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Abstract: This article addresses a multi-stage flowshop scheduling problem with equal number of unrelated 

parallel machines. The objective is to minimize the makespan for a given set of jobs in the system. This 

problem class is NP-hard in the strong sense, so a hybrid heuristic method for sequencing and then 

allocating operations of jobs to machines is developed. A number of test problems are randomly generated 

and results obtained by proposed heuristic are compared with optimal solutions reported by the Lingo 8.0 

package applying the branch & bound approach. The results show that the proposed hybrid method is more 

efficient when the problem sizes have been increased. 
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1. Introduction 

Production scheduling can be defined as the 

allocation of available production resources over 

time to perform a collection of tasks (Baker, 

1974). In most manufacturing environments like 

process industries; e.g. the chemical and 

petrochemical, rubber, steel, textile and food, a set 

of tasks is sequentially performed by resources in 

several stages to complete a job. Such a system is 

referred to as the flowshop environment and 

belongs to the class of quantitative combinatorial 

optimization problems.  

This paper considers a flexible flowshop 

scheduling problem, where each production stage 

is made up of equal number of unrelated parallel 

machines with the objective of minimizing 

makespan. The considered problem generalizes 

two other scheduling problems; namely, the 

flowshop problem and the single-stage parallel 

machines problem allowing considerable 

reduction in makespan and the delays caused by 

bottleneck stages.  

The main characteristic of the considered 

problem is the differences among the machines. 

The processing time of the jobs on the different 

machines, correspond to the three classical 

parallel machines, may be identical, uniform or 

unrelated. The multiple machines are identical if 

they do not differ in speed. The multiple machines 

are purported uniformly in that they differ in 

speed, but they differ by some constant speed 

factors. Specifically, the machines are unrelated if 

there are no relationships between machines' 

speed but a hierarchy of the machines does exist. 

In better words, the machines are not necessarily 

uniform to a speed factor, but the machines can be 

ranked from the highest to the lowest speed.  

On the other hand, the considered problem is 

primarily concerned with industrial scheduling, 

where jobs have to be assigned to scarce resources 

(machines) at each stage first and then sequenced 

on each resource (machine) over time to optimize 

the performance measure. Since the flowshop and 

the single-stage parallel machines problems are 

known to be NP-hard, our problem is strongly 

NP-hard (Kis and Pesch, 2005). Therefore there is 

no escape from applying simple dispatching rules, 

heuristics and improving meta-heuristics to solve 

it.    

The flowshop scheduling problem and its 

generalizations is a very controversial issue and 

has been the target of researches since Johnson’s 

seminal paper in 1954. A comprehensive review 

of flowshop scheduling problems over the last 50 

years is provided by Gupta and Stafford Jr. (2006) 

and a makespan review by Hejazi and Saghafian 

(2005) and also by Framinan et al. (2005). 

A detailed survey for the flexible flowshop 

problem has been given by Linn and Zhang 

(1999) and Wang (2005). Most of the 

aforementioned works explore three different 
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issues: processing complexity, performance 

measures and solution methods. Although the 

flexible flowshop problem has been widely 

studied in the literature, most of the studies related 

to flexible flowshop problems are concentrated on 

problems with identical machines. While this 

assumption may be true in some benchmarks, in 

many real world cases the multiple machines are 

not identical because multiple machines at a 

processing stage typically have small differences 

in processing speed; the addition of a machine at a 

bottleneck stage to relieve it is usually with a 

newer (faster) processor and the multiple 

machines may be obtained from different vendors 

(and thus have different processing speed) (Roa 

and Santos, 2000). Yet a few number of 

researches considered the real life assumption that 

the multiple machines that may exist at a stage are 

uniform or unrelated in processing speed. 

Brah et al. (1991) formulated a mixed integer 

linear programming for flexible flowshop models 

with the general case of unrelated parallel 

machines. Roa and Santos (2000) studied the two 

stage flowshops with multiple uniform machines 

with the objective of minimizing makespan. They 

applied dispatching procedures such as FIFO, 

LIFO, SPT, LPT etc. and also two heuristics 

based on modification of the famous Johnson’s 

algorithm and based on a new application of a 

heuristic presented by Sule (1997) respectively. 

They evaluated their proposed dispatching rules 

and heuristics against a makespan lower bound 

developed by themselves and reported that the 

heuristic based on Johnson’s algorithm 

outperforms other dispatching rules and heuristics 

in the two stage flexible flowshop. Soewandi and 

Elmaghraby (2003) also considered the same 

problem and developed a heuristic (S–E heuristic) 

and derived a machine speed-dependent worst-

case ratio bound for it, but Kyparisis and 

Koulamas (2006) observed that the worst-case 

bound derived by Soewandi et al. for their 

heuristic is not indicative of the expected 

performance of S–E heuristic when the machine 

speeds vary significantly. They addressed this 

issue by deriving alternative tight speed-

dependent bounds for the S–E heuristic and 

reported that this new bound facilitates the 

narrowing of the gap between average 

experimental performance and worst-case 

performance for the S–E heuristic. In another 

research, Koulamas and Kyparisis (2007) studied 

the problem of minimizing the makespan in an 

alike two-stage flowshop scheduling problem with 

uniform parallel machines which is a 

generalization of the assembly flowshop problem 

with concurrent operations in the first stage and a 

single assembly operation in the second stage. 

They proposed a heuristic with an absolute 

performance bound which became asymptotically 

optimal as the number of jobs became very large 

as they showed. The aforementioned team; 

namely Kyparisis and Koulamas (2006) also 

studied the multistage flexible flowshop 

scheduling problem with uniform parallel 

machines in each stage and the objective of 

minimizing makespan and developed a general 

class of heuristics which extend several well-

known heuristics for the serial flowshop problem 

such as the slope index method developed by 

Palmer, the CDS heuristic of Campbell et al., and 

the Dannenbring heuristic (Gupta and Stafford, 

2006). They obtained absolute performance 

guarantees for their heuristics based on a similar 

absolute performance guarantees for the 

corresponding serial flowshop heuristics.  

Low (2005) has developed a mathematical 

model for the flowshop with unrelated parallel 

machines and independent setup and dependent 

removal times and proposed a simulated annealing 

heuristic for minimizing total flow time of jobs in 

the system. Then Low et al. (2008) reported a 

two-stage flowshop scheduling problem with 

unrelated alternative machines to minimize the 

makespan that focused on the functions of the 

alternative machines. In better words, their model 

has m unrelated alternative machines at the first 

machine center followed by a second machine 

center with a common processing machine in the 

system. For the processing of any job, it is 

assumed that the operation can be partially 

substituted by other machines in the first center, 

depending on its machining constraints. 16 

combinations of heuristic algorithms and 

dispatching rules were applied by them and the 

associated computational experiments indicated 

that the performance of the modified Johnson’s 

rule combined with the FF dispatching rule is the 

best heuristic among all proposed algorithms for 

the considered model.  

In a new research, Jungwattanakit et al. (2009) 

has formulated a 0-1 mixed integer program for 

the flexible flowshop problem with unrelated 

parallel machines and sequence and machine 

dependent setup times to minimize a convex 

combination of makespan and the number of tardy 

jobs. They have investigated both constructive 

and iterative (SA, TS and GA-based algorithms) 

approaches based on developing a job sequence 

for the first stage by a constructive procedure and 

improving it later iteratively, by sequencing the 

jobs for the remaining stages by both the 
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permutation and FIFO rules and by assigning the 

jobs at the stages to a particular machine using a 

greedy algorithm. From their computational 

experiences found that among the constructive 

algorithms the insertion-based approach is 

superior to the others, whereas the proposed SA 

algorithms are better than TS and genetic 

algorithms among the iterative metaheuristic 

algorithms. 

Ruiz and Marato (2006) proposed a heuristic 

based on a genetic algorithm to solve the flexible 

flowshop with sequence dependent setup times, 

unrelated parallel machines at each stage and 

machine eligibility constraints to bridge the 

existing gap between the theory of scheduling and 

its applications in real industrial settings. Recently 

Ruiz et al. (2008) have presented a complete 

formulation as well as a mixed integer 

programming mathematical model and some 

heuristics for a complex and realistic flowshop 

problem. In this problem several realistic 

characteristics such as release dates for machines, 

existence of unrelated parallel machines at each 

stage of the flowshop, machine eligibility, 

possibility for jobs to skip stages, sequence 

dependent setup times, possibility for setup times 

to be both anticipatory as well as non-anticipatory, 

positive and/or negative time lags between 

operations and generalized precedence relation-

ships between jobs are jointly considered. They 

have solved a comprehensive benchmark and 

carried out statistical analysis by means of 

decision trees which have allowed identifying 

some counter-intuitive interactions among many 

different characteristics of the realistic problem 

considered. Furthermore, they have also proposed 

simple dispatching rules and an adaptation of the 

NEH algorithm.  

This research focuses on the flexible flowshop 

problem with equal number of unrelated machines 

at each stage and development of good makespan 

schedules. In Section 2, the production model 

under study is described down to the last detail. In 

Section 3, a hybrid heuristic method is proposed 

and will be illustrated by an example in Section 4. 

In Section 5, experiments for verifying the 

performance of the proposed heuristic algorithm 

are described. Finally, conclusions are presented 

in Section 6. 

2. Problem definition and notations 

The flexible flowshop scheduling problem with 

unrelated parallel machines under consideration 

has the following characteristics: 

1. A set of N jobs denoted by { }NiiI ,...,2,1==  

is available at time zero and no job may be 

cancelled before completion. 

2. The production model consists of L 

consecutive stages. The set of stages is denoted by  

{ }LjjJ ,...,2,1== . 

3. Each stage Jj ∈  is equipped with 

1>M nonidentical machines. The set of machines 

at stage j is denoted by 

{ } J , j,...,M,keE jkj ∈== 21 . 

4. All jobs have to be processed serially through 

all stages. Thus job Ii ∈  consists of a sequence 

of L operations, each of them corresponding to the 

processing of job i at stage j on machine jke  

during an uninterrupted processing time 0>ijkP . 

5. The machines are continuously available from 

time zero onwards and may remain idle. 

6. Each machine can process one job at a time. 

Furthermore, a job can be processed by any of the 

machines and will be processed by a single 

machine at each stage. 

7. Setup and removal times are assumed to be a 

part of the processing time and are independent of 

the job sequence. 

8. The jobs can wait in between stages and the 

intermediate storage is unlimited. 

To maximizing system utilization, the objective 

is to develop a schedule that minimizes the 

makespan. In a flowshop based model, a schedule 

that minimizes the makespan also minimizes the 

sum of job waiting times and the sum of machine 

idle times. 

For the sake of completeness, a mixed integer 

linear programming formulation for the 

considered production model is included in this 

section. The framework of mathematical model 

initially developed by Brah et al. (1991). 

2.1. Input parameters 

N The number of jobs.
 

M The number of parallel machines at each 

stage. 

J The index number of stages; j=1,…,L. 

Pijk The processing time of job i at stage j on 

machine
jk

e . 
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L The number of stages. 

i The index number of jobs; i=1,…,N. 

k The index number of machines at each 

stage; k=1,…,M. 

2.2. Decision variables 

ijC
       

The completion time of job i at stage j 

maxC     The makesapan 

�
�

�
�

�

otherwise,0

machineon

stageatjobprecedesjobif,1

jkirj e

jri

X  

�
�
�

otherwise,0

machinetoassignedisstageatjobif,1 ik
ijk

eji
Y

 

2.3. Mathematical formulation 

Min Cmax 

Subject to:  

Cmax ≥  CiL    i∀                                                (1) 
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k j i     Yijk ,,]1,0[ ∀∈                                     (5) 

rthat i j such r i     X irj <∀∈ ,,]1,0[          (6) 

 j i    Cij ,0 ∀≥                                                 (7) 

0max ≥C                                                             (8) 

Constraints (2) guarantee the assignment of 

each job to one and only one machine at each 

stage. Constraints (3) ensure that it is not allowed 

to start processing the jobs at next stage unless 

they have completed processing at previous stage. 

In other words, they ensure that no job may be 

cancelled before completion. Constraints (4) are 

designed to deal with noninterference among the 

jobs using a common machine at any stage. 

Therefore, the difference between the processing 

times of any two jobs assigned to the same 

machine must be such that they do not overlap. 

Although the flexible flowshop scheduling 

problem under study has a simple formulation, its 

NP-hardness essentially restricts the use of 

classical optimization methods based on mixed 

integer linear programming and branch & bound. 

In the next section, a heuristic algorithm is 

proposed to obtain a near optimal solution within 

a reasonable amount of time. 

3. Proposed heuristic algorithm 

In essence, the flexible flowshop problem 

consists of two sub-problems: assigning 

operations of each job to machines and 

sequencing operations on each machine. Gupta 

(1971) proposed a functional heuristic for the 

flowshop scheduling problem minimizing 

makespan. On the other hand, Sule (1997) 

addresses a method for scheduling jobs on the 

single-stage parallel processing problem with non-

identical machines.  

Although their procedures are designed for two 

basically different models but have been reviewed 

and integrated to obtain a newly modified / 

applied heuristic for sequencing first and then the 

assignment of operations in the flexible flowshop 

under study which is primarily a generalization of 

the classical flowshop and parallel shop. The 

significant side of the proposed heuristic is the 

collocation and reformation of the structure of the 

model under study which is the key to adapt it. 

The following is a step-by-step explanation of the 

algorithm. 

Step 1. Without the loss of generality, rank the M 

machines at each stage from the highest to the 

lowest speed. So the most efficient machine (the 

one taking the least amount of time to process) at 

stage j is machine 1je , the next efficient machine 

is 2je , and so on. 

Step 2. Form M simple L stage flowshops Fk 



78                                                                                                   I. Mahdavi et al. / Journal of Industrial Engineering International 7(13) (2011) 74-83 

(k=1,2,…,M), each of which contains machine 

jke at stage j (j=1,2,…,L). Denote Ok as the list of 

jobs and Ck as the makespan of jobs that will be 

assigned to the k
th

 flowshop. 

Step 3. Dealing with each flowshop Fk (k=1, 2,…, 

M): 

Step 3.1. For each job Ii ∈ , find ikπ  as follows: 

( ))ki(jijk

L

j
ik PP� 1

1

1
min +

−

=
+=                                    (9) 

Step 3.2. Form the subgroup of jobs Uk that take 

less time on the first machine than on the last in 

flowshop Fk, such that { }iLkkik PPIiU <∈= 1 . 

Step 3.3. Form the subgroup of jobs Vk that take 

less time (or equal) on the last machine than on 

the first in flowshop Fk, such that:  

{ }iLkkik PPIiV ≥∈= 1                                    (10) 

Step 3.4. Sort the jobs in Uk in an ascending order 

of sik 'π ; if two or more jobs have the same value 

of ikπ , sort them in an arbitrary order. 

Step 3.5. Sort the jobs in Vk in a descending order 

of sik 'π ; if two or more jobs have the same value 

of ikπ , sort them in an arbitrary order. 

Step 3.6. Rank the jobs in the sorted order of Uk, 

then in the sorted order of Vk; Call this the job list 

of flowshop k denoted by Qk. 

Step 4. Assign all the jobs to the set of 

unscheduled jobs denoted by NS. 

Step 5. Assign all the jobs to the first flowshop F1 

in order of the established priorities of jobs in the 

Q1(Set O1=Q1) and then calculate C1. Ck for 

k=2,…,M is 0, because no jobs are yet assigned to 

flowshops 2 through M ),...,2;( MkO
k

== φ . 

Step 6. Set { }MkCC
k

,...,1max
max

== . 

Step 7. Take the job in NS which its elimination 

from the set O1 has the most effect on decreasing 

C1 as Jc. Temporarily remove Jc from flowshop 

F1. Calculate TC
1

as the corresponding makespan of 

jobs assigned to F1 after temporary deletion of Jc. 

Step 8. Temporarily assign Jc to all flowshops Fk 

(k=2,…,M). Note that the relative position of jobs 

assigned to each set Ok (k=2,…,M)must be the 

same as in Qk. Calculate T

k
C  as the corresponding 

makespan of  jobs assigned to Fk after temporary 

insertion of Jc. 

Step 9.  Set { }T
k

M

k
c Ck

2
minarg

=
= , If  

{ } max1 ,max CCC
T
k

T

c
< ,                                    (11) 

make the elimination of Jc from F1 and insertion it 

to the kc
th
 flowshop permanent, Update Ck 

(k=1,…,M) else the reassignment of Jc is rejected. 

Step 10. Delete job Jc from NS. If φ=NS , stop 

else go to Step 6. 

After Step 10, scheduling is finished and the 

sequence of jobs assigned to each machine at each 

stage and the corresponding makespan of the jobs 

(Cmax) has been found.  

It is important to consider that the same 

sequence of jobs is maintained throughout each 

flowshop Fk and the relative position of jobs in 

each sequence is the same as in job list Qk. 

4. An illustrative example 

Consider a job shop with four stages and three 

nonidentical machines at each stage. There are six 

jobs to be processed, and the time estimates for 

each job on each processor at each stage are given 

in Table 1. So N=6, L=4, M=3 and
 

{ }6,...,1== iiI , { }4,...,1== jjJ  and 

{ } JjkeE jkj ∈== ;3,2,1 . 

The algorithm proceeds as follows: 

(1) According to step 1, the machines at each 

stage are already numbered so that the machine 

numbers are in the increasing order of a single job 

times on each machine. So  

{ } JjkeE jkj ∈== ;3,2,1                              (12) 

(2) According to step 2, three machine groups, F1, 

F2, F3 are formed, each of which is thought of as a 

three-machine flowshop. Without loss of 

generality, we may assume the flowshops are 

constructed as follows: 

{ }3121111 eeeF ++→
     

{ }3222122 eeeF ++→  

{ }3323133 eeeF ++→  

where 
jk

e is the k
th

 machine at the j
th
 stage. 
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Table 1: Processing times for the six jobs. 

Jobs 

Stages 

1  2  3  4 

Machines  Machines  Machines  Machines 

1 2 3  1 2 3  1 2 3  1 2 3 

1 25 30 32  45 54 58  52 62 68  40 48 52 

2 7 9 10  41 51 56  22 28 30  66 82 90 

3 41 47 52  55 63 70  33 38 42  21 24 27 

4 74 88 100  12 14 16  24 28 33  48 57 67 

5 7 9 11  15 20 25  72 96 120  52 69 86 

6 12 15 16  14 16 20  22 25 28  32 35 38 

 

(3) Dealing with each flowshop Fk(k=1,2,3): 

(3-1) For each job Ii ∈ , ikπ  is calculated as 

shown in Table 2. 

(3-2) The subgroups of jobs Uk(k=1,2,3) are 

formed such that { }iLkkik PPIiU <∈= 1  as: 

{ }6,5,2,11 1 =→= Uk
 

{ }6,5,2,12 2 =→= Uk
 

{ }6,5,2,13 3 =→= Uk  

(3-3) The subgroups of jobs Vk(k=1,2,3) are 

formed such that { }iLkkik PPIiV ≥∈= 1  as: 

{ }4,31 1 =→= Vk  

{ }4,32 2 =→= Vk  

{ }4,33 3 =→= Vk  

(3-4) The jobs in Uk are sorted in ascending order 

of s
ik

'π  as follows: 

{ }1,2,6,51 1 =→= Uk  

{ }1,2,6,52 2 =→= Uk  

{ }1,2,6,53 3 =→= Uk  

(3-5) The jobs in Vk are sorted in descending order 

of sik 'π  as follow: 

{ }4,31 1 =→= Vk  

{ }4,32 2 =→= Vk  

{ }4,33 3 =→= Vk  

(3-6) The jobs are ranked in the sorted order of 

Uk, then in the sorted order of Vk ; called the job 

list of flowshop k denoted by Qk. So: 

{ }4,3,1,2,6,51 1 =→= Qk  

{ }4,3,1,2,6,52 2 =→= Qk  

{ }4,3,1,2,6,53 3 =→= Qk  

(4) According to step 4, Let NS={1,2,3,4,5,6}. 

(5) According to step 5, all the jobs are assigned 

to the first flowshop F1 in order of the established 

priorities of jobs in the Q1. So: 

{ } 3534,3,1,2,6,5 11 =→= CO  

022 =→= CO φ  

033 =→= CO φ  

(6) According to step 6 and followed by (5), 

{ } 3530,0,353maxmax ==C . 

(7) According to step 7 and Table 3 below, 

elimination of J5 from the set O1 has the most 

effect on decreasing C1. Jc=J5 is temporarily 

removed from flowshop F1, so .2731 =T
C

 

(8) According to step 8, Jc=J5is temporarily 

assigned to flowshops Fk (k=2,3). The values of 
T

k
C  as the corresponding makespan of jobs 

assigned to Fk after temporary insertion of  Jc are 

as follows: 

1942 2 =→= TCk        

 2423 3 =→= TCk
 

(9) According to Step 9,  

{ } { }

{ } { }�
�
�

��
�

�

=<==

=→=→=

=

353273273,194max,max

1942194

242,194min,min

1

32

CCC

Ck

CC

T
k

T
kc

TT

c

c
 

so Jc=J5 is removed from F1 and assigned to F2. 
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Table 2: Calculation of �ik for each job at each flowshop. 

i 

Flowshop F1 Flowshop F2 Flowshop F3 

( )111

13

1
1 min )i(jij

j
i PP� +

−

=
+=  ( )212

13

1
2 min )i(jij

j
i PP� +

−

=
+=  ( )313

13

1
3 min )i(jij

j
i PP� +

−

=
+=  

1 min(25+45, 45+52, 52+40)=70 min(30+54, 54+62, 62+48)=84 min(32+58, 58+68, 68+52)=90 

2 min(7+41, 41+22, 22+66)=48 min(9+51, 51+28, 28+82)=60 min(10+56, 56+30, 30+90)=66 

3 min(41+55, 55+33, 33+21)=54 min(47+63, 63+38, 38+24)=62 min(52+70, 70+42, 42+27)=69 

4 min(74+12, 12+24, 24+48)=36 min(88+14, 14+28, 28+57)=42 min(100+16, 16+33, 33+67)=49 

5 min(7+15, 15+72, 72+52)=22 min(9+20, 20+96, 96+69)=29 min(11+25, 25+120, 120+86)=36 

6 min(12+14, 14+22, 22+32)=26 min(15+16, 16+25, 25+35)=31 min(16+20, 20+28, 28+38)=36 

 

 

Table 3: The effects of elimination of the jobs in NS from F1 on 

decreasing C1 in the first iteration. 

NSi ∈  C1-
TC1  

1 40 

2 66 

3 21 

4 48 

5 80 

6 32 

 (10) According to step 10, Jc=J5is deleted from 

NS. Because φ≠NS , steps 6 to 10 of the 

proposed algorithm is repeated until φ=NS . The 

iterations are shown in Table 4. 

The final solution includes the jobs assigned to 

each flowshop and sequence of them in order of 

the established priorities of jobs at each flowshop 

in step 3. The results are shown in Table 5. 

At each flowshop, the sequence of jobs do not 

change, so as a matter of fact, the assignment of 

operations of each job to machines at each stage 

and sequencing operations on each machine are 

determined and the final schedule in the 

considered flexible flowshop is obtained. 

5. Computational experiments and results 

To determine the quality of the proposed 

heuristic, a spreadsheet model of the considered 

problem was developed and a number of test  

 

 

problems were randomly generated and solved by 

proposed heuristic coded in Microsoft Visual 

Basic for Applications. The results were 

compared to the optimal solutions obtained via the 

implementation of the mixed integer linear 

programming formulation (presented in section 2) 

by the Lingo 8.0. All experimental tests were 

implemented on a personal computer with an Intel 

Pentium III 633 GHz CPU and 256 MB of RAM. 

Four sets of problems were tested, respectively 

for 3 to 6 jobs. Each job has three operations and 

each stage has two nonidentical machines. The 

processing time of each operation was randomly 

generated and each set of problems was executed 

for 15 tests. The makespans for problems of three 

to six jobs by proposed heuristic and by the 

branch & bound approach are shown respectively 

in Figures 1 to 4. 

The mean relative error between the optimal 

makespans and those obtained by proposed 

heuristic for each set of test problems is shown in 

Table 6. Over the entire collection of instances, 

the average relative error of the proposed heuristic 

is 6.08%. The average execution times for solving 

problems of three to six jobs by the Lingo 8.0 is 

shown in Figure 5. From the figures, it is easily 

seen that the proposed heuristic got a little larger 

makespan than the branch & bound approach did, 

but the computational time needed by the Lingo 

8.0 was however much larger than that needed by 

proposed algorithm. 

 

 
Figure 1: Makespans of 15 tests for three jobs. 
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Figure 2: Makespans of 15 tests for four jobs. 

 

 

 

 

 
Figure 3: Makespans of 15 tests for five jobs. 

 

 

 

 

 
Figure 4: Makespans of 15 tests for six jobs. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: The average CPU times for processing different numbers of jobs. 
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Table 4: The iterations of steps 6 to 10 of the proposed heuristic solving the illustrative example. 
It

er
at

io
n

 1
 

Cmax=353 

NS={J6, J2, J1, J3, J4} 

Jc={J5} 

Fk Ok 
T

k
C  

F1 {J6, J2, J1, J3, J4} 273 

F2 {J5} 194 

F3 {J5} 242 

T

kc

C  
194 

{ }TT

k
CC

c 1
,max  

273 

Decision 273<353 

Assigning J5 to F2 
 

It
er

at
io

n
 4

 

Cmax=225 

NS={J6,J3} 

Jc={J2} 

Fk Ok 
T

k
C  

F1 {J6, J1,J3} 195 

F2 {J5,J2} 276 

F3 {J2,J4} 253 

T

kc

C  
253 

{ }TT

k
CC

c 1
,max  

253 

Decision 242>225 

Remaining J2 to F1 
 

    

It
er

at
io

n
 2

 

Cmax=273 

NS={J6, J2, J1, J3} 

Jc={J4} 

Fk Ok 
T

k
C  

F1 {J6, J2, J1, J3} 225 

F2 {J5,J4} 251 

F3 {J4} 216 

T

kc

C  
216 

{ }TT

k
CC

c 1
,max  

225 

Decision 225<273 

Assigning J4 to F3 
 

It
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at
io

n
 5

 

Cmax=225 

NS={J6} 

Jc={J3} 

Fk Ok 
T

k
C  

F1 {J6, J2, J1} 204 

F2 {J5,J3} 218 

F3 {J3,J4} 268 

T

kc

C  
218 

{ }TT

k
CC

c 1
,max  

218 

Decision 218<225 

Assigning J3 to F2 
 

    

It
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at
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n
 3

 

Cmax=225 

NS={J6,J2,J3} 

Jc={J1} 

Fk Ok 
T

k
C  

F1 {J6,J2,J3} 176 

F2 {J5,J1} 242 

F3 {J1,J4} 277 

T

kc

C  
242 

{ }TT

k
CC

c 1
,max  

242 

Decision 242>225 

Remaining J1 to F1 
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n
 6

 

Cmax=218 

NS={ } 

Jc={J6} 

Fk Ok 
T

k
C  

F1 {J2, J1} 185 

F2 {J5, J6, J3} 253 

F3 {J6,J4} 232 

T

kc

C  
232 

{ }TT

k
CC

c 1
,max  

232 

Decision 232<218 

Remaining J6 to F1 
 

 

 

Table 5: The final schedule in the considered flexible flowshop. Table 6: The performance of the proposed heuristic. 

Fk Ok Ck  

F1 

J6 80 

204 J2 155 

J1 204 

F2 
J5 194 

218 
J3 218 

F3 J4 216 216 

  Cmax 218 
 

Set of test problems Mean relative error 

Three jobs 5.30% 

Four jobs 6.21% 

Five jobs 6.57% 

Six jobs 6.23% 

Average 6.08% 
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