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          Abstract 

In this paper, an exact geometric algorithm is presented for solving two-job sequencing and scheduling 

problems in flexible flow shop and job shop environments while the resources are (un)available in some time 

periods and processors (un)availability is the same in all work centers. This study seems utterly new and it is 

applicable to any performance measure based on the completion time. The investigated models are very close 

to the actual scheduling problems, because they envisage the flexible job shop environments, heads, set-up 

times, arbitrary number of unavailability periods on all resources, arbitrary number of work-centers, any kind 

of cross-ability, any kind of resume-ability and several types of performance measures. The proposed model 

is presented to solve two-job problems because it is a graphical approach. However, it is concluded that the 

idea can be extended to n-dimensional problems as well. 
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1. Introduction 

Scheduling is the process of assigning activities to 

resources over time. Jobs are sequenced based on the 

problem performance measure. A variety of con-

straints such as: duration of activities, release and due 

dates, precedence constraints, and resource availabil-

ity might affect the scheduling problem. 

Most of the scheduling literature reviews are based 

on the assumption that machines are continuously 

available. This assumption might be justified in some 

cases, but in real world, continuous availability of a 

machine is not usually possible. The machine might 

not be available due to a deterministic or a random 

reason. This limited availability of machines might 

result from preschedules, preventive maintenance, or 

the overlap of two consecutive time horizons in the 

rolling time horizon planning algorithm. The rolling 

horizons are used mainly, because most of the real 

world problems of production planning are dynamic. 

On the other hand, the input data are being frequently 

updated. A time period in which a machine is un-

available has been named a hole for convenience (see 

Kubiak et al. 2002).  

In this paper, a graphical algorithm is presented for 

scheduling with limited resource availability in flexi-

ble job shop environments. The investigated model is 

an offline deterministic and static system with any 

performance measure based on completion time. We 

have focused on two-job (event) and arbitrary number 

of resources sequencing problem. In deterministic 

models, the processing times, release and due dates of 

the jobs and the starting time and the duration of the 

unavailability period are known at time zero. How-

ever, pre-emption is allowed in presented algorithm. 

Flexible job-shop is an environment in which the 

number of work-centers (dissimilar resources) is 

greater than one, processing order is variable for all 

the jobs (tasks), job-order isn’t the same for all re-

sources and the available number of identical re-

sources (identical processors) is greater than 1 at least 

in one workcenter. Thus, the flexible job-shop sched-

uling (FJS) problem concerns two sub-problems: i) 

assignment of each operation to one of the alternative 

machines (assignment sub-problem); ii) ordering of 

the operations on each assigned machine (sequencing 

sub-problem), with the aim of optimizing an objec-

tive function. 
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As compared to the classical scheduling issues, 

studies dealing with limited machine availability are 

very rare. Availability constraint problem was first 

introduced for parallel (flexible single) machines 

[18,19] and single machine [1] environments. Lee 

extensively investigated flow-shop scheduling prob-

lems with two machines [10,11,12]. In particular, he 

defined the resumeable, non-resumeable and semi-

resumeable models. An operation is called resume-

able if it can be interrupted by an unavailability pe-

riod and completed without penalty as soon as the 

machine becomes available again. In this case, it is 

said that “pre-emption is allowed”. When the proc-

essing of an operation cannot be interrupted by an 

unavailability period and must be done by one-shot, 

then that operation is called non-resumeable. If a part 

of an operation - which has been processed before the 

unavailability period - must be partially re-executed, 

then the operation is called semi-resumeable. The 

resumeable, non-resumeable and semi-resumeable 

terms are applied to job and availability constraint 

problems. Balas et al. single machine algorithm is 

used in a Shifting Bottleneck Procedure to solve job 

shop scheduling problems with deadlines [5]. Their 

algorithm can also be used to provide an approximate 

solution for job shop non-resumeable problems with 

the greatest completion time of an operation as the 

performance measure [7]. Non-resumeable job-shop 

problem for minimization of the makespan was 

solved by Aggoune (2002) using a branch and bound 

(B&B) algorithm. Aggoune (2004) extended Akers’ 

graphical approach to the job shop non-resumeable 

problems for minimization of the makespan with ar-

bitrary holes on all machines. He named his method 

as temporized geometric approach (TGA) that is a 

polynomial algorithm. Mauguière et al. have pro-

posed a B&B algorithm with arbitrary holes to mini-

mize the makespan for solving job shop resumeable 

problems [14]. Computational results show that this 

problem is a little more difficult to solve than the 

problem without unavailability periods. Aggoune ex-

tended his non-resumeable “TGA” to a resumeable 

problem that it is still polynomial and its complexity 

is the same [3].  

Mauguière et al. have proposed a B&B algorithm 

with arbitrary holes for crossable job shop resume-

able / non-resumeable problems with makespan as 

the measure of performance [16]. If some operations 

are resumeable and the others are not, availability 

constraint is named resumeable or non-resumeable, 

respectively. An unavailability period which allows 

an operation to be interrupted and resumed after a 

specific time period is called “crossable” while an 

unavailability period that prevents the interruption of 

any operation, even if the operation is resumeable, is 

called “non-crossable”. When some unavailability 

periods are crossable and the others are not, the prob-

lem is called crossable or non-crossable, respectively 

[15]. Mauguière et al. extended their job-shop algo-

rithms to crossable/non-crossable and resume-

able/non-resumeable with arbitrary holes on all ma-

chines considering ready times and makespan as well 

[15]. However, there is a very little theoretical study 

in the scheduling literature for the flexible job shop 

scheduling problems with arbitrary resources and 

availability constraints.  

We have used a geometric approach for solving the 

considered problems. Geometric approach was pre-

sented by Akers and Friedman in 1955 for the first 

time [4]. It consisted to minimize the maximum flow 

time of two jobs in a flow shop environment by 

shortest path method in a two-dimensional graph. 

Then, Akers (1956) introduced “Akers’ graphical 

method” for job shop production scheduling prob-

lems [17]. As it is stated by Makui, Hardgrave and 

Newhauser completed this algorithm to minimize 

makespan [13]. The complexity of this two-job shop 

scheduling problem for the minimization of any regu-

lar criterion is stated by Sotskov and Brucker [6,20]. 

Later on, Mensch extended Akers’ algorithm for “ar-

bitrary” jobs [17].  

In Section 2, the characteristics of the machine 

scheduling problem with availability constraints is 

defined. The considered algorithm and its extension 

(by adding set-up times to the model) are presented in 

Section 3 and Section 4, respectively. In Section 5, 

other extensions of the debated model are described 

and in Section 6, we wrap up the subject by present-

ing our conclusion. 

2. Notations 

The following notations will be used throughout 

the paper:  

 i  Job index; i = 1, 2, …, n ( n = number of 

jobs). 

 j Work center index; j = 1, 2, …, m (m = 

number of work centers).  

iJ   Job (event or task) i. 

jR   Resource (processor) j. 

ijp   Processing time of iJ  on jR . 
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ir    Ready time (release date or head) of iJ . 

iw    Weight of iJ . 

if    Flow time of iJ . 

iC    Completion time of iJ  )( iii rfC += . 

K  Total number of holes (unavailability 

periods) in the system. 

k
js  Starting time of k

th
 unavailability period 

in j
th
 work center. 

k
je  Ending time of k

th
 unavailability period 

in j
th
 work center. 

jm  Number of identical processors in j
th
 

work center. 

FJ    Flexible job shop environment. 

Kjh    Number of K holes on all resources. 

rs  Resumeable operation in arbitrary un-

availability pattern.  

nr  Non-resumeable operation in arbitrary 

unavailability pattern. 

sr  Semi-resumeable operation in arbitrary 

unavailability pattern. 

rs/nr/sr System with resumeable, nonresumeable 

and semi-resumeable operations. 

cr    System with crossable holes. 

ncr    System with non-crossable holes. 

cr/ncr System with both crossable and non-

crossable holes. 

ijS    Set-up time of jR for iJ . 

ijµ  Fraction of processing time ( ijp ) before 

a hole that must be repeated after that 

hole for semi-resumeable operation 

)10( << ijµ . 

γ     Performance measure. 

F    Total flow time of all jobs )(
1

∑
=

=
n

i

ifF .    

w
C  Mean weighted total completion time of 

all jobs )/(
11

∑∑
==

=
n

i

i

n

i

iiw wCwC . 

maxC   Makespan )),...,1;max(max niCC i == .  

A  Operation accomplishment (attainment) 

time of all resources. 

W    Total waiting time ∑∑
= =

−=
m

j

n

i

ijPFW
1 1

).(  

The considered problem is generally FJ, ,Kjh  

cr/ncr| n = 2, rs/nr/sr, ir , 2≤jm  | γ , that denotes a 

flexible job shop problem with 2 jobs by crossable 

and non-crossable arbitrary unavailability pattern and 

any kind of cross-ability having different ready times, 

arbitrary number of work centers, in which there are 

1 or 2 identical processors and K holes, and objective 

function is minimizing γ  (γ  is F, 
w

C , maxC  , W or 

their equivalent criteria). All identical processors may 

or may not be available in a specific time period.  

3. Proposed new graphical algorithm  

In this section, we have extended Akers’ graphical 

method which exactly solves the problem of FJ, ,Kjh  

cr| n = 2, rs, ir , 2≤jm  | γ , where γ  is completion 

time. Note that, the starting and ending times are sup-

posed to be the same for both resources if there are 

two identical processors in a work center. It is clear 

that for 2≥jm , jobs sequencing algorithm is not 

needed because, optimum solution is constant for any 

sequence. 

Our proposed method is described as follows:  

Step 1. Draw a two dimensional coordinates. The 

horizontal and vertical axes show the operation times 

of 1J and 2J  in all work centers, respectively.  

Step 2. Show each of the process times of any work 

center by a rectangle. Differentiate among the rectan-

gles related to work centers having 1 processor and 

the others. The horizontal length of the rectangle jR  

is equal to jp1 . The vertical width of the rectan-

gle jR  is equal to jp2 . The order of rectangles on 

any axis is the same in the work centers. The south-
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west corner of any rectangle situates in as early as 

possible. This time corresponds to 3 items:  

• North-east (NE) corner of the prior rectangle 

in job routing (for the first rectangle it will be 

coordinates origin),  

• 1r and 2r , 

• Starting and ending times of related holes 

(see Figure 1). In rs operation, if ijp  is 

greater than the duration of the first availabil-

ity period, rectangle jR  cannot be placed in 

the first availability period. So, break it down 

into as many rectangles as needed and fit 

them into the first available time period. In 

this case, the total length of all rectan-

gles jR must be equal to jp1  and total width 

of all rectangles jR must be equal to the jp2 . 

These rectangles are set tandem. But in nr 

operation, rectangle jR is completely placed 

in the first availability period that its duration 

isn’t smaller than ijp .    

Step 3. Start to move from origin coordinates (O) to 

(D). D is NE corner made by north side of last rec-

tangle for 2J and east side of last rectangle for 1J . 

There are 3 possible moves at any point: horizontal, 

vertical and diagonal (45
°
 line). Move only inside or 

on the sides of rectangle “ 21DJOJ ”
1
. In this area, 

move along 45
°
 line while not entering a rectangle 

related to a work center with 1 processor. This diago-

nal movement is always started from a corner of a 

rectangle jR . If located on one side of a rectangle jR  

or 21DJOJ , continue your move(s) in that direction 

to reach the next corner of that side (see Figure 1).  

Step 4. Compute the considered performance meas-

ure ( γ ) for all paths from O to D. Path with the 

smallest γ  value is the optimal sequence. At any path, 

diagonal moves indicate that 1J and 2J are processed 

simultaneously. However, horizontal or vertical move 

indicates that only 1J or 2J  is processed at any time 

interval by a resource, respectively. For any given 

path, 
w

C can be computed by using Equation (1).  

 

                                                      

 
1
 A rectangle made by coordinates axes and points O 

and D. 

w
C = )/(])()[( 2121 wwwhywvx ++++            (1) 

 

where, x and y are the coordinates of D; v is the sum 

of vertical moves (except those which are on the right 

side of 21DJOJ ) and h is the sum of horizontal 

moves in a path (except those located on the north 

side of 21DJOJ ). In Figure 1, if 12
2
1 ps >  and op-

eration is nr, one dummy extended rectangle will be 

used for 1R  immediately after 
1
1e . This leads to a 

shift to the other resources rectangles. 2J  isn’t proc-

essed by 2R , hence, rectangle 2R  is transformed to a 

horizontal line. This line can be set in a distance 
1
1

1
1221 serp −++ , 

1
1e , 

1
1s and 2r from axis 1J , too. 

maxC  is equal to x in Figure 1. Other performance 

measures are computed like before. 

4. Limited availability problem with set-up times  

The proposed algorithm can be extended to the 

problems with processor (machine) set-up times. The 

set-up times produce homochromatic boxes with 

processing time rectangles (transition from both of 

them is either possible or not). These problems are 

harder than those without considering set-up times. 

The proposed method is illustrated in Section 4.1.  

4.1. Example 1  

Two jobs are to be processed in 4 work centers. All 

operations are resumeable and all holes are crossable. 

Job routings and process times are given in the fol-

lowing matrix (numbers in parentheses are pij and “-” 

means that J1 doesn’t need work center 4). Other re-

lated data are as follows:  

 

1421 === mmm ,    23 =m ,  31 =r , 

99.22 =r ,  111 =S ,  212 =S ,  313 =S , 

014 =S ,   221 =S ,  022 =S ,   523 =S , 

224 =S ,   11 =w ,  22 =w ,  11
1 =e , 

31
2 =e ,   61

3 =e ,  21
4 =e , 

2525,0: 221 >>==∀ jjj eandssj  

(“>>” indicates: very greater than).  
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1R   2R   3R   4R  

1J   1(3)  3(1)  2(3)    -   

1J   4(4)  1(1)  3(2)  2(3) 

 

Solution: Geometric graph is shown in Figure 2.  

For the shown path, ,20=wC 38=C , 22max =C  

(this path is optimum for makespan and mean total 

weighted completion time). All set-up time boxes 

have been aggregated by their processing rectangles. 

4R has a 2-unit vertical line for set-up time and im-

mediately a 3-unit vertical line along with it for proc-

essing time. Indeed, length and width of rectangle jR   

are jj Sp 11 + and jj Sp 22 + , respectively. If 1=jm , 

then the area of rectangle jR becomes black (impene-

trable). Set-up time box can be separated from the 

processing time rectangle. This has been done for 3R  

in Figure 2 and the related Gantt chart is shown in 

Figure 3. As it can be seen, for wC optimum job se-

quence is J<1-2> for work center 1 and 3, but it is 

J<2-1> for work center 2 (for work center 4 there is 

only job 2). The dotted (mottle) white rectangles are 

related to processors unavailability periods and mot-

tle colored rectangles are related to setup times, in 

Figure 3. After setting up a processor for iJ , the 

processing of that processor on iJ  is started, imme-

diately (see Figure 3). In Example 1, if operations are 

nr or sr and/or holes are ncr or cr/ncr, the results will 

remain yet the same.  

5. Extensions  

The proposed method is applicable to resume-

able/non-resumeable operations with crossable/non-

crossable holes, but it is slightly harder from the view 

points of computations and drawing. For example in 

Figure 1, if the first hole on 1R was non-crossable for 

1J and crossable for 2J , and the operations of 1R  on 

1J  were rs or nr and the operations of 1R  on 2J  

were rs, first box of 1R  would be transformed to a 

vertical line with the size of 2
1
1 rs −  and second (right) 

box length of 2R  would be increased to 11p . So, the 

rectangle 3R  was shifted to the right by 

“ 121
1
1 prs −− ” time unit.  

This method is applicable to semi-resumeable op-

erations, too. In this case, set-up times will be added 

to the continuation of operations after the interruptive 

hole. It is usually reasonable that the set-up times to 

be executed completely after the hole, because during 

the unavailability period, the resource is being re-

paired (serviced) or utilized for other jobs (events) 

out of the scheduling system and in result its set-up is 

changed for the considered job(s). In this status, if the 

first availability period isn’t longer than ijS , setting 

up the jR for iJ  will be futile. This extension be-

comes clear by Example 2. 

5.1. Example 2 

Consider the problem of FJ3, jh ,4 , cr/ncr| n = 2, 

rs/nr/sr, 31 =r , 22 =r , 11 =m , 232 == mm |Cmax 

with set up times in that the operations of “ 1R  on 1J  

and 2J ” and also “ 3R  on 2J ” are sr, the operation 

of “ 3R  on 1J ” is nr and the operations of “ 2R on 1J  

and 2J ” are rs. Also: 

2

1
2111 == µµ ,  

3

1
23 =µ ,   12111 == SS , 

0132212 === SSS ,   323 =S ,   21
1 =s , 

92
1 =s ,   171

2 =s ,  191
3 =s ,  61

1 =e , 

132
1 =e ,   181

2 =e ,  211
3 =e . 

Set-up is completely started after the holes for un-

finished sr operations. Job routings and process times 

are given in the following matrix (numbers in paren-

theses are ijp ). Find the optimum solution.  

1R   2R   3R    

1J   1(4)  2(2)  3(2)     

1J   1(3)  3(1)  2(1)   

 

Solution: Geometric graph is shown in Figure 4. 

The shortest path from O to D is shown in Figure 4. 

Optimum maxC value is equal to 29. Note that, the 

optimal sequence is J<2-1> for 1R and J<1-2> for 

work center 2. It is clear that, setting up is futile for 

3R  on 2J , because the operation of 3R  on 2J is 

semi-resumeable. 
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Figure 1. A simple brickwork graph of resumeable job shop. 
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Figure 2. The brickwork graph for Example 1.  

 

 

  

 

Figure 3. Gantt chart of optimum sequence for Example 1.  
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Figure4. Geometric graph of Example 2. 

 

 

6. Conclusion  

We have proposed an exact graphical algorithm 

based on the extension of Akers’ method for solving 

the problem related to the model FJ, kjh , cr/ncr| n = 2, 

rs/nr/sr, ir , 2≤jm  | γ , where γ  is a performance 

measure based on the completion time. This algo-

rithm is likely the first algorithm and research work 

for the resource availability constraint problem in 

flexible job shop environments. Moreover, the con-

sideration of various environments, arbitrary number 

of resources (work centers and processors), arbitrary 

holes on all work centers with any distribution (nr, rs, 

sr), and ready times are some of the major points 

considered in our proposed algorithm which have not 

been propounded in Akers’ methods yet.”  

In continuation, we have described the extension of 

our algorithm by considering set-up times in the 

model. Also, the validation and verification of the 

proposed model were shown by solving a couple of 

examples. The generalization of Akers’ graphical al-

gorithm can be led to extension of above model for 

arbitrary number of job and jm . The time of obtain-

ing a solution can be decreased by the transformation 

of geometric approach to the network technique or 

any other exact method and heuristics. The proposed 

algorithm can be extended to n jobs for maxC , F, A or 

any other performance measures too. This extension 
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makes the problem much harder and it is beyond the 

framework of this paper. 
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