
J. Ind. Eng. Int., 7(13), 74-83, Spring 2011

ISSN: 1735-5702

© IAU, South Tehran Branch

 *Corresponding Author Email: irajarash@rediffmail.com

 Tel.: +98 9111131380

���������	�
���	

�������	��
���
�	����������	����	�����	������	
�	

���������	��������	���������

I. Mahdavi
1*

; V. Zarezadeh
 2
; P. Shahnazari-Shahrezaei

3

1
Associate Professor, Dep. of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran

2
M.Sc., Dep. of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran

3
Ph.D. Student, Dep. of Industrial Engineering, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran

Received: 18 July 2008; Revised: 31 December 2008; Accepted: 12 January 2009

Abstract: This article addresses a multi-stage flowshop scheduling problem with equal number of unrelated

parallel machines. The objective is to minimize the makespan for a given set of jobs in the system. This

problem class is NP-hard in the strong sense, so a hybrid heuristic method for sequencing and then

allocating operations of jobs to machines is developed. A number of test problems are randomly generated

and results obtained by proposed heuristic are compared with optimal solutions reported by the Lingo 8.0

package applying the branch & bound approach. The results show that the proposed hybrid method is more

efficient when the problem sizes have been increased.

Keywords: Flexible flowshop; Makespan; Unrelated machines

1. Introduction

Production scheduling can be defined as the

allocation of available production resources over

time to perform a collection of tasks (Baker,

1974). In most manufacturing environments like

process industries; e.g. the chemical and

petrochemical, rubber, steel, textile and food, a set

of tasks is sequentially performed by resources in

several stages to complete a job. Such a system is

referred to as the flowshop environment and

belongs to the class of quantitative combinatorial

optimization problems.

This paper considers a flexible flowshop

scheduling problem, where each production stage

is made up of equal number of unrelated parallel

machines with the objective of minimizing

makespan. The considered problem generalizes

two other scheduling problems; namely, the

flowshop problem and the single-stage parallel

machines problem allowing considerable

reduction in makespan and the delays caused by

bottleneck stages.

The main characteristic of the considered

problem is the differences among the machines.

The processing time of the jobs on the different

machines, correspond to the three classical

parallel machines, may be identical, uniform or

unrelated. The multiple machines are identical if

they do not differ in speed. The multiple machines

are purported uniformly in that they differ in

speed, but they differ by some constant speed

factors. Specifically, the machines are unrelated if

there are no relationships between machines'

speed but a hierarchy of the machines does exist.

In better words, the machines are not necessarily

uniform to a speed factor, but the machines can be

ranked from the highest to the lowest speed.

On the other hand, the considered problem is

primarily concerned with industrial scheduling,

where jobs have to be assigned to scarce resources

(machines) at each stage first and then sequenced

on each resource (machine) over time to optimize

the performance measure. Since the flowshop and

the single-stage parallel machines problems are

known to be NP-hard, our problem is strongly

NP-hard (Kis and Pesch, 2005). Therefore there is

no escape from applying simple dispatching rules,

heuristics and improving meta-heuristics to solve

it.

The flowshop scheduling problem and its

generalizations is a very controversial issue and

has been the target of researches since Johnson’s

seminal paper in 1954. A comprehensive review

of flowshop scheduling problems over the last 50

years is provided by Gupta and Stafford Jr. (2006)

and a makespan review by Hejazi and Saghafian

(2005) and also by Framinan et al. (2005).

A detailed survey for the flexible flowshop

problem has been given by Linn and Zhang

(1999) and Wang (2005). Most of the

aforementioned works explore three different

I. Mahdavi et al. / Journal of Industrial Engineering International 7(13) (2011) 74-83 75

issues: processing complexity, performance

measures and solution methods. Although the

flexible flowshop problem has been widely

studied in the literature, most of the studies related

to flexible flowshop problems are concentrated on

problems with identical machines. While this

assumption may be true in some benchmarks, in

many real world cases the multiple machines are

not identical because multiple machines at a

processing stage typically have small differences

in processing speed; the addition of a machine at a

bottleneck stage to relieve it is usually with a

newer (faster) processor and the multiple

machines may be obtained from different vendors

(and thus have different processing speed) (Roa

and Santos, 2000). Yet a few number of

researches considered the real life assumption that

the multiple machines that may exist at a stage are

uniform or unrelated in processing speed.

Brah et al. (1991) formulated a mixed integer

linear programming for flexible flowshop models

with the general case of unrelated parallel

machines. Roa and Santos (2000) studied the two

stage flowshops with multiple uniform machines

with the objective of minimizing makespan. They

applied dispatching procedures such as FIFO,

LIFO, SPT, LPT etc. and also two heuristics

based on modification of the famous Johnson’s

algorithm and based on a new application of a

heuristic presented by Sule (1997) respectively.

They evaluated their proposed dispatching rules

and heuristics against a makespan lower bound

developed by themselves and reported that the

heuristic based on Johnson’s algorithm

outperforms other dispatching rules and heuristics

in the two stage flexible flowshop. Soewandi and

Elmaghraby (2003) also considered the same

problem and developed a heuristic (S–E heuristic)

and derived a machine speed-dependent worst-

case ratio bound for it, but Kyparisis and

Koulamas (2006) observed that the worst-case

bound derived by Soewandi et al. for their

heuristic is not indicative of the expected

performance of S–E heuristic when the machine

speeds vary significantly. They addressed this

issue by deriving alternative tight speed-

dependent bounds for the S–E heuristic and

reported that this new bound facilitates the

narrowing of the gap between average

experimental performance and worst-case

performance for the S–E heuristic. In another

research, Koulamas and Kyparisis (2007) studied

the problem of minimizing the makespan in an

alike two-stage flowshop scheduling problem with

uniform parallel machines which is a

generalization of the assembly flowshop problem

with concurrent operations in the first stage and a

single assembly operation in the second stage.

They proposed a heuristic with an absolute

performance bound which became asymptotically

optimal as the number of jobs became very large

as they showed. The aforementioned team;

namely Kyparisis and Koulamas (2006) also

studied the multistage flexible flowshop

scheduling problem with uniform parallel

machines in each stage and the objective of

minimizing makespan and developed a general

class of heuristics which extend several well-

known heuristics for the serial flowshop problem

such as the slope index method developed by

Palmer, the CDS heuristic of Campbell et al., and

the Dannenbring heuristic (Gupta and Stafford,

2006). They obtained absolute performance

guarantees for their heuristics based on a similar

absolute performance guarantees for the

corresponding serial flowshop heuristics.

Low (2005) has developed a mathematical

model for the flowshop with unrelated parallel

machines and independent setup and dependent

removal times and proposed a simulated annealing

heuristic for minimizing total flow time of jobs in

the system. Then Low et al. (2008) reported a

two-stage flowshop scheduling problem with

unrelated alternative machines to minimize the

makespan that focused on the functions of the

alternative machines. In better words, their model

has m unrelated alternative machines at the first

machine center followed by a second machine

center with a common processing machine in the

system. For the processing of any job, it is

assumed that the operation can be partially

substituted by other machines in the first center,

depending on its machining constraints. 16

combinations of heuristic algorithms and

dispatching rules were applied by them and the

associated computational experiments indicated

that the performance of the modified Johnson’s

rule combined with the FF dispatching rule is the

best heuristic among all proposed algorithms for

the considered model.

In a new research, Jungwattanakit et al. (2009)

has formulated a 0-1 mixed integer program for

the flexible flowshop problem with unrelated

parallel machines and sequence and machine

dependent setup times to minimize a convex

combination of makespan and the number of tardy

jobs. They have investigated both constructive

and iterative (SA, TS and GA-based algorithms)

approaches based on developing a job sequence

for the first stage by a constructive procedure and

improving it later iteratively, by sequencing the

jobs for the remaining stages by both the

76 I. Mahdavi et al. / Journal of Industrial Engineering International 7(13) (2011) 74-83

permutation and FIFO rules and by assigning the

jobs at the stages to a particular machine using a

greedy algorithm. From their computational

experiences found that among the constructive

algorithms the insertion-based approach is

superior to the others, whereas the proposed SA

algorithms are better than TS and genetic

algorithms among the iterative metaheuristic

algorithms.

Ruiz and Marato (2006) proposed a heuristic

based on a genetic algorithm to solve the flexible

flowshop with sequence dependent setup times,

unrelated parallel machines at each stage and

machine eligibility constraints to bridge the

existing gap between the theory of scheduling and

its applications in real industrial settings. Recently

Ruiz et al. (2008) have presented a complete

formulation as well as a mixed integer

programming mathematical model and some

heuristics for a complex and realistic flowshop

problem. In this problem several realistic

characteristics such as release dates for machines,

existence of unrelated parallel machines at each

stage of the flowshop, machine eligibility,

possibility for jobs to skip stages, sequence

dependent setup times, possibility for setup times

to be both anticipatory as well as non-anticipatory,

positive and/or negative time lags between

operations and generalized precedence relation-

ships between jobs are jointly considered. They

have solved a comprehensive benchmark and

carried out statistical analysis by means of

decision trees which have allowed identifying

some counter-intuitive interactions among many

different characteristics of the realistic problem

considered. Furthermore, they have also proposed

simple dispatching rules and an adaptation of the

NEH algorithm.

This research focuses on the flexible flowshop

problem with equal number of unrelated machines

at each stage and development of good makespan

schedules. In Section 2, the production model

under study is described down to the last detail. In

Section 3, a hybrid heuristic method is proposed

and will be illustrated by an example in Section 4.

In Section 5, experiments for verifying the

performance of the proposed heuristic algorithm

are described. Finally, conclusions are presented

in Section 6.

2. Problem definition and notations

The flexible flowshop scheduling problem with

unrelated parallel machines under consideration

has the following characteristics:

1. A set of N jobs denoted by { }NiiI ,...,2,1==

is available at time zero and no job may be

cancelled before completion.

2. The production model consists of L

consecutive stages. The set of stages is denoted by

{ }LjjJ ,...,2,1== .

3. Each stage Jj ∈ is equipped with

1>M nonidentical machines. The set of machines

at stage j is denoted by

{ } J , j,...,M,keE jkj ∈== 21 .

4. All jobs have to be processed serially through

all stages. Thus job Ii ∈ consists of a sequence

of L operations, each of them corresponding to the

processing of job i at stage j on machine jke

during an uninterrupted processing time 0>ijkP .

5. The machines are continuously available from

time zero onwards and may remain idle.

6. Each machine can process one job at a time.

Furthermore, a job can be processed by any of the

machines and will be processed by a single

machine at each stage.

7. Setup and removal times are assumed to be a

part of the processing time and are independent of

the job sequence.

8. The jobs can wait in between stages and the

intermediate storage is unlimited.

To maximizing system utilization, the objective

is to develop a schedule that minimizes the

makespan. In a flowshop based model, a schedule

that minimizes the makespan also minimizes the

sum of job waiting times and the sum of machine

idle times.

For the sake of completeness, a mixed integer

linear programming formulation for the

considered production model is included in this

section. The framework of mathematical model

initially developed by Brah et al. (1991).

2.1. Input parameters

N The number of jobs.

M The number of parallel machines at each

stage.

J The index number of stages; j=1,…,L.

Pijk The processing time of job i at stage j on

machine
jk

e .

I. Mahdavi et al. / Journal of Industrial Engineering International 7(13) (2011) 74-83 77

L The number of stages.

i The index number of jobs; i=1,…,N.

k The index number of machines at each

stage; k=1,…,M.

2.2. Decision variables

ijC

The completion time of job i at stage j

maxC The makesapan

�
�

�
�

�

otherwise,0

machineon

stageatjobprecedesjobif,1

jkirj e

jri

X

�
�
�

otherwise,0

machinetoassignedisstageatjobif,1 ik
ijk

eji
Y

2.3. Mathematical formulation

Min Cmax

Subject to:

Cmax ≥ CiL i∀ (1)

1
1

=�
=

M

k

ijkY ji,∀ (2)

�
�

�

�
�

�

�

≥∀≥−

∀≥

�

�

=

−

=

2and
1

1

1

111

 j i PYCC

i PYC

M

k

ijkijki,jij

M

k

kikii

 (3)

()

()

�
�
�

��
�

�

<∀

≥−+−−−

≥−++−−

rithatsuchkjir

PCCXYY

PCCXYY

rjkijrjirjrjkijk

ijkrjijirjrjkijk

,,,

310

210

31

31

(4)

k j i Yijk ,,]1,0[∀∈ (5)

rthat i j such r i X irj <∀∈ ,,]1,0[(6)

 j i Cij ,0 ∀≥ (7)

0max ≥C (8)

Constraints (2) guarantee the assignment of

each job to one and only one machine at each

stage. Constraints (3) ensure that it is not allowed

to start processing the jobs at next stage unless

they have completed processing at previous stage.

In other words, they ensure that no job may be

cancelled before completion. Constraints (4) are

designed to deal with noninterference among the

jobs using a common machine at any stage.

Therefore, the difference between the processing

times of any two jobs assigned to the same

machine must be such that they do not overlap.

Although the flexible flowshop scheduling

problem under study has a simple formulation, its

NP-hardness essentially restricts the use of

classical optimization methods based on mixed

integer linear programming and branch & bound.

In the next section, a heuristic algorithm is

proposed to obtain a near optimal solution within

a reasonable amount of time.

3. Proposed heuristic algorithm

In essence, the flexible flowshop problem

consists of two sub-problems: assigning

operations of each job to machines and

sequencing operations on each machine. Gupta

(1971) proposed a functional heuristic for the

flowshop scheduling problem minimizing

makespan. On the other hand, Sule (1997)

addresses a method for scheduling jobs on the

single-stage parallel processing problem with non-

identical machines.

Although their procedures are designed for two

basically different models but have been reviewed

and integrated to obtain a newly modified /

applied heuristic for sequencing first and then the

assignment of operations in the flexible flowshop

under study which is primarily a generalization of

the classical flowshop and parallel shop. The

significant side of the proposed heuristic is the

collocation and reformation of the structure of the

model under study which is the key to adapt it.

The following is a step-by-step explanation of the

algorithm.

Step 1. Without the loss of generality, rank the M

machines at each stage from the highest to the

lowest speed. So the most efficient machine (the

one taking the least amount of time to process) at

stage j is machine 1je , the next efficient machine

is 2je , and so on.

Step 2. Form M simple L stage flowshops Fk

78 I. Mahdavi et al. / Journal of Industrial Engineering International 7(13) (2011) 74-83

(k=1,2,…,M), each of which contains machine

jke at stage j (j=1,2,…,L). Denote Ok as the list of

jobs and Ck as the makespan of jobs that will be

assigned to the k
th

 flowshop.

Step 3. Dealing with each flowshop Fk (k=1, 2,…,

M):

Step 3.1. For each job Ii ∈ , find ikπ as follows:

())ki(jijk

L

j
ik PP� 1

1

1
min +

−

=
+= (9)

Step 3.2. Form the subgroup of jobs Uk that take

less time on the first machine than on the last in

flowshop Fk, such that { }iLkkik PPIiU <∈= 1 .

Step 3.3. Form the subgroup of jobs Vk that take

less time (or equal) on the last machine than on

the first in flowshop Fk, such that:

{ }iLkkik PPIiV ≥∈= 1 (10)

Step 3.4. Sort the jobs in Uk in an ascending order

of sik 'π ; if two or more jobs have the same value

of ikπ , sort them in an arbitrary order.

Step 3.5. Sort the jobs in Vk in a descending order

of sik 'π ; if two or more jobs have the same value

of ikπ , sort them in an arbitrary order.

Step 3.6. Rank the jobs in the sorted order of Uk,

then in the sorted order of Vk; Call this the job list

of flowshop k denoted by Qk.

Step 4. Assign all the jobs to the set of

unscheduled jobs denoted by NS.

Step 5. Assign all the jobs to the first flowshop F1

in order of the established priorities of jobs in the

Q1(Set O1=Q1) and then calculate C1. Ck for

k=2,…,M is 0, because no jobs are yet assigned to

flowshops 2 through M),...,2;(MkO
k

== φ .

Step 6. Set { }MkCC
k

,...,1max
max

== .

Step 7. Take the job in NS which its elimination

from the set O1 has the most effect on decreasing

C1 as Jc. Temporarily remove Jc from flowshop

F1. Calculate TC
1

as the corresponding makespan of

jobs assigned to F1 after temporary deletion of Jc.

Step 8. Temporarily assign Jc to all flowshops Fk

(k=2,…,M). Note that the relative position of jobs

assigned to each set Ok (k=2,…,M)must be the

same as in Qk. Calculate T

k
C as the corresponding

makespan of jobs assigned to Fk after temporary

insertion of Jc.

Step 9. Set { }T
k

M

k
c Ck

2
minarg

=
= , If

{ } max1 ,max CCC
T
k

T

c
< , (11)

make the elimination of Jc from F1 and insertion it

to the kc
th
 flowshop permanent, Update Ck

(k=1,…,M) else the reassignment of Jc is rejected.

Step 10. Delete job Jc from NS. If φ=NS , stop

else go to Step 6.

After Step 10, scheduling is finished and the

sequence of jobs assigned to each machine at each

stage and the corresponding makespan of the jobs

(Cmax) has been found.

It is important to consider that the same

sequence of jobs is maintained throughout each

flowshop Fk and the relative position of jobs in

each sequence is the same as in job list Qk.

4. An illustrative example

Consider a job shop with four stages and three

nonidentical machines at each stage. There are six

jobs to be processed, and the time estimates for

each job on each processor at each stage are given

in Table 1. So N=6, L=4, M=3 and

{ }6,...,1== iiI , { }4,...,1== jjJ and

{ } JjkeE jkj ∈== ;3,2,1 .

The algorithm proceeds as follows:

(1) According to step 1, the machines at each

stage are already numbered so that the machine

numbers are in the increasing order of a single job

times on each machine. So

{ } JjkeE jkj ∈== ;3,2,1 (12)

(2) According to step 2, three machine groups, F1,

F2, F3 are formed, each of which is thought of as a

three-machine flowshop. Without loss of

generality, we may assume the flowshops are

constructed as follows:

{ }3121111 eeeF ++→

{ }3222122 eeeF ++→

{ }3323133 eeeF ++→

where
jk

e is the k
th

 machine at the j
th
 stage.

I. Mahdavi et al. / Journal of Industrial Engineering International 7(13) (2011) 74-83 79

Table 1: Processing times for the six jobs.

Jobs

Stages

1 2 3 4

Machines Machines Machines Machines

1 2 3 1 2 3 1 2 3 1 2 3

1 25 30 32 45 54 58 52 62 68 40 48 52

2 7 9 10 41 51 56 22 28 30 66 82 90

3 41 47 52 55 63 70 33 38 42 21 24 27

4 74 88 100 12 14 16 24 28 33 48 57 67

5 7 9 11 15 20 25 72 96 120 52 69 86

6 12 15 16 14 16 20 22 25 28 32 35 38

(3) Dealing with each flowshop Fk(k=1,2,3):

(3-1) For each job Ii ∈ , ikπ is calculated as

shown in Table 2.

(3-2) The subgroups of jobs Uk(k=1,2,3) are

formed such that { }iLkkik PPIiU <∈= 1 as:

{ }6,5,2,11 1 =→= Uk

{ }6,5,2,12 2 =→= Uk

{ }6,5,2,13 3 =→= Uk

(3-3) The subgroups of jobs Vk(k=1,2,3) are

formed such that { }iLkkik PPIiV ≥∈= 1 as:

{ }4,31 1 =→= Vk

{ }4,32 2 =→= Vk

{ }4,33 3 =→= Vk

(3-4) The jobs in Uk are sorted in ascending order

of s
ik

'π as follows:

{ }1,2,6,51 1 =→= Uk

{ }1,2,6,52 2 =→= Uk

{ }1,2,6,53 3 =→= Uk

(3-5) The jobs in Vk are sorted in descending order

of sik 'π as follow:

{ }4,31 1 =→= Vk

{ }4,32 2 =→= Vk

{ }4,33 3 =→= Vk

(3-6) The jobs are ranked in the sorted order of

Uk, then in the sorted order of Vk ; called the job

list of flowshop k denoted by Qk. So:

{ }4,3,1,2,6,51 1 =→= Qk

{ }4,3,1,2,6,52 2 =→= Qk

{ }4,3,1,2,6,53 3 =→= Qk

(4) According to step 4, Let NS={1,2,3,4,5,6}.

(5) According to step 5, all the jobs are assigned

to the first flowshop F1 in order of the established

priorities of jobs in the Q1. So:

{ } 3534,3,1,2,6,5 11 =→= CO

022 =→= CO φ

033 =→= CO φ

(6) According to step 6 and followed by (5),

{ } 3530,0,353maxmax ==C .

(7) According to step 7 and Table 3 below,

elimination of J5 from the set O1 has the most

effect on decreasing C1. Jc=J5 is temporarily

removed from flowshop F1, so .2731 =T
C

(8) According to step 8, Jc=J5is temporarily

assigned to flowshops Fk (k=2,3). The values of
T

k
C as the corresponding makespan of jobs

assigned to Fk after temporary insertion of Jc are

as follows:

1942 2 =→= TCk

 2423 3 =→= TCk

(9) According to Step 9,

{ } { }

{ } { }�
�
�

��
�

�

=<==

=→=→=

=

353273273,194max,max

1942194

242,194min,min

1

32

CCC

Ck

CC

T
k

T
kc

TT

c

c

so Jc=J5 is removed from F1 and assigned to F2.

80 I. Mahdavi et al. / Journal of Industrial Engineering International 7(13) (2011) 74-83

Table 2: Calculation of �ik for each job at each flowshop.

i

Flowshop F1 Flowshop F2 Flowshop F3

()111

13

1
1 min)i(jij

j
i PP� +

−

=
+= ()212

13

1
2 min)i(jij

j
i PP� +

−

=
+= ()313

13

1
3 min)i(jij

j
i PP� +

−

=
+=

1 min(25+45, 45+52, 52+40)=70 min(30+54, 54+62, 62+48)=84 min(32+58, 58+68, 68+52)=90

2 min(7+41, 41+22, 22+66)=48 min(9+51, 51+28, 28+82)=60 min(10+56, 56+30, 30+90)=66

3 min(41+55, 55+33, 33+21)=54 min(47+63, 63+38, 38+24)=62 min(52+70, 70+42, 42+27)=69

4 min(74+12, 12+24, 24+48)=36 min(88+14, 14+28, 28+57)=42 min(100+16, 16+33, 33+67)=49

5 min(7+15, 15+72, 72+52)=22 min(9+20, 20+96, 96+69)=29 min(11+25, 25+120, 120+86)=36

6 min(12+14, 14+22, 22+32)=26 min(15+16, 16+25, 25+35)=31 min(16+20, 20+28, 28+38)=36

Table 3: The effects of elimination of the jobs in NS from F1 on

decreasing C1 in the first iteration.

NSi ∈ C1-
TC1

1 40

2 66

3 21

4 48

5 80

6 32

 (10) According to step 10, Jc=J5is deleted from

NS. Because φ≠NS , steps 6 to 10 of the

proposed algorithm is repeated until φ=NS . The

iterations are shown in Table 4.

The final solution includes the jobs assigned to

each flowshop and sequence of them in order of

the established priorities of jobs at each flowshop

in step 3. The results are shown in Table 5.

At each flowshop, the sequence of jobs do not

change, so as a matter of fact, the assignment of

operations of each job to machines at each stage

and sequencing operations on each machine are

determined and the final schedule in the

considered flexible flowshop is obtained.

5. Computational experiments and results

To determine the quality of the proposed

heuristic, a spreadsheet model of the considered

problem was developed and a number of test

problems were randomly generated and solved by

proposed heuristic coded in Microsoft Visual

Basic for Applications. The results were

compared to the optimal solutions obtained via the

implementation of the mixed integer linear

programming formulation (presented in section 2)

by the Lingo 8.0. All experimental tests were

implemented on a personal computer with an Intel

Pentium III 633 GHz CPU and 256 MB of RAM.

Four sets of problems were tested, respectively

for 3 to 6 jobs. Each job has three operations and

each stage has two nonidentical machines. The

processing time of each operation was randomly

generated and each set of problems was executed

for 15 tests. The makespans for problems of three

to six jobs by proposed heuristic and by the

branch & bound approach are shown respectively

in Figures 1 to 4.

The mean relative error between the optimal

makespans and those obtained by proposed

heuristic for each set of test problems is shown in

Table 6. Over the entire collection of instances,

the average relative error of the proposed heuristic

is 6.08%. The average execution times for solving

problems of three to six jobs by the Lingo 8.0 is

shown in Figure 5. From the figures, it is easily

seen that the proposed heuristic got a little larger

makespan than the branch & bound approach did,

but the computational time needed by the Lingo

8.0 was however much larger than that needed by

proposed algorithm.

Figure 1: Makespans of 15 tests for three jobs.

M
a

k
es

p
a

m

Problem #

Proposed heuristic Branch & Bound

I. Mahdavi et al. / Journal of Industrial Engineering International 7(13) (2011) 74-83 81

Figure 2: Makespans of 15 tests for four jobs.

Figure 3: Makespans of 15 tests for five jobs.

Figure 4: Makespans of 15 tests for six jobs.

Figure 5: The average CPU times for processing different numbers of jobs.

M
a

k
es

p
a

m

Problem #

Problem #

M
a

k
es

p
a

m

M
a

k
es

p
a

m

Problem #

E
x

ec
u

ti
o

n
 t

im
e

se
co

n
d

s

Branch & bound

Branch & bound

Branch & bound

Branch & bound

Proposed heuristic

Proposed heuristic

Proposed heuristic

Proposed heuristic

82 I. Mahdavi et al. / Journal of Industrial Engineering International 7(13) (2011) 74-83

Table 4: The iterations of steps 6 to 10 of the proposed heuristic solving the illustrative example.
It

er
at

io
n

 1

Cmax=353

NS={J6, J2, J1, J3, J4}

Jc={J5}

Fk Ok
T

k
C

F1 {J6, J2, J1, J3, J4} 273

F2 {J5} 194

F3 {J5} 242

T

kc

C
194

{ }TT

k
CC

c 1
,max

273

Decision 273<353

Assigning J5 to F2

It
er

at
io

n
 4

Cmax=225

NS={J6,J3}

Jc={J2}

Fk Ok
T

k
C

F1 {J6, J1,J3} 195

F2 {J5,J2} 276

F3 {J2,J4} 253

T

kc

C
253

{ }TT

k
CC

c 1
,max

253

Decision 242>225

Remaining J2 to F1

It
er

at
io

n
 2

Cmax=273

NS={J6, J2, J1, J3}

Jc={J4}

Fk Ok
T

k
C

F1 {J6, J2, J1, J3} 225

F2 {J5,J4} 251

F3 {J4} 216

T

kc

C
216

{ }TT

k
CC

c 1
,max

225

Decision 225<273

Assigning J4 to F3

It
er

at
io

n
 5

Cmax=225

NS={J6}

Jc={J3}

Fk Ok
T

k
C

F1 {J6, J2, J1} 204

F2 {J5,J3} 218

F3 {J3,J4} 268

T

kc

C
218

{ }TT

k
CC

c 1
,max

218

Decision 218<225

Assigning J3 to F2

It
er

at
io

n
 3

Cmax=225

NS={J6,J2,J3}

Jc={J1}

Fk Ok
T

k
C

F1 {J6,J2,J3} 176

F2 {J5,J1} 242

F3 {J1,J4} 277

T

kc

C
242

{ }TT

k
CC

c 1
,max

242

Decision 242>225

Remaining J1 to F1

It
er

at
io

n
 6

Cmax=218

NS={ }

Jc={J6}

Fk Ok
T

k
C

F1 {J2, J1} 185

F2 {J5, J6, J3} 253

F3 {J6,J4} 232

T

kc

C
232

{ }TT

k
CC

c 1
,max

232

Decision 232<218

Remaining J6 to F1

Table 5: The final schedule in the considered flexible flowshop. Table 6: The performance of the proposed heuristic.

Fk Ok Ck

F1

J6 80

204 J2 155

J1 204

F2
J5 194

218
J3 218

F3 J4 216 216

 Cmax 218

Set of test problems Mean relative error

Three jobs 5.30%

Four jobs 6.21%

Five jobs 6.57%

Six jobs 6.23%

Average 6.08%

I. Mahdavi et al. / Journal of Industrial Engineering International 7(13) (2011) 74-83 83

References

Baker, K. R., (1974), Introduction to sequencing

and scheduling. John Wiley & Sons, New

York.

Brah, S. A.; Hunsucker, J. L.; Shah, J., (1991),

Mathematical modeling of scheduling

problems. Journal of Information &

Optimization Sciences, 12(1), 113-137.

Framinan, J. M.; Leisten, R.; Ruiz-Usano, R.,

(2005), Comparison of heuristics for flow

time minimisation in permutation flowshops.

Computers & Operations Research, 32(5),

1237-1254.

Gupta, J. N. D.; Stafford Jr., E. F., (2006),

Flowshop scheduling research after five

decades. European Journal of Operational

Research, 169(3), 699-711.

Gupta, J. N., (1971), A functional heuristic

algorithm for the flowshop scheduling

problem. Operational Research Quarterly,

22(1), 39-47.

Hejazi, S. R.; Saghafian, S., (2005), Flowshop-

scheduling problems with makespan

criterion: A review. International Journal of

Production Research, 43(14), 2895-2929.

Jungwattanakit, J.; Reodecha, M.; Chaovali-

twongse, P.; Werner, F., (2009), A

comparison of scheduling algorithms for

flexible flowshop problems with unrelated

parallel machines, setup times and dual

criteria. Computers & Operations Research,

36(2), 358-378.

Kis, T.; Pesch, E., (2005), A review of exact

solution methods for the non-preemptive

multiprocessor flowshop problem. European

Journal of Operational Research, 164(3),

592-608.

Koulamas, C.; Kyparisis, G. J., (2007), A note on

the two-stage assembly flowshop scheduling

problem with uniform parallel machines.

European Journal of Operational Research,

182(2), 945-951.

Kyparisis, G. J.; Koulamas, C., (2006), A note on

makespan minimization in two-stage flexible

flowshops with uniform machines. European

Journal of Operational Research, 175(2),

1321-1327.

Kyparisis, G. J.; Koulamas, C., (2006), Flexible

flowshop scheduling with uniform parallel

machines. European Journal of Operational

Research, 168(2), 985-997.

Linn, R.; Zhang, W., (1999), Hybrid flowshop

scheduling: A survey. Computers &

Industrial Engineering, 37(1-2), 57-61.

Low, C., (2005), Simulated annealing heuristic for

flowshop scheduling problems with unrelated

parallel machines. Computers & Operations

Research, 32(8), 2013-2025.

Low, C.; Hsu, C.-J.; Su, C.-T., (2008), A two-

stage hybrid flowshop scheduling problem

with a function constraint and unrelated

alternative machines. Computers & Opera-

tions Research, 35(3), 845-853.

Roa, I.; Santos, D. L., (2000), Flowshops with

Non-Identical Multiple Processors: A Study

on Makespans. Proceedings of The 5th

Annual International Conference on

Industrial Engineering -Theory, Applications

and Practice, Hsinchu, Taiwan.

Ruiz, R.; Maroto, C., (2006), A genetic algorithm

for hybrid flowshops with sequence

dependent setup times and machine

eligibility. European Journal of Operational

Research, 169(3), 781-800.

Ruiz, R.; Serifoglu, F. S.; Urlings, T., (2008),

Modeling realistic hybrid flexible flowshop

scheduling problems. Computers &

Operations Research, 35(4), 1151-1175.

Soewandi, H.; Elmaghraby, S. E., (2003),

Sequencing on two-stage hybrid flowshops

with uniform machines to minimize

makespan. IIE Transactions, 35(5), 467-477.

Sule, D. R., (1997), Industrial scheduling. 1
st

edition, PWS Publishing, Boston, 93-96.

Wang, H., (2005), Flexible flowshop scheduling:

optimum, heuristics, and artificial

intelligence solutions. Expert Systems, 22(2),

78-85.

