  and the tangent stress-
strain matrix ( )0 ijklC . In equation (7) the linear tangent stiffness matrix is obtained from the first 
term and the nonlinear tangent stiffness matrix is derived from the second term. The total 
displacement tu  and u are interpolated within an element as:   
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  { } { }1 21⎛ ⎞ ⎛ ⎞ ⎡ ⎤= − + = Δ⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠
t

t t

x xu u u N
L L

  (8) 

  { } [ ]{ }1 20 01⎛ ⎞ ⎛ ⎞= − + = Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

t t t tx xu u u N
L L

  (9) 

Here, tL  and 0L are the element length at the load stage t and at the initial stage respectively. 
After some simplification the linear strain-displacement matrix [ ]LB  takes the form:  

                 [ ] [ ]1 2
0 0

1 1 1 1
⎛ ⎞

= − + −⎜ ⎟
⎝ ⎠

t t

L t

u uB
L L L

      (10) 

Also the nonlinear strain-displacement matrix [ ]NLB  is expressed as:  

                                            [ ] [ ]1 1 1= −NL tB
L

                                                            (11) 

The resulting incremental finite element equation for a single truss element for a particular 
loading step is  

                             [ ] [ ]( ){ } { } { }t t t
L NLK K R F+Δ+ Δ = −                                          (12) 

Where, 
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Finally, Newton-Raphson iterative form was applied for each load increment to solve the 
assembled form of Equation (12) for incremental displacements. For i th iteration within a load 
increment the iterative form is expressed as  

  { }( )it t t t tK R F+Δ +ΔΔ = −                                                     (13) 

 { }( )( ) ( 1)+Δ +Δ −= + Δ it t i t t iU U                                                   (14) 

+Δt tK  is the global tangent stiffness matrix, ( )+Δt t iU  is the total nodal displacement vector for the 
load incremental stage + Δt t .  The out-of-balance load vector of equation (13), t t tR F+Δ −  is a 
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load vector that n is not yet balanced by element stresses, and hence the total nodal displacement 
vector is updated through solving the equation (14). This updating is continued until the out-of-
balance load and/or the incremental nodal displacement values are small enough in comparison to 
the assumed tolerance value. 
 
3.2. Numerical Study 

A shape memory alloy truss member is considered; with cross sectional area 1 2mm and the other 
geometric properties as given in figure 1 presents the material properties of the truss member 
taken. The analysis is performed applying both small and large displacement theories, 
considering SMA material properties in both cases, and the results are compared. 

 

 
Figure 1: Shape memory alloy truss 

 
Before loading, the truss material is assumed to be in fully austenite phase and the loading is 
applied maintaining a constant temperature of 050 C , which is above the austenite finish 
temperature ( )049=fA C  for the SMA material taken. A full loading-unloading cycle is 
simulated and the displacement at the point of load application is calculated at different load level 
during the cycle, to demonstrate the pseudo-elastic behavior. Two load cases are examined. In the 
first case, the axial load is assumed to act asymmetrically along the truss length as shown in 
Figure 1. In the second case, the same load is considered centered in the truss length. 

 

Table 1. Material properties of the SMA (NiTi) structural members 

Moduli, Density Transformation 
Temperature 

Transformation Constants Maximum Residual 
Strain 

367 10AD MPa= ×  9= o
fM C  18 o

MC MPa C−=  0.067ε =L  
326.3 10MD MPa= ×  18.4= o

SM C  113.8 o
AC MPa C−=   

10.55 oMPa C−Θ =  34.5= o
SA C  100cr

S MPaσ =   
36448.1 −ρ = kgm  49= o

fA C  170cr
f MPaσ =   
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3.3. Results and Observations 

For the SMA truss member a nonlinear finite element analysis method has been applied to depict 
the one dimensional force displacement behavior and the characteristics of the hysteretic loop. 
Total Lagrangian formulation is used in the finite element formulation to obtain the element 
equation. The applied loading is assumed to be conservative in nature. At each iteration of the 
nonlinear analysis, the prediction of the Green-Lagrange strain from the previous step is utilized 
to calculate the corresponding value of second Piola-Kirchhoff stress. Due to the coupled nature 
of the SMA constitutive equations, this task was accomplished by the addition of a subprogram 
which separately calculates the values and the contributions of the martensite internal variable to 
the stress value, given the corresponding strain and temperature values from the main program. 
The novelty in this derivation process is that to include the effect of the change of element length, 
the total and incremental displacement fields are interpolated through two different sets of shape 
functions. The total displacement is interpolated within the initial element length whereas for 
incremental displacements the element length of that particular loading stage is considered. The 
axial force-displacement curves in figures 4 and 5, and the displacement values shown in table 2, 
at different loading stages, showing small differences in the results of small and large 
displacement analysis. When a truss member is subjected to axial load its cross-sections go 
through translation only, without rotation and, as a result, no significant changes occur in the 
Piola-Kirchhoff stress and the corresponding strain values. Also, the geometry remains almost 
unaltered except length, and consequently both the material nonlinear analysis and the material-
geometric nonlinear analysis give almost the same results. 

 

   

Figure 2. Convergence of the maximum displacement        Figure 3.  Convergence of the maximum  
          value (small displacement)                           displacement value (large displacement) 
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             Figure 4. Pseudo-elastic recovery for  Figure 5. Pseudo-elastic recovery for  

               asymmetrically  placed axial force                              symmetrically placed axial force 

 

Table 2. Comparison of results between small and large displacement analysis 

Displacement (mm) Displacement Vector Norm Axial 

Load 

(N) 
Small 

Displacement 

Large 

Displacement 

Percent 

Change Small 

Displacement 

Large 

Displacement 

Percent 

Change 

Loading Phase 

750 0.141 0.151 7.10 0.207 0.219 5.79 

800 0.363 0.365 0.55 0.530 0.532 0.38 

950 0.414 0.401 -3.14 0.604 0.584 -3.31 

Unloading Phase 

950 0.438 0.418 -4.56 0.638 0.609 -4.54 

750 0.414 0.396 -4.35 0.603 0.577 -4.31 

450 0.368 0.352 -4.35 0.537 0.513 -4.47 

 

4. Shape Memory Alloy Cantilever Beam 

For the analysis of SMA cantilever beam the classical Euler-Bernoulli beam theory is adopted. 
According to this beam theory, it is assumed that the plain beam cross sections remain plain, and 
normal to the beam axis. The beam is considered to be in two dimensional ‘x-y’ plain which is a 
plain of symmetry for the problem, the beam can undergo deflection only within this plain.  
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4.1. Kinematic Field 

The beam kinematics and deformation are defined as: 

 ( ) ( )0 0′= −u u x yv x                                                          (15) 

 ( )0=v v x                                                                   (16) 

  0 ( )ε ′′−= yv xò                                                               (17) 

For this particular case the values of ( )0u x  and ‘ò’ are zero as a symmetry of tensile and 
compressive characteristics of the beam material is assumed in the material model adopted.  
 
4.2. Equilibrium Equations 

The beam equilibrium Equations are derived introducing the kinematical assumptions into the 
principle of virtual displacement as: 

             { ( )} { } { ( )} { }δ ε σ δ ′=∫ T T

V
dV v M    (18) 

Where, in the right hand side of Equation (18), vector { }M  represents the applied end moment. 
The vector ( ){ }vδ ′ denotes the first derivatives of the virtual displacements at the point of moment 
applied. Two-node beam element is considered for the finite element analysis of the problem. 
Interpolation functions assumed for the displacement field are: 

3 2

1 3 2

2 3 1= − +
x xN

L L
 

2 2

3 22
= − +

x xN x
L L

 

3 2

3 23
2 3−

= +
x xN

L L
 

3

4

2

2= −
x xN
L L

 

 Applying Equation (18), the element equilibrium Equation takes the form: 

      [ ] [ ] [ ] { }2
0 [ ] { }

⎡ ⎤
′′ ′′ ′Δ =⎢ ⎥

⎣ ⎦
∫ ∫

T T

A L

C y dA N N dx N M     (19) 
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For this particular case of end moment, the term [ ]′ TN on the right hand side of Equation (19) is 
evaluated at =x L . For a particular loading step, + Δt t  the element Equation can be solved for 
i th iteration as: 

                   ( ) ( ) ( 1){ }t t i i t t t iK R F+ +Δ −Δ = −   (20) 

and,  
                                           ( ) ( 1) ( ){ }+ + −= + Δt t i t t i iU U                               (21) 

Here, ( )+Δ it tK , is the tangent stiffness matrix for the i th iteration, ( )+Δ it tU  is the total displacement 
vector, ( )1itF −  is the balancing resisting force vector and t tR+Δ  is the external applied force vector. 
The incremental nodal displacement vector is: 

          ( ) ( ) ( ) ( ) ( )
0 1 0 1 0 2 0 2{ } θ θ⎡ ⎤Δ = ⎣ ⎦

Ti i i i iv v      (22) 

In the above Equations, two distinct features are to be noticed. First, since the material modulus 
value is not linear with strain, it varies along the depth of the beam and also with the change of 
loading; the integration on the left hand side is performed numerically. In the present case, for 
each iteration, the beam section is divided into twenty strips and composite Simpson's rule 
applied to evaluate the integration. Secondly, to account for the material nonlinearity, the external 
loading is assumed to be applied in several pseudo time steps and the equilibrium has been 
achieved at each loading step by iteration. In the present case Newton-Raphson iterative scheme 
has been applied to achieve convergence in each loading steps. The resisting moment is obtained 
applying composite Simpson's rule along the beam cross-sectional strips.  
 
4.3. Convergence Criteria 

The Newton-Raphson iterations are continued until the out-of-balance is ‘sufficiently small’ 
thereby indicating equilibrium at each pseudo loading steps. In the present work, the tolerance 
used to assess whether convergence has been achieved is denoted by Fε , which is used as: 

                                     ( ) ( )t t t t i t t t i
FR F R F+Δ +Δ +Δ− ≤ ε −                               (23) 

Crisfield (1992) demonstrated that typical values of εF  should lie between 0.001 and 0.01, to get 
a good convergence.  
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4.4. Numerical Study  

A cantilever beam made of shape memory alloy (NiTi) (Figure 6), is taken for numerical study. 
The material properties are given inTable 1. The loading is an end moment which is independent 
of the beam deflection, that is, conservative in nature. The response of the beam is studied for 
both the loading and unloading phase. Initially, before applying the end moment, the beam 
material is assumed to be in fully austenitic stage. A constant temperature is maintained during 
the whole loading and unloading process to demonstrate the pseudo-elastic property of SMA 
material. 

 

Figure 6.  Shape memory alloy cantilever beam 
 
4.5. Results and Observations 

Figures 7 and 8 demonstrate the hysteresis loops formed as a result of the pseudo-elastic behavior 
of the SMA cantilever beam. The moment-curvature curves show good agreement with the 
results presented by Auricchio and Taylor (1999). After complete unloading, the beam almost 
fully recovered its deflected shape. The numerical simulation of the loading-unloading 
phenomena is conducted considering two temperature values which are kept constant during the 
whole loading-unloading process, as the material model used is essentially isothermal. From the 
two curves, corresponding to two different constant temperature values, it is evident that with 
higher temperature, the amount of residual strain increases which agrees with the experimental 
results reported by Otsuka and Ren (1999). Also, the transformation stress values increase with 
temperature. 

Figures 9 and 10 present the strain and stress variation along the depth of the beam during the 
loading process. From the stress variation curve it is evident that during the loading process the 
phase transformation starts from outermost fiber as and when its stress value reaches the critical 
phase transformation stress and propagates towards the neutral axis of beam cross-section. 
Immediately after the completion of forward phase transformation into the outer portion of cross-
section, there exists three distinct stress zones. While the outermost portion reaches to martensite 
phase, some portion near the neutral axis remains in austenitic phase and the middle portion goes 
through the phase transformation process. As the transformation progresses, the transformation 
zone and the austenitic zone shorten and finally the whole beam section reaches to fully 
martensite phase. During the loading process the outermost fibre of the beam reaches a large 
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strain value (in the present case, 13.5 %), which can fully be recovered during the unloading 
process unless the plastic limit of the beam material is reached. It is to be noted that the material 
model used here does not consider the zone beyond the plastic limit of the material.  
 

            

      Figure 7.  Deflection vs. applied end moment Figure 8.  Curvature vs. applied end moment  

 

            

        Figure 9.  Strain vs. distance from N. A.                         Figure 10.  Stress vs. distance from N. A. 

                             (for loading)                                                                    (for loading) 

             

Figures 11 and 12 present the strain and the stress variations along the beam cross-section during 
the unloading process. As unloading starts and the stress reaches the critical value, the reverse 
phase transformation starts at the outermost fiber and gradually propagates towards the inner 
portion, and finally, the whole cross-section transforms to the austenitic state. The stress-curve 
shows that the innermost part in which no forward phase transformation occurred during the 
loading process become stiffer, i.e. it develops larger stress corresponding to smaller strain. 
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Figure 11. Strain vs. distance from N. A.               Figure 12.  Stress vs. distance from N. A. 
                                 (for unloading)                                                       (for unloading) 

        

5. Conclusion 

For the nonlinear analysis of the SMA truss member, the axial force-displacement curves and the 
displacement values at different loading stages, showing small differences in the results of small 
and large displacement analysis. When a truss member is subjected to axial load its cross-sections 
go through translation only, without rotation, and as a result no significant changes occur in the 
Piola-Kirchhoff stress and the corresponding strain values. Also the geometry remains almost 
unaltered except length, and consequently both the material nonlinear analysis and the material-
geometric nonlinear analysis give almost the same results. For the pseudo-elastic recovery of a 
SMA cantilever beam the maximum strain recovery is 13.5%. Unlike axial deformation, in this 
case of bending, the whole beam cross section does not undergo phase transformation 
simultaneously, which results in a gradual change in deformation as compared to the truss 
problem that shows a sudden change in the deformation. The material model used in the 
formulation is isothermal, which necessitates the temperature to remain constant. Also the model 
is essentially quasi-static in nature, which implies that the load should be static. Material models 
that overcome these limitations are to be expressed in incremental form so that they can be used 
to include temperature variation and a variation in the strain rate.  The numerical simulation is 
performed considering two different temperatures to demonstrate a change of the hysteretic loop 
due to a change in temperature, which suggests the need for further investigation in this direction. 
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