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          Abstract 

Scheduling for job shop is very important in both fields of production management and combinatorial op-

timization. However, it is quite difficult to achieve an optimal solution to this problem with traditional opti-

mization approaches owing to the high computational complexity. The combination of several optimization 

criteria induces additional complexity and new problems. In this paper, we propose a Pareto approach to 

solve multi-objective job shop scheduling. The objective considered is to minimize the overall completion 

time (makespan) and total weighted tardiness (TWT). An effective simulated annealing algorithm based on 

proposed approach is presented to solve multi-objective job shop scheduling problems. An external memory 

of non-dominated solutions is considered to save and update the non-dominated solutions during the problem 

solving process. The parameters in the proposed algorithm are determined after conducting a pilot study. 

Numerical examples are used to evaluate and study the performance of the proposed algorithm. 
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1. Introduction 

The problem of scheduling in job shops has been 

extensively investigated by many researches. The job 

shop scheduling problem is to determine a schedule 

of jobs that have pre-specified operation sequences in 

a multi-machine environment. In the classical job 

shop scheduling problem (JSP), n jobs are processed 

to completion on m unrelated machines. For each job, 

technological constraints specify a complete, distinct 

routing which is fixed and known in advance. Proc-

essing times are fixed and known in advance. Each 

machine is continuously available from time zero, 

and operations are processed without preemption.  

Since scheduling began to be studied at the begin-

ning of this century, numerous papers have been pub-

lished. Almost all of them optimize a single objec-

tive. Many industries such as aircraft, electronics, 

semiconductors manufacturing, etc., have tradeoffs in 

their scheduling problems where multiple objectives 

need to be considered in order to optimize the overall 

performance of the system. Optimizing a single ob-

jective generally leads to deterioration of another one. 

For example, increasing the input rate of product into 

a system generally leads not only to higher through-

put, but also to increased work-in-process (WIP).  

The most of the contributions reported in the litera-

ture dealing with multi-objective scheduling prob-

lems have been divided to these categories: 

• Review of the multi-criteria scheduling prob-

lem. Hoogeveen [8] presented a comprehen-

sive review of the published literature on the 

multi-criteria scheduling. He presented that 

the following performance criteria appeared 
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frequently in the literature: maximum com-

pletion time or makespan ))(( max σC , total 

weighted completion time �
=

n

j
jjcw

1

))(( σ , 

maximum lateness ))(max)(( max σσ j
j

LL = , 

maximum tardiness ))(max)(( max σσ j
j

TT = , 

maximum cost )))((max)(( max σσ jj
j

Cff = , 

total weighted tardiness �
=

n

j
jjTw

1

))(( σ , 

maximum earliness ))(max)(( max σσ j
j

EE = , 

total weighted earliness �
=

n

j
jj Ew

1

))(( σ ,�

weighted number of tardy jobs �
=

n

j
jjUw

1

))(( σ . 

• Pareto approach for multi-objective schedul-

ing. In such multi-objective scheduling prob-

lems, it is common to obtain a set of Pareto-

optimal or efficient solutions such that at 

least one such solution is not inferior to any 

other given solution not contained in the set, 

and the solutions in the set do not dominate 

each other. This approach is applied for sin-

gle machine scheduling [6,10], flow shop 

scheduling [17] and parallel machines [2].  

• Scalar approach for multi-objective schedul-

ing. One common approach in dealing with 

such situations is to establish a weighted 

(composite) objective function based on the 

significance of individual objectives, or 

equivalently, the criticality of deviating from 

the optimal value of each individual objec-

tive. This approach is applied for single ma-

chine scheduling [5,6] and job shop schedul-

ing [19].  

• Various objectives in job shop scheduling. 

The following performance criteria appeared 

frequently in the single objective job shop 

scheduling literature:  maximum completion 

time or makespan [3,13,18], various tardiness 

objectives [1,11], penalty cost [7] and various 

earliness objectives [15]. Two objectives rep-

resenting the general performance of a manu-

facturing system are considered in this study. 

They are minimizing makespan and minimiz-

ing total weighted tardiness (TWT). 

All the above problems are either shown to be NP-

hard or remain open as far as computational complex-

ity is concerned. Obviously the problems including 

more than one criterion are more difficult. The multi- 

objective scheduling is strongly NP-hard and combi-

natorial. No method is able to generate optimal solu-

tions for the multi-objective case in polynomial time. 

This limits the quality of design and analysis that can 

be accomplished in a fixed amount of time. For this 

reason many studies have focused on developing heu-

ristic procedures for this problem. Effectively, meta-

heuristics, like simulated annealing (SA), tabu search 

and genetic algorithms have demonstrated their abil-

ity to solve combinatorial problems. So, some authors 

suggested adapting metaheuristics in order to solve 

multi-objective combinatorial (MOCO) problems [4]. 

In particular, Ulungu et al. [16] conceived a multi-

objective simulated annealing (MOSA) algorithm for 

solving combinatorial optimization problems. 

In this paper, we consider the problem of develop-

ing heuristically efficient (or non-dominated) solu-

tions with the objectives of minimizing the overall 

completion time (makespan) and total weighted tar-

diness (TWT) of jobs. A Pareto approach based on 

simulated annealing algorithm is presented to solve 

the multi-objective job-shop scheduling problem. The 

aim is to generate a good set of approximation non-

dominated solutions. The procedure is valid for any 

number of objectives. The paper is organized as fol-

lows: the problem description and the multiple objec-

tives job-shop scheduling model is described in Sec-

tion 2 and the notations are introduced. Section 3 

gives a description of the MOSA heuristic and the 

solution procedure. Section 4 reports some computa-

tional results and their analysis; conclusions and fur-

ther research directions are presented in Section 5. 

2. Problem description 

2.1. Job shop scheduling problem 

The scheduling problem under consideration has m 

machine and n jobs. Each job consists of a sequence 

of operation jhj hhO ,...,1,, = , where hjO , and jh de-

note that hth operation of job j and the number of op-

erations required for job j, respectively. Unless stated 

otherwise, index i denotes a machine, index j denotes 

job, and h denotes operation throughout the paper. 

The due date jd of job j is promised to its customer, 

and a delay penalty is charged if job j is completed 

after its due date. Let jw denote the delay penalty per 

unit time of job j. The problem is thus to determine a 
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sequence of the operation on all machines that mini-

mize some criteria.  

Most of the research in job shop scheduling is con-

cerned with the minimization of a single criterion. 

However, scheduling problems often involve more 

than one aspect and therefore require multiple criteria 

analysis. Despite their importance, scant attention has 

been given to multiple criteria scheduling problems, 

especially in the case of multiple machines.  

Two objectives representing the general perform-

ance of a manufacturing system are considered in this 

study. They are minimizing makespan and minimiz-

ing total weighted tardiness (TWT). In the following, 

we use the classical notations: 

jC        The completion time for job j. 

jd        The due date for job j. 

jw        A possible weight associated to job j.  

jT  The tardiness of job j. 

TWT  The total weighted tardiness. 

maxC  The maximum completion time (makespan). 

 

Where 

),0max( jjj dCT −= , 

�=

j

jjTwTWT , 

)(maxmax j
j

CC = . 

2.2. Multi-objective optimization 

We consider a general optimization problem with 

two objectives, where we want to minimize functions 

)(1 xf and )(2 xf subject to a constraint Sx ∈ . We 

denote the vector of objective functions by: 

 
T

xfxfxF ))(),(()( 21= . 

 

The vector ),...,,( 21 nxxxx =  is called a decision 

vector and
nS ℜ⊂ is the feasible region. The feasible 

region is formed by constraint functions. The image 

of the feasible region )(SFZ =  is called the feasible 

objective region. Vectors belonging to the feasible 

objective region Z are called objective vectors and 

they are denoted by
2)( ℜ∈xF . 

We want to minimize simultaneously both objec-

tive functions. Generally, it is not possible to find a 

solution in which both objective functions attain 

minimum values. This means that the objective func-

tions are conflicting. Besides, the feasible objective 

region Z is only partially ordered. In other words, we 

cannot compare all the objective vectors mathemati-

cally. For example, we cannot distinguish which is a 

better objective vector, T)5,1(  or T)1,5( . However, we 

can say that T)5,1( is better than T)5,2(  or T)6,1( . 

This leads us to the concept of Pareto optimality. A 

decision vector Sx ∈
*

and the corresponding objec-

tive vector )( *
xF are Pareto optimal if there does not 

exist another decision vector Sx ∈  such that 

)()( *xfxf ii ≤ for i=1,2 and )()( *xfxf ii <  for at 

least one i [12]. A set containing all the Pareto opti-

mal solutions of the problem is called the Pareto op-

timal set or non-dominated solutions set. As an ex-

ample, in Figure 1, we consider a two objective func-

tions case. The solutions C, D and F are dominated 

and {A, B, E, G} is the Pareto-optimal set of solu-

tions. The main aim of such an approach is to find all 

the elements of this set in order to give more choice 

to the decision-maker [9].   

Now the solution we are looking for is a non-

dominated solution set. This guarantees that we can-

not improve any of the objective function values of 

the solutions without deteriorating the other objective 

function value. This, which Pareto-optimal solution is 

the best, depends usually on a decision maker. So, we 

present an algorithm that searches the non-dominated 

solutions set for the multi-objective optimization 

problem considered.  

 

 

 

 

 

 

        Figure 1. An illustration example of a non-dominated set. 
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2.3 Mathematical model 

Under these assumptions and notations, the prob-

lem is to find a schedule that minimizes the overall 

completion time (makespan) and total weighted tar-

diness (TWT) given jhjihj daOmn ,,,, ,,,  and hjp , .  

 

�
�
�

=
otherwise

imachineonperformedisOif
a

hj

hji
0

1 ,

,,

 

T Total tardiness of schedule. 

M A large number. 

 

�
�
�

=
otherwise

kpriorityinimachineonperformedisOif
a

hj

khji
0

1 ,

,,,
 

 

hjt ,       Start time of the processing of operation hjO , . 

kiTm ,   Start of working time for machine i in priority 

k. 

jT        The tardiness of job j. 

 

A mixed integer program for the multi-objective 

job shop scheduling problem is then given as: 

 

Min �
=

=

n

j
jjTwT

1

   

Min maxC                                                                                                                    

Subject to: 

)0,)max(( ,, jhjhjj dptT
jj

−+≥    nj ,...,1=    (1)                     

 

1,,, +
≤+ hjhjhj tpt  nj ,...,1= , 1,...,1 −= jhh   (2) 

 

jhjtC ,max ≥           nj ,...,1=                               (3)                                                                                                      

 

1,,,,,, +
≤+ kikhjihjki TmxpTm     mi ,...,1= ,    

   nj ,...,1= , 1,...,1 −= jhh , 1,...,1 −= ikk     (4) 

 

MxtTm khjihjki )1( ,,,,, −+≤    mi ,...,1= , 

   nj ,...,1= ,    jhh ,...,1= ,     ikk ,...,1=          (5) 

hjkhjiki tMxTm ,,,,, )1( ≥−+    mi ,...,1= , 

   nj ,...,1= ,    jhh ,...,1= ,     ikk ,...,1=          (6) 

 

hjikhji ax ,,,,, ≤        mi ,...,1= ,  nj ,...,1= , 

                             jhh ,...,1= , ikk ,...,1=          (7) 

 

�� =

j h
khjix 1,,,     mi ,...,1= ,   ikk ,...,1=       (8) 

 

�� =

i k
khjix 1,,,    nj ,...,1= ,    jhh ,...,1=      (9) 

 

0, ≥hjt                nj ,...,1= ,    jhh ,...,1=      (10) 

 

}1,0{,,, ∈khjix        mi ,...,1= ,  nj ,...,1= , 

                             jhh ,...,1= , ikk ,...,1= .      (11) 

Constraint (1) determines the tardiness of each job. 

Constraint (2) enforces each job to follow a specified 

operation sequence. Constraint (3) determines the 

makespan of schedule. Constraint (4) forces each ma-

chine to process one operation at a time. Constraints 

(5) and (6) force each operation hjO , can be start af-

ter its assigned machine is idle and previous opera-

tion 1, −hjO is completed. Constraint (7) determines 

the machine for each operation.  Constraint (8) as-

signs the operations to a machine and sequence as-

signed operations on all machines. Constraints (9) 

force each operation can be performed only on one 

machine and one priority. Results of khjix ,,, yield an 

assignment each operation on a machine and se-

quence assigned operations on all machines. 

3. Solution procedure 

3.1. Simulated annealing 

Simulated annealing (SA) is a neighborhood search 

technique that has produced good results for combi-

natorial problems. A standard SA procedure begins 

by generating an initial solution at random. At each 

stage, the new solution taken from the neighborhood 

of the current solution is accepted as the new current 

solution if it has a lower or equal cost; if it has a 

higher cost, it is accepted with a probability that de-

creases as the difference in the costs increases and as 
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the temperature of the method decreases. This tem-

perature, which is simply a positive number, is peri-

odically reduced by a temperature scheme, so that it 

moves gradually from a relatively high value to near 

zero as the method progresses. Thus, at the start of 

SA most deteriorating moves are accepted, but at the 

end only ameliorating ones are likely to be accepted. 

The method converges to a local optimum as the 

temperature approaches zero, but because SA has 

performed many perturbations at higher temperatures 

which have pushed the search path into new areas, a 

better local optimum solution should hopefully be 

reached. In this paper, additional termination criteria 

are introduced into the proposed SA procedure to re-

duce the computational effort. The entire SA proce-

dure is terminated either when the tempera-

tureT reaches a pre-specified value fT  or the frozen 

counter cf  is greater than a pre-defined value. In ad-

dition, to intensify and diversify the SA searching 

procedure, when a solution is not ameliorated in a 

pre-defined number of consecutive temperature 

stages, a “restarting solution” mechanism is designed 

to generate a new schedule S for the further ameliora-

tion of the solution.  

3.2 The multi-objective simulated annealing algorithm 

The following procedure is used to applying Simu-

lated Annealing metaheuristic for solving the consid-

ered problem. In Step 1 an initial solution is gener-

ated. SA is used to determine the best sequences of 

jobs for any machine in Step 2. An external memory 

of non-dominated solutions is considered to save and 

update the non-dominated solutions during the solu-

tion process.  

Denote D is the non dominated solution. 

The MOSA algorithm applied in this study is now 

described as follows: 

Step 1. Initialization. 

1.1.  Obtain an initial solution S.  

1.2. Compute the objectives of S and set S → D  

(inter S to D).  

1.3. Initiate the initial temperature T, final tem-

perature fT , and cooling rate r. 

1.4.   Set the counter markov = 0. 

Step 2. While not yet frozen, )( fTT > or )50( <bscn , 

do the following: 

2.1.   If markov = U_markov, generate a restarting 

solution S, and set markov = 0. 

2.2.  Perform the following loop L times. 

2.2.1.  Neighborhood search. Select a neighbor   
cS of S . 

2.2.2. Compute sS
RR c −=∆ . A scalar ap-

proach is used to convert the multi-

objective problem to a single objective 

problem.  

2.2.3.    If 0≤∆  set c
SS = . 

2.2.4.   Compute *ssb RR −=∆ . 

2.2.5. If S is non-dominated, set  S → D , up-

date the non-dominated set (D) and 

0=bscn . 

2.2.6. If 0>∆ , select a random variable 

)1,0(~ UP . If Pe T
>

∆− /
, set

cSS = . 

2.3.  If the D is not updated, set counter markov = 

markov + 1. 

2.4.   Set TrT ×= . 

Step 3. Return the non-dominated solutions. 

3.3 The elements of the simulated annealing considered 

The method proposed by Saidi and Fattahi [14] is 

used to represent the solution seed. They name all 

operations for a job with the same symbol and then 

interpret them according to the order of occurrence in 

the sequence for a given solution seed.  

Each job appears in the solution exactly jh  times 

and each repeating number does not indicate a con-

crete operation of a job but refers to an operation 

which is context-dependent. The initial solution is 

obtained with a random operator. An example of the 

solution seed for a two job - two machine job shop 

problem, Job 1 has two operations and Job 2 has three 

operations, is as follows:  

[1   2   2   1   2] 

Given a sequence S, a new sequence
cS is obtained 

for S using a general pairwise interchange: randomly 

select two positions i and j in the sequence. A 

neighborhood of S, 
c

S  is obtained by interchanging 

the jobs in position i and j. 

 



 

 

 

�%������������

��	�������	�	���������������������� ���!���	�

 

To make the performance of the proposed SA algo-

rithm more robust, parameter setting is necessary. In 

this research the parameter setting for the designed 

SA heuristic is stated in detail. From the results of 

some preliminary experiments, the initial temperature 

ranges from 100 to 300, depending on the size of the 

problem concerned; and the final temperature is de-

termined to be 0.1 for all the cases of the problem. A 

temperature reduction factor r of 0.99 has been cho-

sen. The upper limit of the frozen counter, that the 

solution is not improved in a number of consecutive 

temperature stages, U_markov, is set to be 20 to 50. 

As previously noted, an intensification scheme of-

ten takes the form of reinforcing attributes of random 

solutions while a diversification scheme typically 

consists of driving the search into regions not yet ex-

plored.    

4. Numerical experiments  

 

This section describes the computational experi-

ments which are used to evaluate the performance of 

the proposed algorithm in finding good quality 

schedules. Four problems (MOJ1:4.3.3, MOJ2:6.4.4, 

MOJ3:10.4.6 and MOJ4:15.4.7 that are shown in Ta-

ble1s 1, 2, 3 and 4) of multi-objective job shop sched-

uling based on practical data have been selected to 

evaluate the performance of the proposed algorithm. 

These problems are represented by MOJ (multi-

objective job shop), n (number of jobs), h (number of 

operations) and m (number of machines). 

These problems are solved by the proposed algo-

rithm to evaluate the performance of it. The algorithm 

was run on a PC that has a Pentium-IV 1.89 GHz 

processor, with 512 Mb RAM. All of the problems 

are solved by the proposed algorithm. Their results 

are shown in Table 5. Moreover, we presented a 

mathematical model (Section 2.3) to describe the 

problem considered and achieve two optimum solu-

tions for each problem. For this reason, we use scalar 

approach to decrease the complexity of the mathe-

matical model. In this approach, a vector
T

uu ],[ 21 is 

used to transform the multi-objective problem to a 

single objective problem which described below. To 

achieve two Pareto solutions for a problem, we use 
T]0,1[ and 

T]1,0[ vectors. With any of other vectors 

)10,]1,([ <<− ααα
T

, may be a Pareto solution is 

obtained. All of solutions with all of vectors must be 

cheeked to determine other optimal Pareto solutions. 

The single objective models are solved with the 

branch and bound method and their results are shown 

in Table 6. Solving of the job shop scheduling prob-

lem with the branch and bound method is very time 

consuming and no method is able to generate optimal 

solutions for the multi-objective case in polynomial 

time. This limits the quality of design and analysis 

that can be accomplished in a fixed amount of time. 

For this reason, many studies have focused on devel-

oping heuristic procedures for this problem.  
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A review of the results in Tables 5 and 6 shows 

that the proposed algorithm is capable to obtain the 

solution near the optimal solution. Moreover, the pro-

posed algorithm can obtain all of Pareto solution in a 

small time as shown in Figure 2. Therefore, the pro-

posed algorithm is useful in multi-objective job shop 

scheduling problems.  The non-dominated set for the 

problem MOJ4 is obtained through the solution proc-

ess and shown in Figures 3 and 4. These figures show 

that the non-dominated set will be updated during the 

solution process and the final non-dominated set will 

be presented. 

5. Conclusion 

In this paper, we have dealt with multi-objective 

job shop scheduling problems and we have proposed 

a new Pareto-optimally approach to solve them. An 

effective simulated annealing algorithm based on 

proposed approach is presented. An external memory 

of non-dominated solutions is considered to save and 

update the non-dominated solutions during the solu-

tion process. The objective functions considered are 

the minimization of the total weighted tardiness 

(TWT) and Makespan )( maxC . The obtained results 

show the efficiency of the proposed algorithm. Al-

though it dose not guarantee the optimality, such an 

approach provides good quality solutions in a reason-

able time limit as future research direction, applying 

another objective to this problem can be considered. 
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Table 1. Problem MOJ 1: 4.3.3. 

Operation 3 Operation 2 Operation 1   

Process 

time 

Machine 

number 

Process 

time 

Machine 

number 

Process 

time 

Machine 

number 

Due 

date 

Jobs 

95 2 55 2 85 1 150 1 

83 3 54 2 26 1 190 2 

68 3 23 3 45 2 140 3 

42 3 58 2 47 2 480 4 

 

 

 

 

Table 2. Problem MOJ 2: 6.4.4. 

Operation 4 Operation 3 Operation 2 Operation 1  

Process 

time 

Machine 

number 

Process 

time 

Machine 

number 

Process 

time 

Machine 

number 

Process 

time 

Machine 

number 

Due 

date 

Jobs 

45 4 45 3 55 2 25 1 450 1 

23 4 55 3 54 2 26 1 650 2 

55 3 60 2 25 3 40 2 160 3 

62 4 60 4 75 2 30 1 350 4 

68 3 25 3 23 2 45 2 440 5 

42 4 35 3 25 3 47 1 220 6 

 

 

 

 

 

Table 3. Problem MOJ 3: 10.4.6. 

Operation 4 Operation 3 Operation 2 Operation 1  

Process 

time 

Machine 

number 

Process 

time 

Machine 

number 

Process 

time 

Machine 

number 

Process 

time 

Machine 

number 

Due 

date 

Jobs 

45 5 45 4 55 2 25 1 650 1 

23 6 55 5 54 2 26 1 450 2 

55 6 60 5 25 3 40 2 330 3 

62 5 60 4 75 2 30 1 300 4 

65 6 45 5 45 3 50 2 1000 5 

47 5 25 4 65 3 45 2 250 6 

26 6 34 5 35 3 50 3 350 7 

54 5 25 4 20 4 47 2 550 8 

68 5 25 6 23 2 45 2 250 9 

42 6 35 5 25 3 47 1 850 10 
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Table 4. Problem MOJ 4: 15.4.7. 

Operation 4 Operation 3 Operation 2 Operation 1  

Process 

time 

Machine 

number 

Process 

time 

Machine 

number 

Process 

time 

Machine 

number 

Process 

time 

Machine 

number 

Due 

date 

Jobs 

45 7 45 4 55 3 25 1 700 1 

93 7 75 5 54 3 58 1 850 2 

55 6 60 5 25 2 40 2 300 3 

92 6 60 4 85 2 30 1 350 4 

65 7 45 5 45 3 50 2 220 5 

47 7 25 4 65 2 45 2 400 6 

126 6 104 5 95 2 90 3 790 7 

54 6 25 4 20 3 47 2 650 8 

68 6 25 6 23 4 45 2 750 9 

55 6 55 4 45 2 55 3 390 10 

47 7 36 4 65 3 45 3 560 11 

48 7 45 5 32 3 35 2 470 12 

35 6 65 5 33 2 62 1 900 13 

65 6 33 6 25 3 28 2 400 14 

42 7 35 5 25 3 47 1 230 15 

 

 

 

 

 

Table 5. The final non-dominated sets for the experimental problem. 

MOJ 1 MOJ 2 MOJ 3 MOJ 4 

Makespan TWT Makespan TWT Makespan TWT Makespan TWT 

354 

408         

396 

233        

140 

175 

407 

484 

487 

459 

433 

430 

445 

494 

247 

33 

32 

40 

78 

138 

75 

20 

596 

590 

580 

583 

167        

419 

572         

533 

868        

883 

826       

831 

842 

1344     

1285 

2769     

2385 

2039 

CPU time: 15           45 125 385 

 

 

 

 

 

Table 6. Results of the mathematical model and the branch and bound method. 

MOJ 1 MOJ 2 MOJ 3 MOJ 4 

Makespan TWT Makespan TWT Makespan TWT Makespan TWT 

354 

408 

233     

140 

407 

494 

247         

20 

596 

580 

167         

572 

Not available  

CPU time:   650           980 4700 >7200 
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Figure 2. The comparison of CPU time for the proposed algorithm and mathematical model. 

 

 

 

 

 

 

 

 
Figure 3. The non-dominated set during the solution process for TWT and 

maxC . 
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Figure 4. The non-dominated set during the solution process for 
maxC . 
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